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Abstract— We consider the use of entropy maximization meth- applications [6], therefore a two-step model was proposed,
ods as a tool to generate fading models for Multiple-Input whereby a probabilistic model for correlation is sought
Multiple-Output (MIMO) spatially correlated flat-fading ¢ han- fit and correlation is marginalized out in a second step to

nels. We focus in particular on various assumptions about th btained the final ch | del. Both st | ¢
degree of knowledge on the full covariance matrix of the chamel obtaine € inal channel model. botn Steps rely on entropy

(namely in the power constraint, rank constraint, and avergge Maximization, which enables to obtain a compact analytical
constraint case). We show that this method can provide clode description of both the correlation and the channel itself.

form probability density functions in all cases. In a secondpart,
we analyze the statistical properties of the singular valug of
the resulting fading channel. In general, they are more sprad
out that in the classical Gaussian i.i.d. case, which incurgess

The object of the present paper is to extend the spatial
correlation model to the case where the mean of the corre-

optimistic ergodic capacity figures. lation is known (e.g. from measurements, or because it is
a consequence of the antenna array design), and to provide
. INTRODUCTION a characterization of the properties of the obtained models

A large number of models for wireless transmissiothrough the statistics of the eigenvalues of the obtainedh<h
channels are available in the literature — [1] providesel, and of their consequences on the additive white Gaussia
for a good overview. One usually distinguish betweenoise (AWGN) fading channel ergodic capacity.
geometric models, built upon the observation and modelling
of the electromagnetic propagation phenomenon, and Il. NOTATIONS AND CHANNEL MODEL
statistical models, which aim to reproduce statistics ioleth We consider a wireless MIMO link with; transmit and,.
experimentally. Recently, a new class of channel models wa&teive antennas, represented by thex n, matrix H. Since
introduced [2], [3], based on Bayesian inference techriquee are only concerned with frequency-flat channels|ihg)-
and on entropy maximization. A probabilistic model igh coefficient ofH (the attenuation between transmit antenna
obtained by first defining the range of the variable to model,and receive antenng is a complex scalar that we denote
and by choosing the probability distribution function hayi %, ;. The fading model that we seek to establish consists of
maximum entropy, given some constraints based on systém statistics of the multivariate fading procddsin the form
design (e.g. about finite power) as well as information fromif the probability density function (PDRyy(H). We are not
the experimental correlation of the channel. The logic behi concerned with the time-related properties of the charnreel,
entropy maximization, popularized by Jaynes [4], is thate assume that the process under study is stationary, agrd ref
the Shannon entropy is a good measure for uncertainty,the channel realizatioll or equivalently to its vectorized
and therefore entropy maximization provides the maximallyotationh = vec(H) = [h11...hn, 1,h12 ... hn, n,]T. Let
noncommittal model given the expressed constraints. Iarothus denoteN = n,.n,. We will sometimes use the alternative
words, among all probability densities complying with theotation where the antenna indices are mapped][into. V],
constraints, the entropy-maximizing density is the one thie. denotingh = [h ... hx]|T.
introduces the least unwarranted assumptions. This is in
general a departure from the classical methods, where a
postulated model is deemed acceptable only if it does not!!l- MAXIMUM ENTROPY-BASED DISTRIBUTIONS OF
contradict the experimental results. CORRELATED MIMO CHANNELS

As already mentioned, the channel spatial covariance is

The use of entropy maximization as a modelling tool wae critical parameter for communications systems, and we
first introduced by Debbah and Miller in [2]. In [5] and latemwill therefore pay a particular attention to it. Therefore,
in [3], spatial correlation in Multiple-Input Multiple-Gput let us consider the full covariance matrix df, defined
(MIMO) flat-fading channels was investigated in this comtexas the N x N complex positive definite Hermitian matrix
Spatial correlation is a critical parameter for communaa® Q = ch hhHPH‘Q(H)dH. In the context of geometric



propagation modelsQ can be shown to depend on theV degrees of freedom and covarian%IN (denoted as
number, position and properties of the antennas in thgy (N, %IN)). This distribution has isotropic eigenvectors
transmit and receive arrays, as well as of the scatterersewh@U is Haar-distributed), and the distribution of the unordere

the electromagnetic waves can reflect. eigenvalues\; ... Ay on the diagonal of\ is described by
Our method can be summarized as follows: N* N
. lows: PUST CARE | SEREEIDNY  FA
1) derive Po(Q) through entropy maximization, E, nl(n —1)! 11 J
2) derive Py q(H, Q) through entropy maximization, n=l < @)

3) marginalize over Q to obtain Pe(H) - Note that the isotropic property of the obtained Wishart

fPH|Q(H’Q)PQ(Q)dQ' ) ~_distribution is a consequence of the fact that no spatial
The logic behind this method, exposed in more detail in [S{onstraints were imposed on the correlation. The energy

is that Py q describes the channel statistics correspondiRgnstraint (imposed through the trace) only affects the
to a given correlation situation (e.g. a given location of thyisiripution of the eigenvalues @.

transmitter and receiver arrays, and a given set of scat)ere
whereasPq models the variety of correlation situations that o complete distribution of the correlated chanklis

can be encc_)untered. It IS therefore expected that in rediity obtained (step 3 in the method above) by marginalizing over
coherence interval 0€) is longer than that oH. However, .

we will not try to model these time-related properties, ang'

will focus on the description of the probability densiti€s@ Pu(H) = / Puiq(H, Q)Pq(Q)dQ. (%)

and H, both being considered ergodic. Note also that due to Q=0

the introduction of the intermediate variabl@ the obtained
Py is not, in general, the entropy maximizing distribution o

tt was shown in [3] thatPy (H) can be described by a scalar
H.

unction of the Frobenius norm @. In pa&tic}yl?r,PH(H) =
WMQPJEN)(HHH%), whereSy (z) = fx*gr, and

We now briefly recall the results already established. Step 2
is in general not problematic, since it is easy to show that th 9 L ——\ L+i Kiir o (QL NLEO)
entropy maximizing distributionPy  under the covariance PUEL)(I) =— Z (— 1/ > _ 5 _
constraint, yields =1 NEo [(¢ = D7 (L —4)! ©

Pyiq(H,Q) = _ exp (—(b7Q7'h)), (1) where K denotes the Bessdl -function [7, Section 8.432].
det(7Q) This indicates that is isotropically distributed (uniformly
i.e. a complex correlated Gaussian distribution of parameon the sphere), and that the probability density of its seglar
Q. Special care has to be taker()fis rank-deficient, since in Frobenius norm is described H%N).
this case the distribution is a degenerate Gaussian. Howeve
as shown in [3], this does not change fundamentally our tesul
Step 1, on the other hand, admits a richer variety of cas@s, Rank constraint on the covariance matrix

depending on what is known abo@. In previous works,
we derived the probability densityq (Q) for the case where ~ Let us now consider an extra constraint on the rank of
only a finite power constraint is known, and for the case 6. This is a commonly used assumption when modelling
a known rank ofQ, L < N. In the present paper, we alsaPropagation situations with a limited number of scatterers

introduce the case where the mean@fis known. Imposingrank(Q) = L < N, it is obvious that the result in
(4) directly applies to describe the density of thenon-zero

eigenvalues, simply by changing the parameterno L. In
_ this case, the marginalization & (step 3) simply yields
Let us define the entropy &) as Pu(H) = WPI(L)(HHH%‘)' Note that takingl, = N,

i.e. the full rank case, yields the result of Section IlI-A.
HPa) = [ los(Po@)Pa(@iQ, @

A. No knowledge about the covariance matrix

The models proposed in this section and in the previous
one, in addition to having tractable analytical expressjon
also admit simple numerical generation according to the
PDF Py, sinceh can be obtained by generating separately
a normalized vector process uniformly distributed over the
H(Pg) (3) sphere of radius 1, and a scalar process representing the

norm according to eq. (6) (e.g. by numerical inversion of the
can be found by considering the eigendecompositipn= corresponding cumulative density function).
UAU#, and yields a compleXV x N Wishart matrix with

wheredQ is al{(N)-invariant measure. The distribution of
Q is obtained by maximization off (Pq) under an energy
constrainttr(Q) = NEy, where E, is the average variance
per component. A solution to

Po = ar max
QT A @) =N B



C. Knowledge of the covariance mean

Adding the constraint that the mean of the covariance mat

Q must be an arbitrary positive definite matiM, we now
consider the entropy-maximizing distribution

H(Pq). ()

P = arg max
QM gEQ[Q]:M
Let us seek the expression diqn, by considering the
functional

L(Pq) = H(PQ>+ﬁ[/Q Pa(@) - 1]

>0
+tr <Q [M - QPQ(Q)D (8)
Q>0

where 5 and the N x N matrix Q2 are Lagrange multipli-
ers. Equating the functional derivati\%fTQ) to zero yields
Pq(Q) = exp(f8 — 1) exp(—tr(2Q)). Normalization of the
density to 1 imposes thakp(3 — 1) = ﬁN(NjC/‘Q(%)ﬁ =l
and the constraint on the average lets us iderﬂiﬁyT'?\l/M—l.
Therefore,

Pom(Q, M)

1
det(M)NrN(N-1)/2 Y, —1)!

(') o

We recognize that in this cas) is a complex Wishart matrix
with N degrees of freedom and covariarge or Wy (N, 3.

Gaussian i.i.d.
—*— MaxEnt, L=16
—+— MaxEnt, L=12
MaxEnt, L=8
—— MaxEnt, L=4

Probability Densities of the singular values of a 4x4channel

Fig. 1. Probability density functions of the 4 singular \&8uof a4 x
4 channel, for the Gaussian i.i.d. channel and for the MaxEateh with
parameterL = 16, 12,8 and 4.

a complex Gaussian random varialgewith covarianceQ’,
and of the density of a WishaanN(N, I) matrix Q’, we
recognize that we are in the case described in Section IlI-A
(with Ey = N). Therefore, we conclude that the PDFgfs

. N
given by Py (g) = SN(H1G||F>P:”( '(1G[3)-

This indicates that samples & can be generated easily

The distribution ofH is obtained by integration over allfo, the purpose of simulation, by generatig using the

positive definite matrice§):
Peapa (L M) = /Q Prtjq(H, Q) Point(Q. M) (10)
>0
eihHQ—lhe—tr{(%)ilQ}

det(M)NZNNV-1/2 T[N (j — 1)i]

/Q>0 det(7Q)

Let us denote(%f1 = UDU* the eigendecomposition of

the mean of the Wishart distribution. Furthermore, (¥t =

procedure outlined in the previous section, and by applying
the transformatioth = D~'/2Ug.

IV. CAPACITY ANALYSIS OF THE PROPOSED MODELS

Let us consider a flat-fading AWGN channel, described by
r, = Hsn + n,, (14)

where matrixH represents,. x n, matrix of the channel gains

D!/2U”QUD!/? become the integration variable (with thesetween all transmit-receive antenna pairs, and veetqrs,,

introduction of the corresponding Jacobidet(D)~V). We
obtain

e—hHUD1/2Q/71D1/2UHhe—tr{Q/}

(12)

/Q’>0 aN(N=1)/2 vazl(z — )N det(D) 1 det(Q\’)

where we used the fact thBx and % have reciprocal determi-
nants. We note that if we consider the veatoe= D'/2U" h
instead ofh, we obtain its PDF

e_gHQl—lge_tr{Q/}

P, M :/ ,
/v (g M) Q>0 7N det(Q)rN(N-1)/2 Hﬁ\;(i —1)!

(13)

where we introduced the Jacobiatet(D)~!. Note that

eqg. (13) is in fact independent d¥1. Furthermore, since

andn,, represent respectively the transmitted signal (assumed
drawn from a Gaussian i.i.d. distribution with identity eoiv
ance, denotedVv(0,1)), the received signal, and an additive
noise sampleX/(0, #2I)) at instantn.

Let us consider the singular value decomposition of the
channel matrixH = VSW#, whereV and W are unitary
matrices, and is a diagonal matrices with the (real, positive)
singular values, . .. s,, wherep = min(n., n,). The capac-
ity of the channel in (14), for a given realization ®f, has
been shown by Telatar [8] to be

1 H P 312
C =logdet <I+ ;HH > = ;bg <1 + ;) . (15)

It is obvious from this expression that the various capacity
metrics associated to fading channels (ergodic capacityge

the term under the integral is the product of the density ohpacity...) depend only on the distribution of the singula
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Fig. 2. Joint PDF of(s1, s2) for a4 x 2 channel, for various channel models (blue = low values, rétdgh values).

values of the channel matrix. In this section, we charanterivalue is the same for all considered models (Gaussian and
experimentally the singular value distributions corregfing MaxEnt), i.e. the expectation of theth singular valuet [sﬂ
to the channel statistics presented in Section 1ll, and vie independent from the model, for all Of course, we
compare them to the singular value distributions assatiatalso have} ” | E [sﬂ = NEj. Interestingly, together with
to the classical Gaussian model with i.i.d. components.  the concavity of thelog(1 + -) function, this indicates that
more spread out the distributions will yield lower ergodic
. ) N ] . capacities. Therefore, the MaxEnt models show in general
Figure 1 depicts the probability density functions of thg |ower ergodic capacity than the Gaussian iid. model.

4 ordered singular valuessi( > s» > s3 > s4) of H, for  pyrihermore this phenomenon becomes more sensible as
various fading models, namely the Gaussian i.i.d. modgjecreases.

and the maximum entropy model (denoted by MaxEnt) of

section 1lI-B, for several values af. The energy parameter

Ey, was fixed at 1 for all cases. It is noticeable that the Figure 2 depicts the joint PDF of the two ordered
distributions corresponding to the MaxEnt model are mordgenvaluegsi, s2) of a4 x 2 MIMO channel, corresponding
spread out than for the Gaussian i.i.d. model. Interestingl to the Gaussian channel model and to the MaxEnt channel
appears that the distribution of the energy among the simguiodel with parametef. = 8,4 and 2. Again, it is noticeable



that the MaxEnt channel model has singular values more
spread out than the Gaussian i.i.d. channel (Fig. 2(a)n eve)
for the case where the covariance matéis assumed to
be full rank (L=8 in this case, Fig. 2(b)). Comparison of
the PDF corresponding to the MaxEnt channel model wi
various values of L (Figs. 2(b), 2(c) and 2(d)) shows that a
decreasing rank, of the covariance has the effect, aIreadYS]
noted before, of increasing the spread of the distributam,
well as increasing the correlation between the singularesl

[4]
V. CONCLUSION 5]

In this paper, we presented several analytical models for
wireless MIMO flat-fading channels, based on various d@re@
of knowledge about the environment, using a modeling ap-
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