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Abstract— We consider the use of entropy maximization meth-
ods as a tool to generate fading models for Multiple-Input
Multiple-Output (MIMO) spatially correlated flat-fading c han-
nels. We focus in particular on various assumptions about the
degree of knowledge on the full covariance matrix of the channel
(namely in the power constraint, rank constraint, and average
constraint case). We show that this method can provide closed-
form probability density functions in all cases. In a secondpart,
we analyze the statistical properties of the singular values of
the resulting fading channel. In general, they are more spread
out that in the classical Gaussian i.i.d. case, which incursless
optimistic ergodic capacity figures.

I. I NTRODUCTION

A large number of models for wireless transmission
channels are available in the literature – [1] provides
for a good overview. One usually distinguish between
geometric models, built upon the observation and modelling
of the electromagnetic propagation phenomenon, and
statistical models, which aim to reproduce statistics obtained
experimentally. Recently, a new class of channel models was
introduced [2], [3], based on Bayesian inference techniques
and on entropy maximization. A probabilistic model is
obtained by first defining the range of the variable to model,
and by choosing the probability distribution function having
maximum entropy, given some constraints based on system
design (e.g. about finite power) as well as information from
the experimental correlation of the channel. The logic behind
entropy maximization, popularized by Jaynes [4], is that
the Shannon entropy is a good measure for uncertainty,
and therefore entropy maximization provides the maximally
noncommittal model given the expressed constraints. In other
words, among all probability densities complying with the
constraints, the entropy-maximizing density is the one that
introduces the least unwarranted assumptions. This is in
general a departure from the classical methods, where a
postulated model is deemed acceptable only if it does not
contradict the experimental results.

The use of entropy maximization as a modelling tool was
first introduced by Debbah and Müller in [2]. In [5] and later
in [3], spatial correlation in Multiple-Input Multiple-Output
(MIMO) flat-fading channels was investigated in this context.
Spatial correlation is a critical parameter for communications

applications [6], therefore a two-step model was proposed,
whereby a probabilistic model for correlation is sought
first, and correlation is marginalized out in a second step to
obtained the final channel model. Both steps rely on entropy
maximization, which enables to obtain a compact analytical
description of both the correlation and the channel itself.

The object of the present paper is to extend the spatial
correlation model to the case where the mean of the corre-
lation is known (e.g. from measurements, or because it is
a consequence of the antenna array design), and to provide
a characterization of the properties of the obtained models,
through the statistics of the eigenvalues of the obtained chan-
nel, and of their consequences on the additive white Gaussian
noise (AWGN) fading channel ergodic capacity.

II. N OTATIONS AND CHANNEL MODEL

We consider a wireless MIMO link withnt transmit andnr

receive antennas, represented by thenr × nt matrix H. Since
we are only concerned with frequency-flat channels, the(i, j)-
th coefficient ofH (the attenuation between transmit antenna
j and receive antennai) is a complex scalar that we denote
hi,j . The fading model that we seek to establish consists of
the statistics of the multivariate fading processH, in the form
of the probability density function (PDF)PH(H). We are not
concerned with the time-related properties of the channel,i.e.
we assume that the process under study is stationary, and refer
to the channel realizationH or equivalently to its vectorized
notationh = vec(H) = [h1,1 . . . hnr,1, h1,2 . . . hnr ,nt ]

T . Let
us denoteN = nrnt. We will sometimes use the alternative
notation where the antenna indices are mapped into[1 . . .N ],
i.e. denotingh = [h1 . . . hN ]T .

III. M AXIMUM ENTROPY-BASED DISTRIBUTIONS OF

CORRELATED MIMO CHANNELS

As already mentioned, the channel spatial covariance is
a critical parameter for communications systems, and we
will therefore pay a particular attention to it. Therefore,
let us consider the full covariance matrix ofh, defined
as theN × N complex positive definite Hermitian matrix
Q =

∫

CN hhHPH|Q(H)dH. In the context of geometric



propagation models,Q can be shown to depend on the
number, position and properties of the antennas in the
transmit and receive arrays, as well as of the scatterers where
the electromagnetic waves can reflect.

Our method can be summarized as follows:
1) derivePQ(Q) through entropy maximization,
2) derivePH|Q(H,Q) through entropy maximization,
3) marginalize over Q to obtain PH(H) =
∫

PH|Q(H,Q)PQ(Q)dQ.
The logic behind this method, exposed in more detail in [5],
is that PH|Q describes the channel statistics corresponding
to a given correlation situation (e.g. a given location of the
transmitter and receiver arrays, and a given set of scatterers),
whereasPQ models the variety of correlation situations that
can be encountered. It is therefore expected that in reality, the
coherence interval ofQ is longer than that ofH. However,
we will not try to model these time-related properties, and
will focus on the description of the probability densities of Q

andH, both being considered ergodic. Note also that due to
the introduction of the intermediate variableQ the obtained
PH is not, in general, the entropy maximizing distribution of
H.

We now briefly recall the results already established. Step 2
is in general not problematic, since it is easy to show that the
entropy maximizing distributionPH|Q under the covariance
constraint, yields

PH|Q(H,Q) =
1

det(πQ)
exp

(

−(hHQ−1h)
)

, (1)

i.e. a complex correlated Gaussian distribution of parameter
Q. Special care has to be taken ifQ is rank-deficient, since in
this case the distribution is a degenerate Gaussian. However,
as shown in [3], this does not change fundamentally our result.

Step 1, on the other hand, admits a richer variety of cases,
depending on what is known aboutQ. In previous works,
we derived the probability densityPQ(Q) for the case where
only a finite power constraint is known, and for the case of
a known rank ofQ, L ≤ N . In the present paper, we also
introduce the case where the mean ofQ is known.

A. No knowledge about the covariance matrix

Let us define the entropy ofQ as

H(PQ) =

∫

Q≥0

− log(PQ(Q))PQ(Q)dQ, (2)

wheredQ is a U(N)-invariant measure. The distribution of
Q is obtained by maximization ofH(PQ) under an energy
constrainttr(Q) = NE0, whereE0 is the average variance
per component. A solution to

PQ = arg max
EQ[tr(Q)]=NE0

H(PQ) (3)

can be found by considering the eigendecompositionQ =
UΛUH , and yields a complexN × N Wishart matrix with

N degrees of freedom and covarianceE0

N IN (denoted as
W̃N (N, E0

N IN )). This distribution has isotropic eigenvectors
(U is Haar-distributed), and the distribution of the unordered
eigenvaluesλ1 . . . λN on the diagonal ofΛ is described by

P ′
Λ(Λ) =

(

N

E0

)N2 N
∏

n=1

1

n!(n − 1)!
e−

N
E0

PN
i=1 λi

∏

i<j

(λi−λj)
2.

(4)
Note that the isotropic property of the obtained Wishart

distribution is a consequence of the fact that no spatial
constraints were imposed on the correlation. The energy
constraint (imposed through the trace) only affects the
distribution of the eigenvalues ofQ.

The complete distribution of the correlated channelH is
obtained (step 3 in the method above) by marginalizing over
Q:

PH(H) =

∫

Q≥0

PH|Q(H,Q)PQ(Q)dQ. (5)

It was shown in [3] thatPH(H) can be described by a scalar
function of the Frobenius norm ofH. In particular,PH(H) =

1
SN (||H||2F )

P
(N)
x (||H||2F ), whereSN (x) = πN xN−1

(N−1)! , and

P (L)
x (x) =

2

x

L
∑

i=1

(

−L

√

x

NE0

)L+i Ki+L−2

(

2L
√

x
NE0

)

[(i − 1)!]
2
(L − i)!

,

(6)
whereK denotes the BesselK-function [7, Section 8.432].
This indicates thath is isotropically distributed (uniformly
on the sphere), and that the probability density of its squared
Frobenius norm is described byP (N)

x .

B. Rank constraint on the covariance matrix

Let us now consider an extra constraint on the rank of
Q. This is a commonly used assumption when modelling
propagation situations with a limited number of scatterers.
Imposingrank(Q) = L ≤ N , it is obvious that the result in
(4) directly applies to describe the density of theL non-zero
eigenvalues, simply by changing the parameterN to L. In
this case, the marginalization ofQ (step 3) simply yields
PH(H) = 1

SN (||H||2F )
P

(L)
x (||H||2F ). Note that takingL = N ,

i.e. the full rank case, yields the result of Section III-A.

The models proposed in this section and in the previous
one, in addition to having tractable analytical expressions,
also admit simple numerical generation according to the
PDF PH, sinceh can be obtained by generating separately
a normalized vector process uniformly distributed over the
sphere of radius 1, and a scalar process representing the
norm according to eq. (6) (e.g. by numerical inversion of the
corresponding cumulative density function).



C. Knowledge of the covariance mean

Adding the constraint that the mean of the covariance matrix
Q must be an arbitrary positive definite matrixM, we now
consider the entropy-maximizing distribution

PQ|M = arg max
EQ[Q]=M

H(PQ). (7)

Let us seek the expression ofPQ|M, by considering the
functional

L(PQ) = H(PQ) + β

[
∫

Q≥0

PQ(Q) − 1

]

+tr

(

Ω

[

M −

∫

Q≥0

QPQ(Q)

])

(8)

where β and theN × N matrix Ω are Lagrange multipli-
ers. Equating the functional derivativeδL(PQ)

δPQ
to zero yields

PQ(Q) = exp(β − 1) exp(−tr(ΩQ)). Normalization of the

density to 1 imposes thatexp(β − 1) = det(Ω)N

πN(N−1)/2
QN

i=1(i−1)!
,

and the constraint on the average lets us identifyΩ = NM−1.
Therefore,

PQ|M(Q,M) =
1

det(M
N )NπN(N−1)/2

∏N
i=1(i − 1)!

· exp

(

−tr

{

(

M

N

)−1

Q

})

. (9)

We recognize that in this case,Q is a complex Wishart matrix
with N degrees of freedom and covarianceM

N , or W̃N (N, M
N ).

The distribution ofH is obtained by integration over all
positive definite matricesQ:

PH|M(H,M) =

∫

Q>0

PH|Q(H,Q)PQ|M(Q,M) (10)

=

∫

Q>0

e−hHQ−1he
−tr

n

(M
N )−1

Q
o

det(πQ) det(M
N )NπN(N−1)/2

∏N
i=1(i − 1)!

.(11)

Let us denote
(

M
N

)−1
= UDUH the eigendecomposition of

the mean of the Wishart distribution. Furthermore, letQ′ =
D1/2UHQUD1/2 become the integration variable (with the
introduction of the corresponding Jacobiandet(D)−N ). We
obtain

PH|M(H,M) =
∫

Q′>0

e−hHUD1/2Q′−1
D1/2UHhe−tr{Q′}

πN(N−1)/2
∏N

i=1(i − 1)!πN det(D)−1 det(Q′)
.(12)

where we used the fact thatD and M
N have reciprocal determi-

nants. We note that if we consider the vectorg = D1/2UHh

instead ofh, we obtain its PDF

Pg|M(g,M) =

∫

Q′>0

e−gHQ′−1
ge−tr{Q′}

πN det(Q′)πN(N−1)/2
∏N

i=1(i − 1)!
,

(13)
where we introduced the Jacobiandet(D)−1. Note that
eq. (13) is in fact independent ofM. Furthermore, since
the term under the integral is the product of the density of
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Fig. 1. Probability density functions of the 4 singular values of a4 ×

4 channel, for the Gaussian i.i.d. channel and for the MaxEnt model with
parameterL = 16, 12, 8 and 4.

a complex Gaussian random variableg with covarianceQ′,
and of the density of a Wishart̃WN (N, I) matrix Q′, we
recognize that we are in the case described in Section III-A
(with E0 = N ). Therefore, we conclude that the PDF ofg is
given byPg(g) = 1

SN (||G||2F )
P

(N)
x (||G||2F ).

This indicates that samples ofH can be generated easily
for the purpose of simulation, by generatingG using the
procedure outlined in the previous section, and by applying
the transformationh = D−1/2Ug.

IV. CAPACITY ANALYSIS OF THE PROPOSED MODELS

Let us consider a flat-fading AWGN channel, described by

rn = Hsn + nn, (14)

where matrixH representsnr×nt matrix of the channel gains
between all transmit-receive antenna pairs, and vectorssn, rn

andnn represent respectively the transmitted signal (assumed
drawn from a Gaussian i.i.d. distribution with identity covari-
ance, denotedN (0, I)), the received signal, and an additive
noise sample (N (0, σ2I)) at instantn.

Let us consider the singular value decomposition of the
channel matrixH = VSWH , whereV and W are unitary
matrices, andS is a diagonal matrices with the (real, positive)
singular valuess1, . . . sp, wherep = min(nt, nr). The capac-
ity of the channel in (14), for a given realization ofH, has
been shown by Telatar [8] to be

C = log det

(

I +
1

σ2
HHH

)

=

p
∑

i=1

log

(

1 +
s2

i

σ2

)

. (15)

It is obvious from this expression that the various capacity
metrics associated to fading channels (ergodic capacity, outage
capacity...) depend only on the distribution of the singular
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Fig. 2. Joint PDF of(s1, s2) for a 4 × 2 channel, for various channel models (blue = low values, red =high values).

values of the channel matrix. In this section, we characterize
experimentally the singular value distributions corresponding
to the channel statistics presented in Section III, and we
compare them to the singular value distributions associated
to the classical Gaussian model with i.i.d. components.

Figure 1 depicts the probability density functions of the
4 ordered singular values (s1 ≥ s2 ≥ s3 ≥ s4) of H, for
various fading models, namely the Gaussian i.i.d. model,
and the maximum entropy model (denoted by MaxEnt) of
section III-B, for several values ofL. The energy parameter
E0 was fixed at 1 for all cases. It is noticeable that the
distributions corresponding to the MaxEnt model are more
spread out than for the Gaussian i.i.d. model. Interestingly, it
appears that the distribution of the energy among the singular

value is the same for all considered models (Gaussian and
MaxEnt), i.e. the expectation of thei-th singular valueE

[

s2
i

]

is independent from the model, for alli. Of course, we
also have

∑p
i=1 E

[

s2
i

]

= NE0. Interestingly, together with
the concavity of thelog(1 + ·) function, this indicates that
more spread out the distributions will yield lower ergodic
capacities. Therefore, the MaxEnt models show in general
a lower ergodic capacity than the Gaussian i.i.d. model.
Furthermore this phenomenon becomes more sensible asL

decreases.

Figure 2 depicts the joint PDF of the two ordered
eigenvalues(s1, s2) of a 4× 2 MIMO channel, corresponding
to the Gaussian channel model and to the MaxEnt channel
model with parameterL = 8, 4 and 2. Again, it is noticeable



that the MaxEnt channel model has singular values more
spread out than the Gaussian i.i.d. channel (Fig. 2(a)), even
for the case where the covariance matrixQ is assumed to
be full rank (L=8 in this case, Fig. 2(b)). Comparison of
the PDF corresponding to the MaxEnt channel model with
various values of L (Figs. 2(b), 2(c) and 2(d)) shows that a
decreasing rankL of the covariance has the effect, already
noted before, of increasing the spread of the distribution,as
well as increasing the correlation between the singular values.

V. CONCLUSION

In this paper, we presented several analytical models for
wireless MIMO flat-fading channels, based on various degrees
of knowledge about the environment, using a modeling ap-
proach based on the maximum entropy principle. Our approach
consists in first modeling the spatial covariance properties,
considering the case where the covariance matrix has only a
power constraint, a fixed rank constraint, and the case where
the mean of the covariance matrix is known. We presented
closed-form formulas for the probability densities of the
channel matrix, as well as results of the numerical evaluation
of the statistics of the singular values of the corresponding
channels, and their implication on the channel capacity.
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