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ABSTRACT

In this paper, analytical methods for finding moments of

random Vandermonde matrices are developed. Vandermonde

Matrices play an important role in signal processing and

communication applications such as direction of arrival es-

timation, sampling theory or precoding. Within this frame-

work, we extend classical freeness results on random ma-

trices with i.i.d entries and show that Vandermonde struc-

tured matrices can be treated in the same vein with different

tools. We focus on various types of Vandermonde matrices,

namely Vandermonde matrices with or without uniformly

distributed phases. In each case, we provide explicit ex-

pressions of the moments of the associated Gram matrix, as

well as more advanced models involving the Vandermonde

matrix. Comparisons with classical i.i.d. random matrix

theory are provided and free deconvolution results are also

discussed.

1. INTRODUCTION

We will consider Vandermonde matrices V of dimension

N × L of the form

V =
1√
N











1 · · · 1
e−jω1 · · · e−jωL

...
. . .

...

e−j(N−1)ω1 · · · e−j(N−1)ωL











(1)

where ω1,...,ωL are independent and identically distributed

(phases) taking values on [0, 2π). Such matrices occur fre-

quently in many applications, such as finance [1], signal ar-

ray processing [2, 3, 4, 5, 6], ARMA processes [7], cogni-

tive radio [8], security [9], wireless communications [10]

and biology [11] and have been much studied. The main

results are related to the distribution of the determinant of

(1) [12]. The large majority of known results on the eigen-

values of the associated Gram matrix concern Gaussian ma-

trices [13] or matrices with independent entries. None have

dealt with the Vandermonde case. For the Vandermonde
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case, the results depend heavily on the distribution of the en-

tries, and do not give any hint on the asymptotic behaviour

as the matrices become large. In the realm of wireless chan-

nel modelling, [14] has provided some insight on the be-

haviour of the eigenvalues of random Vandermonde matri-

ces for a specific case, without any formal proof. We prove

here that the case is in fact more involved than what was

claimed.

In many applications, N and L are quite large, and we

may be interested in studying the case where both go to ∞ at

a given ratio, with L
N

→ c. Results in the literature say very

little on the asymptotic behaviour of (1) under this growth

condition. The results, however, are well known for other

models. The factor 1√
N

, as well as the assumption that the

Vandermonde entries e−jωi lie on the unit circle, are in-

cluded in (1) to ensure that our analysis will give limiting

asymptotic behaviour. Without this assumption, the prob-

lem at hand is more involved, since the rows of the Van-

dermonde matrix with the highest powers would dominate

in the calculations of the moments when the matrices grow

large, and also grow faster to infinity than the 1√
N

factor in

(1), making asymptotic analysis difficult. In general, often

the moments, not the moments of the determinants, are the

quantities we seek. Results in the literature also say very

little on the moments of Vandermonde matrices. The litera-

ture says very little on the mixed moments of Vandermonde

matrices and matrices independent from them. This is in

contrast to Gaussian matrices, where exact expressions [15]

and their asymptotic behaviour [16] are known using the

concept of freeness [16] which is central for describing the

mixed moments.

The derivation of the moments are a useful basis for per-

forming deconvolution. For Gaussian matrices, deconvolu-

tion has been handled in the literature [17, 18, 15, 19]. Sim-

ilar flavored results will here be proved for Vandermonde

matrices. Concerning the moments, it will be the asymptotic

moments of random matrices of the form V
H
V which will

be studied, where (.)H denotes hermitian transpose. We will

also consider mixed moments of the form DV
H
V, where

D is a square diagonal matrix independent from V. While

we provide the full computation of lower order moments,



we also describe how the higher order moments can be com-

puted. Tedious evaluation of many integrals is needed for

this, but numerical methods can also be applied. Surpris-

ingly, it turns out that the first three limit moments can be

expressed in terms of the Marc̆henko Pastur law [16, 20].

For higher order moments this is not the case, although we

state an interesting inequality involving the Vandermonde

limit moments and the moments of the classical Poisson dis-

tribution and the Marc̆henko Pastur law, also known as the

free Poisson distribution [16].

This paper is organized as follows: Section 2 contains a

general result for the mixed moments of Vandermonde ma-

trices and matrices independent from them. We will differ

between the case where the phase ω in (1) are uniformly dis-

tributed on [0.2π), and the more general cases. The case of

uniformly distributed phases is handled in section 3. In this

case it turns out that one can have very nice expressions, for

both the asymptotic moments, as well as for the lower order

moments. Section 4 considers the more general case when

ω has a continous density, and shows how the asymptotics

can be described in terms of the case when ω is uniformly

distributed. Section 5 discusses our results and puts them in

a general deconvolution perspective, comparing with other

deconvolution results, such as those for Gaussian deconvo-

lution.

In the following, upper (lower boldface) symbols will

be used for matrices (column vectors) whereas lower sym-

bols will represent scalar values, (.)T will denote transpose

operator, (.)⋆ conjugation and (.)H =
(

(.)T
)⋆

hermitian

transpose. In will represent the n × n identity matrix. We

let trn be the normalized trace for matrices of order n × n,

and Tr the non-normalized trace. V will be used only to de-

note Vandermonde matrices with a given phase distribution.

The dimensions of the Vandermonde matrices will always

be N × L unless otherwise stated, and the phase distribu-

tion of the Vandermonde matrices will always be denoted

by ω.

2. A GENERAL RESULT FOR THE MIXED

MOMENTS OF VANDERMONDE MATRICES

We first state a general theorem applicable to Vandermonde

matrices with any phase distribution. The proof for this the-

orem, as well as for theorems succeeding it, are based on

calculations where partitions are highly involved. We de-

note by P(n) the set of all partitions of {1, ..., n}, and we

will use ρ as notation for a partition in P(n). The set of

partitions will be equipped with the refinement order ≤, i.e.

ρ1 ≤ ρ2 if and only if any block of ρ1 is contained within a

block of ρ2. Also, we will write ρ = {ρ1, ..., ρk}, where ρj

are the blocks of ρ, and let |ρ| denote the number of blocks

in ρ. We denote by 0n the partition with n blocks, and by

1n the partition with 1 block.

In the following Dr(N), 1 ≤ r ≤ n are diagonal L×L
matrices, and V is of the form (1). We will attempt to find

Mn = limN→∞ E[trL( D1(N)VH
VD2(N)VH

V

· · · × Dn(N)VH
V)]

(2)

for many types of Vandermonde matrices, under the assump-

tion that L
N

→ c, and under the assumption that the Dr(N)
have a joint limit distribution as N → ∞ in the following

sense:

Definition 1 We will say that the {Dr(N)}1≤r≤n have a

joint limit distribution as N → ∞ if the limit

Di1,...,is
= lim

N→∞
trL (Di1(N) · · ·Dis

(N)) (3)

exists for all choices of i1, ..., is. For ρ = {ρ1, ..., ρk}, with

ρi = {ρi1, ..., ρi|ρi|}, we also define Dρi
= Diρi1

,...,iρi|ρi|
,

and Dρ =
∏k

i=1 Dρi
.

Had we replaced Vandermonde matrices with Gaussian

matrices, free deconvolution results [19] could help us com-

pute the quantities Di1,...,is
from Mn. For this, the cumu-

lants of the Gaussian matrices are needed, which asymptoti-

cally have a very nice form. For Vandermonde matrices, the

role of cumulants is taken by the following quantites

Definition 2 Define

Kρ,ω,N = 1
Nn+1−|ρ|×
∫

(0,2π)|ρ|

∏n

k=1
1−e

jN(ωb(k−1)−ωb(k))

1−e
j(ωb(k−1)−ωb(k))

,

dω1 · · · dω|ρ|,

(4)

where ωρ1
, ..., ωρ|ρ|

are i.i.d. (indexed by the blocks of ρ),

all with the same distribution as ω, and where b(k) is the

block of ρ which contains k (where notation is cyclic, i.e.

b(−1) = b(n)). If the limit

Kρ,ω = lim
N→∞

Kρ,ω,N

exists, then Kρ,ω is called a Vandermonde mixed moment

expansion coefficient.

These coefficients will for Vandermonde matrices play

the same role as the cumulants do for large Gaussian matri-

ces. We will not call them cumulants, however, since they

don’t share the same multiplicative properties (embodied in

what is called the moment cumulant formula).

The following is the main result of the paper. Different

versions of it adapted to different Vandermonde matrices

will be stated in the succeeding sections.

Theorem 1 Assume that the {Dr(N)}1≤r≤n have a joint

limit distribution as N → ∞. Assume also that all Van-

dermonde mixed moment expansion coefficients Kρ,ω exist.



Then the limit

Mn = limN→∞ E[trL( D1(N)VH
VD2(N)VH

V

· · · × Dn(N)VH
V)]

(5)

also exists when L
N

→ c, and equals

∑

ρ∈P(n)

Kρ,ωc|ρ|−1Dρ. (6)

The proof of theorem 1 can be found in [21]. Although

the limit of Kρ,ω,N as N → ∞ may not exist, it will be

clear from section 4 that it exists when the density of ω is

continous. Theorem 1 explains how convolution with Van-

dermonde matrices can be performed, and also provides us

an extension of the concept of free convolution to Vander-

monde matrices. Note that when D1(N) = · · · = Dn(N) =
IL, we have that

Mn = lim
N→∞

E
[

trL

(

(

V
H
V

)n
)]

,

so that our our results also include the limit moments of the

Vandermonde matrices themselves. Mn corresponds also to

the limit moments of the empirical eigenvalue distribution

FN
VHV

defined by

FN
VHV

(λ) =
#{i|λi ≤ λ}

N
,

(where λi are the (random) eigenvalues of V
H
V), i.e.

Mn = lim
N→∞

E

[∫

λndFN (λ)

]

.

(6) will also be useful on the scaled form

cMn =
∑

ρ∈P(n)

Kρ,ω(cD)ρ. (7)

When D1(N) = D2(N) = · · · = Dn(N), we denote

their common value D(N), and define the sequence D =
(D1, D2, ...) with Dn = limN→∞ trL ((D(N))n). In this

case Dρ does only depend on the block cardinalities |ρj |, so

that we can group together the Kρ,ω for ρ with equal block

cardinalities. If we group the blocks of ρ so that their cardi-

nalities are in descending order, and set

P(n)r1,r2,...,rk
= {ρ = {ρ1, ..., ρk} ∈ P(n)||ρi| = ri∀i},

where r1 ≥ r2 ≥ · · · ≥ rk, and also write

Kr1,r2,...,rk
=

∑

ρ∈P(n)r1,r2,...,rk

Kρ,ω, (8)

then, after performing the substitutions

mn = (cM)n = c limN→∞ E
[

trL

((

D(N)VH
V

)n)]

,
dn = (cD)n = c limN→∞ trL (Dn(N)) ,

(9)

(7) can be written

mn =
∑

r1,...,rk
r1+···+rk=n

Kr1,r2,...,rk

k
∏

j=1

drj
. (10)

For the first 5 moments this becomes

m1 = K1d1

m2 = K2d2 + K1,1d
2
1

m3 = K3d3 + K2,1d2d
2
1 + K1,1,1d

3
1

m4 = K4d4 + K3,1d3d1 + K2,2d
2
2 + K2,1,1d2d

2
1+

K1,1,1,1d
4
1

m5 = K5d5 + K4,1d4d1 + +K3,2d3d2+
K3,1,1d3d

2
1 + K2,2,1d

2
2d1 + K2,1,1,1d2d

3
1+

K1,1,1,1,1d
5
1

...
...

(11)

Thus, the algorithm for computing the asymptotic mixed

moments of Vandermonde matrices with matrices indepen-

dent from them can be split in two:

• (9), which scales with the matrix aspect ratio c, and

• (11), which performs computations independent of

the matrix aspect ratio c.

Similar splitting of the algorithm for computing the asymp-

totic mixed moments of Wishart matrices and matrices in-

dependent from them was derived in [19]. Although the

matrices Di(N) are assumed to be determinstic matrices

throughout the paper, all formulas extend naturally to the

case when Di(N) are random matrices independent from

V. The only difference when the Di(N) are random is

that certain quantities are replaced with fluctuations. D1D2

should for instance be replaced with

lim
N→∞

E
[

trL (D(N)) trL

(

(D(N))
2
)]

when Di(N) is random.

In the next sections, we will derive and analyze the Van-

dermonde mixed moment expansion coefficients Kρ,ω for

various cases, which is essential for the the algorithm (11).

3. UNIFORMLY DISTRIBUTED ω

We will let u denote the uniform distribution on [0, 2π). We

can write

Kρ,u,N = 1
(2π)|ρ|Nn+1−|ρ|×
∫

(0,2π)|ρ|

∏n

k=1
1−e

jN(xb(k−1)−xb(k))

1−e
j(xb(k−1)−xb(k))

dx1 · · · dx|ρ|,

(12)

where integration is w.r.t. Lebesgue measure. In this case

one particular class of partitions will be useful to us, the

noncrossing partitions:



Definition 3 A partition is said to be noncrossing if, when-

ever i < j < k < l, i and k are in the same block, and

also j and l are in the same block, then all i, j, k, l are in

the same block. The set of noncrossing partitions is denoted

by NC(n).

The noncrossing partitions have already shown their use-

fulness in expressing the freeness relation in a particularly

nice way [22]. Their appearance here is somewhat different

than in the case for the relation to freeness:

Theorem 2 Assume that the {Dr(N)}1≤r≤n have a joint

limit distribution as N → ∞, Then the Vandermonde mixed

moment expansion coefficient

Kρ,u = lim
N→∞

Kρ,u,N

exists for all ρ. Moreover, 0 < Kρ,u ≤ 1, the Kρ,u are

rational numbers for all ρ, and Kρ,u = 1 if and only if ρ is

noncrossing.

The proof of theorem 2 can be found in [21]. Due to

theorem 1, theorem 2 guarantees that the asymptotic mixed

moments (5) exist when L
N

→ c for uniform phase distri-

bution, and are given by (6). The values Kρ,u are in gen-

eral hard to compute for higher order ρ with crossings. We

have performed some of these computations. It turns out

that the following computations suffice to obtain the 7 first

moments.

Lemma 1 The following holds:

K{{1,3},{2,4}},u =
2

3

K{{1,4},{2,5},{3,6}},u =
1

2

K{{1,4},{2,6},{3,5}},u =
1

2

K{{1,3,5},{2,4,6}},u =
11

20

K{{1,5},{3,7},{2,4,6}},u =
9

20

K{{1,6},{2,4},{3,5,7}},u =
9

20
.

The proof of lemma 1 is given in [21]. Combining the-

orem 2 and lemma 1 into this form, we will prove the fol-

lowing:

Theorem 3 Assume D1(N) = D2(N) = · · · = Dn(N).

When ω = u, (11) takes the form

m1 = d1

m2 = d2 + d2
1

m3 = d3 + 3d2d1 + d3
1

m4 = d4 + 4d3d1 +
8

3
d2
2 + 6d2d

2
1 + d4

1

m5 = d5 + 5d4d1 +
25

3
d3d2 + 10d3d

2
1 +

40

3
d2
2d1 + 10d2d

3
1 + d5

1

m6 = d6 + 6d5d1 + 12d4d2 + 15d4d
2
1 +

151

20
d2
3 + 50d3d2d1 + 20d3d

3
1 +

11d3
2 + 40d2

2d
2
1 + 15d2d

4
1 + d6

1

m7 = d7 + 7d6d1 +
49

3
d5d2 + 21d5d

2
1 +

497

20
d4d3 + 84d4d2d1 + 35d4d

3
1 +

1057

20
d2
3d1 +

693

10
d3d

2
2 + 175d3d2d

2
1 +

35d3d
4
1 + 77d3

2d1 +
280

3
d2
2d

3
1 +

21d2d
5
1 + d7

1.

Theorem 2 and lemma 1 reduces the proof of theorem 3 to a

simple count of partitions. Theorem 3 is proved in [21]. To

compute higher moments mk, Kρ,u must be computed for

partitions of higher order.

Following the proof of theorem 2, we can also obtain

formulas for the fluctuations of mixed moments of Vander-

monde matrices. We will not go into details on this, but only

state the following equations without proof:

limN→∞ E
[

trL

((

D(N)VH
V

)n) (

trL

(

D(N)VH
V

))m]

= E
[

trL

((

D(N)VH
V

)n)]

Dm
1

c limN→∞ E
[

Tr
(

(

D(N)VH
V

)2
)

trL

(

(

D(N)VH
V

)2
)]

= 4
3d2

2 + 4d2d
2
1 + 4d3d1 + d4.

(13)

Following the proof of theorem 2 again, we can also ob-

tain exact expressions for moments of lower order random

Vandermonde matrices with uniformly distributed phases,

not only the limit. We state these only for the first four mo-

ments.

Theorem 4 Assume D1(N) = D2(N) = · · · = Dn(N).



When ω = u, (11) takes the exact form

m1 = d1

m2 =
(

1 − N−1
)

d2 + d2
1

m3 =
(

1 − 3N−1 + 2N−2
)

d3

+3
(

1 − N−1
)

d1d2 + d3
1

m4 =

(

1 − 20

3
N−1 + 11N−2 − 37

6
N−3

)

d4

+
(

4 − 12N−1 + 8N−2
)

d3d1

+

(

8

3
− 5N−1 +

19

6
N−2

)

d2
2

+6
(

1 − N−1
)

d2d
2
1 + d4

1.

Theorem 4 is proved in [21]. Exact formulas for the

higher order moments also exist, but they become increas-

ingly complex, as entries for higher order terms L−k also

enter the picture. These formulas are also harder to prove

for higher order moments. In many cases, exact expressions

are not what we need: First order approximations (i.e. ex-

pressions where only the L−1-terms are included) can suf-

fice for many purposes. In [21], we explain how the simpler

case of these first order approximations can be computed. It

seems much harder to prove a similar result when the phases

are not uniformly distributed.

4. ω WITH CONTINOUS DENSITY

The following result tells us that the limit Kρ,ω exists for

many ω, and also gives a useful expression for them in terms

of the density of ω, and Kρ,u.

Theorem 5 The Vandermonde mixed moment expansion co-

efficients Kρ,ω = limN→∞ Kρ,ω,N exist whenever the den-

sity pω of ω is continous on [0, 2π). If this is fulfilled, then

Kρ,ω = Kρ,u(2π)|ρ|−1

(∫ 2π

0

pω(x)|ρ|dx

)

. (14)

The proof is given in [21].

Besides providing us with a deconvolution method for

finding the mixed moments of the {Dr(N)}1≤r≤n, theo-

rem 5 also provides us with a way of inspecting the phase

distribution ω, by first finding the moments of the density,

i.e.
∫ 2π

0
pω(x)kdx. However, note that we can not expect to

find the density of ω itself, only the density of the density of

ω. To see this, define

Qω(x) = µ ({x|pω ≤ x})

for 0 ≤ x ≤ ∞, where µ is uniform measure on the unit

circle. Write also qω(x) as the corresponding density, so

that qω(x) is the density of the density of ω. Then it is clear

that
∫ 2π

0

pω(x)|ρ|dx =

∫ ∞

0

xnqω(x)dx. (15)

These quantities correspond to the moments of the measure

with density qω, which can help us obtain the density qω

itself (i.e. the density of the density of ω). However, the

density pω can not be obtained, since we see that any reor-

ganization of its values which do not change its density qω

will provide the same values in (15).

Note also that theorem 5 gives a very special role to the

uniform phase distribution, in the sense that it minimizes the

moments of the Vandermonde matrices V
H
V. This follows

from (14), since

∫ 2π

0

pu(x)|ρ|dx ≤
∫ 2π

0

pω(x)|ρ|dx

for any density pω . In [23], several examples are provided

where the integrals (14) are computed.

5. DISCUSSION

We have already explained that one can perform deconvo-

lution with Vandermonde matrices in a similar way to how

one can perform deconvolution for Gaussian matrices. We

have, however, also seen that there are many differences.

5.1. Convergence rates

In [15], almost sure convergence of Gaussian matrices was

shown by proving exact formulas for the distribution of lower

order Gaussian matrices. These deviated from their lim-

its by terms of the form 1/L2. In theorem 4, we see that

terms of the form 1/L are involved, which indicates that we

can not hope for almost sure convergence of Vandermonde

matrices. There is no reason why Vandermonde matrices

should have the almost sure convergence property, due to

their very different degree of randomness when compared

to Gaussian matrices. Figures 1, 2 show the speed of con-

vergence of the moments of Vandermonde matrices (with

uniformly distributed phases) towards the asymptotic mo-

ments as the matrix dimensions grow, and as the number of

samples grow. The differences between the asymptotic mo-

ments and the exact moments are also shown. To be more

precise, the MSE of figures 1 and 2 is computed as follows:

1. K samples Vi are independently generated using (1).

2. The 4 first sample moments m̂ji = 1
L

trn

(

(

V
H
i Vi

)j
)

(1 ≤ j ≤ 4) are computed from the samples.

3. The 4 first estimated moments M̂j are computed as

the mean of the sample moments, i.e. M̂j = 1
K

∑K

i=1 m̂ji.
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MSE between exact and asymptotic moments
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Fig. 1. MSE of the first 4 estimated moments from the exact

moments for 80 samples for varying matrix sizes, with N =
L. Matrices are on the form V

H
V with V a Vandermonde

matrix with uniformly distributed phases. The MSE of the

first 4 exact moments from the asymptotic moments is also

shown.

4. The 4 first exact moments Ej are computed using the-

orem 4.

5. The 4 first asymptotic moments Aj are computed us-

ing theorem 3.

6. The mean squared error (MSE) of the first 4 esti-

mated moments from the exact moments is computed

as
∑4

j=1

(

M̂j − Ej

)2

.

7. The MSE of the first 4 exact moments from the asymp-

totic moments is computed as
∑4

j=1 (Ej − Aj)
2
.

Figures 1 and 2 are in sharp contrast with Gaussian matrices,

as shown in figure 3. First of all, it is seen that the asymp-

totic moments can be used just as well instead of the exact

moments (for which expressions can be found in [24]), due

to the O(1/N2) convergence of the moments. Secondly, it

is seen that only 5 samples were needed to get a reliable

estimate for the moments.

5.2. Inequalities between moments of Vandermonde ma-

trices and moments of known distributions

We will state an inequality involving the moments of Van-

dermonde matrices, and the moments of known distribu-

tions from probability theory. The classical Poisson distri-

bution with rate λ and jump size α is defined as the limit
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Fig. 2. MSE of the first 4 moments from the actual moments

for 320 samples for varying matrix sizes, with N = L. Ma-

trices are on the form V
H
V with V a Vandermonde matrix

with uniformly distributed phases. The MSE of the mo-

ments and the asymptotic moments is also shown.
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Fig. 3. MSE of the first 4 moments from the actual mo-

ments for 5 samples for varying matrix sizes, with N = L.

Matrices are on the form 1
N

XX
H with X a complex stan-

dard Gaussian matrix. The MSE of the moments and the

asymptotic moments is also shown.



of
((

1 − λ

n

)

δ0 +
λ

n
δα

)∗N

as n → ∞ [22]. For our analysis, we will only need the

classical Poisson distribution with rate c and jump size 1.

We will denote this quantity by νc. The free Poisson distri-

bution with rate λ and jump size α is defined similarly as

the limit of

((

1 − λ

n

)

δ0 +
λ

n
δα

)⊞N

as n → ∞, where ⊞ is the free probability counterpart of

classical additive convolution [22, 16]. For our analysis, we

will only need the free Poisson distribution with rate 1
c

and

jump size c. We will denote this quantity by µc. µc is the

same as the better known Marc̆henko Pastur law, i.e. it has

the density [16]

fµc(x) = (1 − 1

c
)+δ0(x) +

√

(x − a)+(b − x)+

2πcx
, (16)

where (z)+ = max(0, z), a = (1 − √
c)2, b = (1 +

√
c)2.

Since the classical (free) cumulants of the classical (free)

Poisson distribution are λαn [22], we see that the (classi-

cal) cumulants of νc are c, c, c, c, ..., and that the (free) cu-

mulants of µc are 1, c, c2, c3, .... In other words, if a1 has

the distribution µc, then

φ(an
1 ) =

∑

ρ∈NC(n) cn−|ρ| =
∑

ρ∈NC(n) c|K(ρ)|−1

=
∑

ρ∈NC(n) c|ρ|−1.

(17)

Here we have used the Kreweras complementation map,

which is an order-reversing isomorphism of NC(n) which

satisfies |ρ| + |K(ρ)| = n + 1 (here φ is the expectation in

a non-commutative probability space). Also, if a2 has the

distribution νc, then

E(an
2 ) =

∑

ρ∈P(n)

c|ρ|. (18)

We immediately recognize the c|ρ|−1-entry of theorem 1 in

(17) and (18) (except for an additional power of c in (18)).

Combining theorem 2 with D1(N) = · · · = Dn(N) =
IN , (17), and (18), we thus get the following corollary to

theorem 2:

Corollary 1 Assume that V has uniformly distributed phases.

Then the limit moment

Mn = lim
N→∞

E
[

trL

(

(

V
H
V

)n
)]

satsifies the inequality

φ(an
1 ) ≤ Mn ≤ 1

c
E(an

2 ),

where a1 has the distribution µc of the Marc̆henko Pastur

law, and a2 has the Poisson distribution νc. In particular,

equality occurs for m = 1, 2, 3 and c = 1 (since all parti-

tions are noncrossing for m = 1, 2, 3).

Corollary 1 thus states that the moments of Vandermonde

matrices with uniformly distributed phases are bounded above

and below by the moments of the classical and free Poisson

distributions, respectively. The different Poisson distribu-

tions enter here because their (free and classical) cumulants

resemble the c|ρ|−1-entry in theorem 1, where we also can

use that Kρ,u = 1 if and only if ρ is noncrossing to get

a connection with the Marc̆henko Pastur law. To see how

close the asymptotic Vandermonde moments are to these

upper and lower bounds, the following corollary to theo-

rem 3 contains the first moments:

Corollary 2 When c = 1, the limit moments

Mn = lim
N→∞

E
[

trL

(

(

V
H
V

)n
)]

,

the moments fpn of the Marc̆henko Pastur law µ1, and the

moments pn of the Poisson distribution ν1 satisfy

fp4 = 14 ≤ M4 = 44
3 ≈ 14.67 ≤ p4 = 15

fp5 = 42 ≤ M5 = 146
3 ≈ 48.67 ≤ p5 = 52

fp6 = 132 ≤ M6 = 3571
20 ≈ 178.55 ≤ p6 = 203

fp7 = 429 ≤ M7 = 2141
3 ≈ 713.67 ≤ p7 = 877.

The first three moments coincide for the three distributions,

and are 1, 2, and 5, respectively.

The numbers fpn and pn are simply the number of parti-

tions in NC(n) and P(n), respectively. The number of par-

titions in NC(n) equals the Catalan number Cn = 1
n+1

(

2n
n

)

[22],

so they are easily computed. The number of partitions of

P(n) are also known as the Bell numbers Bn [22]. They

can easily be computed from the recurrence relation

Bn+1 =

n
∑

k=0

Bk

(

n

k

)

.

It is not known whether the limiting distribution of our Van-

dermonde matrices has compact support. Corollary 2 does

not help us in this respect, since the Marc̆henko Pastur law

has compact support, and the classical Poisson distribution

has not. In figure 4, the mean eigenvalue distribution of 640
samples of a 1600 × 1600 Vandermonde matrix with uni-

formly distributed phases is shown. While the Poisson dis-

tribution ν1 is purely atomic and has masses at 0, 1, 2, and 3
which are e−1, e−1, e−1/2, and e−1/6 (the atoms consist of

all integer multiples), the Vandermonde histogram shows a

more continous eigenvalue ditribution, with the peaks which

the Poisson distribution has at integer multiples clearly vis-

ible here as well (the peaks are not as sharp though). We
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Fig. 4. Histogram of the mean eigenvalue distribution of

640 samples of V
H
V, with V a 1600×1600 Vandermonde

matrix with uniformly distributed phases.

remark that the support of V
H
V goes all the way up to N ,

but lies within [0, N ]. It is also unknown whether the peaks

at integer multiples in the Vandermonde histogram grow to

infinity as we let N → ∞. From the histogram, only the

peak at 0 seems to be of atomic nature. In figures 5 and 6,

the same histogram is shown for 1600×1200 (i.e. c = 0.75)

and 1600 × 800 (i.e. c = 0.5) Vandermonde matrices, re-

spectively. It should come as no surprise that the effect of

decreasing c is stretching the eigenvalue density vertically,

and compressing it horizontally. just as the case for the dif-

ferent Marc̆henko Pastur laws. Eigenvalue histograms for

Gaussian matrices which in the limit give the correspond-

ing (in the sense of corollary 1) Marc̆henko Pastur laws for

figures 5 (i.e. µ0.75) and 6 (i.e. µ0.5), are shown in figures 7

and 8.

5.3. Deconvolution

Deconvolution with Vandermonde matrices (as stated in (6)

in theorem 1) differs from the Gaussian deconvolution coun-

terpart [22] in the sense that there is no multiplicative [22]

structure involved, since Kρ,ω is not multiplicative in ρ. The

Gaussian equivalent of theorem 3 (i.e. V
H
V replaced with

1
N

XX
H , with X an L × N complex, standard, Gaussian

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 5. Histogram of the mean eigenvalue distribution of

640 samples of V
H
V, with V a 1600×1200 Vandermonde

matrix with uniformly distributed phases.
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Fig. 6. Histogram of the mean eigenvalue distribution of

640 samples of V
H
V, with V a 1600 × 800 Vandermonde

matrix with uniformly distributed phases.
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Fig. 7. Histogram of the mean eigenvalue distribution of

20 samples of 1
N

XX
H , with X an L × N = 1200 × 1600

complex, standard, Gaussian matrix.
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Fig. 8. Histogram of the mean eigenvalue distribution of

20 samples of 1
N

XX
H , with X an L × N = 800 × 1600

complex, standard, Gaussian matrix.

matrix) is

m1 = d1

m2 = d2 + d2
1

m3 = d3 + 3d2d1 + d3
1

m4 = d4 + 4d3d1 + 3d2
2 + 6d2d

2
1 + d4

1

m5 = d5 + 5d4d1 + 5d3d2 + 10d3d
2
1+

10d2
2d1 + 10d2d

3
1 + d5

1

m6 = d6 + 6d5d1 + 6d4d2 + 15d4d
2
1+

3d2
3 + 30d3d2d1 + 20d3d

3
1+

5d3
2 + 10d2

2d
2
1 + 15d2d

4
1 + d6

1

m7 = d7 + 7d6d1 + 7d5d2 + 21d5d
2
1+

7d4d3 + 42d4d2d1 + 35d4d
3
1+

21d2
3d1 + 21d3d

2
2 + 105d3d2d

2
1+

35d3d
4
1 + 35d3

2d1 + 70d2
2d

3
1+

21d2d
5
1 + d7

1,

(19)

(where the mi and the di are computed as in (9) by scaling

the respective moments by c). This follows immediately

from asymptotic freeness, and from the fact that 1
N

XX
H

converges to the Marc̆henko Pastur law µc. In particular,

when all Di(N) = IL and c = 1, we obtain the limit mo-

ments: 1,2,5,14,42,132,429, which also were listed in corol-

lary 2. One can also write down a Gaussian equivalent to

the fluctuations of Vandermonde matrices (13) (fluctuations

of Gaussian matrices are handled more thoroughly in [25]).

These are

E
[

(

trn

(

D(N) 1
N

XX
H

))2
]

= (trn(D(N))2 + 1
nN

trn(D(N)2)

E
[(

trn

(

D(N) 1
N

XX
H

))n]

= (trn(D(N))n + O(N−2)

E
[

trn

(

D(N) 1
N

XX
H

)

trn

(

(

D(N) 1
N

XX
H

)2
)]

= trn(D(N))trn(D(N)2) + O(N−2).
(20)

These equations can be proved using the same combinatori-

cal methods as in [24]. Only the first equation is here stated

as an exact expression. The second and third equations also

have exact counterparts, but their computations are more in-

volved. Similarly, one can write down a Gaussian equiva-

lent to theorem 4 for the exact moments. For the first three

moments (the fourth moment is dropped, since this is more

involved), these are

m1 = d1

m2 = d2 + d2
1

m3 =
(

1 + N−2
)

d3 + 3d1d2 + d3
1.

This follows from a careful count of all possibilities after

the matrices have been multiplied together (for this, see

also [24], where one can see that the restriction that the ma-

trices Di(N) are diagonal can be dropped in the Gaussian

case). It is seen, contrary to theorem 4 for Vandermonde

matrices, that the second exact moment equals the second



asymptotic moment from (19), and also that the conver-

gence is faster (i.e. O(n−2)) for the third moment (this will

also be the case for higher moments).

6. CONCLUSION AND FURTHER DIRECTIONS

We have shown how asymptotic moments of random Van-

dermonde matrices can be computed analytically, and treated

many different cases. Vandermonde matrices with uniformly

distributed phases proved to be the easiest case and was

given separate treatment, and it was shown how the case

with more general phases could be expressed in terms of

the case of uniformly distributed phases. In addition to the

general asymptotic expressions stated, exact expressions for

the first moments of Vandermonde matrices with uniformly

distributed phases were also stated.

Throughout the paper, we assumed that only diagonal

matrices were involved in mixed moments of Vandermonde

matrices. The case of non-diagonal matrices is harder to

address, and should be addressed in future research. The

analysis of the support of the eigenvalues is also of impor-

tance, as well as the behavior of the maximum and mini-

mum eigenvalue. The methods presented in this paper can

not be used directly to obtain explicit expressions for the

asymptotic mean eigenvalue distribution, so this is also a

case for future research. A way of attacking this problem

could be to develop for Vandermonde matrices analytic coun-

terparts to what one has in free probability (such as the

R- and S-transform and their connection with the Stieltjes

transform).
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