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Abstract—In this contribution we present a decentral-
ized power allocation algorithm for the uplink interleave
division multiple access (IDMA) channel. Within the pro-
posed optimal strategy for power allocation, each user
aims at selfishly maximizing its own utility function. An
iterative chip-by-chip (CBC) decoder at the receiver and
a rational selfish behavior of all the users according to
a classical game-theoretical framework are the underlying
assumptions of this work. This approach leads to a channel
inversion policy where the optimal power level is set locally
at each terminal based on the knowledge of its own channel
realization, the noise level at the receiver and the number
of active users in the network.

I. INTRODUCTION

Interleave division multiple access (IDMA) has been
identified as a promising multiple access technique in
the context of cellular networks [1] and self-organizing
networks (e.g ad hoc networks) [2]. In this domain,
distributed power algorithms play a central practical and
theoretical role. Nonetheless, the study of distributed
power allocation algorithms for IDMA is still an un-
solved problem. The centralized power allocation (CPA)
has been tackled by several authors (see [3], [4], and
references therein). In these works, iterative multiuser
detection/channel decoding is assumed at the receiver
and the base station determines the power to be trans-
mitted by each user, according to a global optimum
criterion and typically having complete channel state
information (CSI). In this contribution, a novel frame-
work to tackle the DPA problem in IDMA systems
using tools from game theory is presented. The proposed
approach assumes iterative multiuser detection/channel
decoding at the receiver based on the chip-by-chip (CBC)
algorithm [1], and relies on the signal to noise ratio
(SINR) evolution technique [4] for non-heavily loaded
systems.

In our approach, we assume that each user allocates
the power by maximizing its own utility function and
by assuming a competitive selfish and rational behavior
of the other users. The proposed utility function for a
given user is the ratio between a power of the user’s
goodput (probability of an error-free detected frame)
and its own transmit power. Our decentralized approach

requires only the knowledge of the noise power at the
receiver, the channel gain of the user of interest, and the
number of active users in the system. It yields a channel
inversion policy for the power allocation. This policy
is applied to an IDMA system with a repetition code of
length N bits. Simulations show that the allocated power
is substantially independent of the number of users
in typical operation conditions for a practical system.
Therefore, the knowledge of the number of active users
in the system becomes irrelevant as observed in the
centralized case in [3].

II. SYSTEM MODEL

Consider the uplink of an IDMA system with K
chip-synchronous active users. Each mobile and the
base station are equipped with a single antenna. The
base station performs CBC iterative multiuser decoding
based on successive interference cancellation (SIC) or
parallel interference cancellation (PIC) as proposed in
[1]. Denote by bk the information bits of the length-M ′
message to be transmitted by the kth user. An identical
code with low rate R is applied to the messages of all the
users. The coded information bits, referred to as chips,
are permuted by an interleaver πk of length M = M ′

R
chips. Each interleaver is unique in the network, i.e.
πk �= πi, ∀i �= k. The base band signal r (j) sampled at
the chip-rate at the receiver is

r (j) =
K∑

i=1

√
pihixi (j) + n (j) , j = 0 . . . M − 1 (1)

where j is the discrete time index for the chip interval
and hi and pi represent the channel realization and
the transmit power of the ith user, respectively. Here,
xi (j) represents the chip transmitted by the ith user at
chip interval j and n (j) is the additive white Gaussian
noise (AWGN) process with zero mean and variance
σ2. For the sake of simplicity, we introduce our results
assuming an antipodal modulation, i.e xi (j) ∈ {−1, 1},
real valued channel realizations, and real noise samples.
The extension to more complex modulation schemes is
straightforward. The receiver is made of an elementary
multiuser signal estimator (ESE) based on the principle



of maximum a posteriori (MAP) detection, a set of
interleavers πk and de-interleavers π−1

k , and a set of
K single user a posteriori probability decoders (DEC).
The decoders feed back soft information to the ESE
module in turbo configuration to iterate and improve the
estimations. This structure is known as CBC decoder
and is described in [1]. The SINR at the input of the
decoder can be estimated at each iteration of the CBC
detection by means of the SINR evolution technique [4].
It is shown in [3] that in the steady state, the SINR of
user k, denoted as γk, converges to the solution to the
following system of equations

γss
k =

pk|hk|2
K∑

i=1,i�=k

pi|hi|2f (γss
i ) + σ2

, ∀k ∈ [1, K] , (2)

where the super-index ss stands for steady state. The
function f(x) ∈ [0, 1], ∀x � 0 represents the amount of
multiple access interference (MAI) that is eliminated at
each iteration of the CBC detection [4]. This function
depends on the coding scheme and can be obtained by
Monte Carlo simulations as described in [1]. The system
(2) might have several solutions. Nonetheless, it has been
shown in [3] that in the case of |hi|2pi = |hj |2pj ∀i �= j,
the system has a unique solution given by the fix point
equation

γss =
pk|hk|2

(K − 1)|hk|2pkf (γss) + σ2
∀k ∈ [1, K] (3)

and γss
k = γss, with 1 � k � K.

Additionally, it has been shown that the SINR evo-
lution technique predicts precisely the SINR under the
constraint of non-overloaded systems [1], [4]. However,
we have found in our simulations that this is not the case
for heavily overloaded systems. Under this constraint,
the SINR evolution technique does not match the SINR
obtained at the output of the ESE module. In order to
exclude this case, we restrict our study to non-overloaded
systems, i.e. we consider that K

N � 1 always holds.

III. A NON-COOPERATIVE POWER ALLOCATION
GAME

We define the power allocation problem as a strategic
game denoted by the triplet

{
S,P, (uk)k∈S

}
, where

S = {1, . . . , K} is the set of players or active mobiles,
P represents the set of strategies, and uk is the utility
function of user k. In this work, the strategy of each user
consists of all the possible transmittable power levels
pk ∈ R

+, ∀k ∈ S. We follow the same line as in [3], [5]
and [6] and enforce constraints on the maximum transmit
power later. Furthermore, the utility function uk of user
k is defined as the ratio between the positive power sk

of its goodput g(γk), i.e. the probability of an error-free
detected packet, and its transmit power1

uk (p,h) =
(g (γk))

sk

pk
∀k ∈ S, (4)

where p = (p1, p2, . . . , pK) and h = (h1, h2, . . . , hK)
are the vectors of transmit power levels and channel
realizations, respectively. Expression (4) generalizes the
utility function presented in [5] and [6] when sk = 1,
∀k ∈ S. With respect to the reference utility function
with sk = 1 the user k will choose sk > 1 if it is
interested in better performance at the expenses of a
higher transmitted power. On the contrary, if it needs
to save power then it will set sk < 1. In this study,
we assume that all the users are aware of the fact that
they are all interested on the same QoS profile, i.e.
s1 = . . . = sK = s.

The objective of the player k is to determine the trans-
mit power p∗k that selfishly maximizes its utility function
uk(p∗,h) under the assumption that a similar strategy is
adopted by all the other users. Thus, the optimum power
[7] is obtained as solution to the following system of
equations:

∂
∂pk

uk(p∗, h) =
(

g(γk)s−1

(pk)2

)(
sg′(γk)pk

∂
∂pk

γk − g (γk)
)

= 0 ∀k ∈ S.
(5)

Here, g(γk)′ represents the first derivative of g(γk). Due
to the nature of the channel (non-error free channel),
the term g(γk)s−1

(p∗
k)2 , ∀k ∈ S is always non-zero. Thus, the

system in (5) could be simplified as

sg′(γk)pk
∂

∂pk
γk − g (γk) = 0 ∀k ∈ S. (6)

Furthermore, it has been shown in [7] that

∂

∂pk
γk =

γk

pk

(
1 + γkf (γk)
1 − γ2

kf ′ (γk)

)
qk(γ), ∀k ∈ S (7)

where γ = (γ1, . . . , γK) and

qk(γ) =

(
1 − γkf (γk) + γ2

kf ′ (γk)(
1 − γ2

kf ′ (γk)
)
(1 + γkf (γk)) (A + 1)

)

and

A =
K∑

i=1

γ2
i f ′ (γi)(

1 − γ2
i f ′ (γi)

) .
Replacing (7) in (6) we obtain the system of equations

sg′ (γk) γk

(
1 + γkf (γk)
1 − γ2

kf ′ (γk)

)
qk(γ) − g (γk) = 0,∀k ∈ S

(8)

1Further discussions on the definition of this utility function in
pk = 0 can be found in [5] and [6].



In (8), the variables are only γk, ∀k ∈ S. Therefore,
the system does not depend directly on the channel
realizations and the transmit power of each user. This
property was also observed in the centralized approach
[3]. Moreover, in the system (8), all the equations are
identical and the system is invariant to variable permu-
tations. This implies that the solutions are also identical,
i.e. γ1 = γ2 = · · · = γK = γ. Thus, the system (8)
reduces to a single equation

sg′ (γ) γq(γ) − g (γ) = 0 (9)

where

q(γ) = (1−γ2f ′(γ))+(K−1)(γ2f ′(γ))(1+γf(γ))
(1−γ2f ′(γ))(1+(K−1)γ2f ′(γ)) .

We define z(γ) = sg′ (γ) γq(γ)− g (γ) and we name
it target function. The zeros of the target function are
candidates to be the optimal SINR γ∗. The optimal SINR
corresponds to the SINR at which the utility function
of each user is maximized. If the set of optimal SINR
γ∗

i = γ∗, ∀i ∈ S is known, it is possible to obtain
an expression for the optimal transmit power level from
expressions (24) and (25) in [3],

p∗k =
1

|hk|2
(

σ2γ∗

1 − (K − 1) γ∗f (γ∗)

)
∀k. (10)

Eqn. (10) holds under the constraint2

K <

⌊
1

γ∗f (γ∗)
+ 1
⌋

(11)

since only positive power levels are meaningful. Note
that the expression (10) could be also obtained from the
fix point equation (3) as unique solution.

Interestingly, the power allocation for a given user
depends on the optimal SINR γ∗, its channel gain, and
the number of active users. Therefore, the knowledge of
all the other users’ channel gains in the network is not
required.

IV. A DECENTRALIZED POWER ALLOCATION
ALGORITHM

In this section, we propose a power allocation algo-
rithm based on the game investigated in Section III under
the constraint of non-overloaded systems, i.e. K

N � 1. In
general, the target function z(γ) is not linear and the
solution to z(γ) = 0 requires a numerical approach.
The algorithm we present here is based on the secant
method. The iterative search of the optimum SINR γ∗ is
initialized by choosing two values γ1 and γ2 such that

• both γ1 and γ2 are not lower than the minimum
SINR required γmin for reliable communications at
rate R without considering SIC or PIC. According

2The constraint is widely satisfied since the function f(γ) de-
creases rapidly with γ [1], [3]

to the Shannon capacity law C = 1
2 log2(1 + γ).

Thus, γmin = 22R − 1 and γmin ≤ γ1 ≤ γ2;
• z(γ2) ≤ z(γ1).

Furthermore, in practical systems, the users have
power constraints. It might happen that the optimal
power p∗k for a given optimal SINR γ∗ exceeds the
maximum transmittable power pmax. In this case, a user
i, ∀i ∈ S could either transmit at the maximum power
pi = pmax or not transmit pi = 0 [3]. Let us denote
as γpmax

k,0 = pmax|hk|2
(K−1)pk|hk|2+σ2 the SINR achieved by the

ith user before the first iteration of the CBC algorithm
when transmitting at the maximum power pmax. Indeed,
if γpmax

k,0 enables reliable decoding, i.e. γpmax

k,0 � γmin,
then the user transmits at the maximum power level
pmax. In this case, the user does not reach the optimal
γ∗. However, a reliable decoding is always ensured.

If the condition γpmax

k,0 � γmin is not satisfied, the kth

user does not transmit and is considered in outage. Note
that, the condition over the SINR γpmax

k,0 is a necessary but
not sufficient condition for a user not to be decoded. In
fact, certain users could attain an SINR γpmax

k,0 higher than
γmin after decoding as a result of the iterative decoding.
However, a user cannot evaluate this possibility. In fact,
due to the incomplete knowledge available about other
users, it can not determine if iterative decoding is able
to sufficiently improve the initial SINR and enable a
reliable decoding. Then, transmitting might result in a
waste of energy and additional interference for all the
other users.

Therefore, the power allocation rule is

pk =

⎧⎨
⎩

p∗k if p∗k ≤ pmax

pmax if p∗k > pmax and γpmax

k,0 ≥ γmin

0 otherwise
(12)

Let us denote with ε > 0 the desired accuracy to deter-
mine γ∗. The power allocation algorithm is summarized
as follows

1) Initialization of the secant method
γ1 = γmin

while (z (γ1) � z (γmin)) then
γ1 = γ1 + Δ with Δ ∈ (0, 1

2

]
end
γ2 = γ1 + Δ with Δ ∈ (0, 1

2

]
2) Iterative step of the secant method

while |γi+1 − γi| > ε
γi+1 = γi − γi−γi−1

z(γi)−z(γi−1)
z (γi)

end
3) End of the secant method

γ∗ = γi+1.
4) Power allocation Determine the transmit power

according to (12).
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Figure 1. Average Utility Function versus the SINR in decibels for
a standard IDMA system with K = 16 users, M = 1000 bits and
coding rate R = 1

16
. Solid and dashed lines correspond to the SINR

evolution and the system simulation, respectively.

V. PERFORMANCE ASSESSMENT

The performance of the proposed power allocation
scheme is assessed assuming antipodal modulation and
a repetition code with different rates R = 1

N and N =
16, 32, 64. The channel gains and the noise are real and
Gaussian distributed with zero mean and unit variance.

We refer to the SINR at which the utility function
(4) is maximized as the optimal operating point γ∗. An
approximate expression for the bit error rate when a
repetition code with rate R = 1

N is used is

Pe ≈

�N

2 	∑
i=0

(
N⌈

N
2

⌉
+ i

)(
Q
(√

2γk

))
N

2 �+i

(
1 − Q

(√
2γk

))
N

2 �−i

(13)

In (13), the function Q(.) is the complementary error
function of a Gaussian random variable. It represents the
probability of error of one chip in the case of antipodal
modulation. Hence, the goodput can be written as:

g (γk) = (1 − Pe)
M . (14)

For the coding scheme considered in this contribution,
the function f(·) is determined by Monte Carlo simu-
lations as described in [1]. The obtained results match
those presented in [3] and [8] perfectly.

In Figure 1, we plot the average utility function versus
the SINR γ when s = 1. The solid line shows the
theoretical performance determined by plugging (14)
in (4), while the dashed lines are obtained with the
actual BER at the output of the decoder. We noticed
in all the non-overloaded cases that the utility has a
unique maximum. The effects of the coding rate, the
frame length, and the number of users on the optimum

operating point are assessed in Figures 2, 3, 4, and
5. In Figure 2, the target function (9) is plotted as a
function of the SINR γ for three different coding rates
while the frame length and the number of users are kept
constant. Lower coding rates determine lower optimal
SINRs. In Figure 3, the target function is plotted as
a function of the SINR γ considering three different
frame lengths, keeping the coding rate and the number of
users constant. In this case, longer frames lead to higher
optimal SINR values. In Figure 4, we plot the target
function as a function of the SINR for several exponents
s of the generalized utility function (4), while keeping
the number of users, the frame length and the coding rate
constant. When users are interested in better performance
rather than saving power (s > 1), the optimal SINR
increases and vice versa. In Figure 5, the target function
is plotted for 4, 8, and 16 active users as a function of
the SINR when the coding rate and frame length are kept
constant. The four lines overlap completely. Therefore,
the variation of the number of active users K has a
negligible effect on the optimal SINR. Then, the optimal
operating point is practically independent of the number
of users. This effect was also observed in the centralized
case in [3].

In general, a convenient solution for a non-cooperative
game is the Nash equilibrium (NE). By definition, the NE
is a solution such that no player is interested on changing
its strategy since no improvement could be obtained in
its own utility while keeping the other users’ utilities
unchanged. In this case, even though the simulations
results show that there is a unique solution to the game
(γ∗), we could not prove analytically the uniqueness
of the NE since the functions f(γ) and g(γ) depend
on the coding scheme. However, particular cases have
been already studied. In the case where no interference
cancellation is performed, i.e f(γ) = 1, the proof is
similar to the one presented in [5] with s = 1 for the
CDMA case.

VI. CONCLUSIONS

We provided a novel framework for decentralized
power allocation in IDMA systems based on a game-
theoretic approach. In this context, each user aims at
selfishly maximizing its own utility function assuming a
similar behavior is adopted by all the other users. It leads
to a channel inversion power allocation policy where the
optimal power level could be set at each terminal based
on the knowledge of its own channel realization, the
noise energy at the receiver, and the number of active
users in the network. Interestingly, we found that under
practical operation conditions, the knowledge of the
number of active users becomes irrelevant as observed
in the centralized case in [3].
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