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ABSTRACT

In this paper, a game theoretic approach is used to derive the

optimal power allocation in multiple access channels (MAC)

for decentralized systems. Unlike previous results, a simple

coordination mechanism is used between selfish users. The

nature and influence of the coordination mechanism is stud-

ied in details for single antenna and multiple antenna termi-

nals. In the proposed framework, the coordination signal in-

dicates to the users in which order the receiver applies suc-

cessive interference cancelation and with which frequency this

order is used: it establishes the rule of the game. Remark-

ably, in Gaussian single input single output MACs, it is shown

that, whatever the rule of the game, the selfish behavior of the

users leads to a socially efficient network that is to say it is al-

ways sum-capacity achieving. However, for fast fading MAC

with multi-antenna terminals, there can be a performance gap

between the decentralized system and its centralized counter-

part. Analytical and simulation results are provided to assess

this gap.

1. INTRODUCTION

In this paper, we consider a special case of decentralized

wireless networks, the decentralized multiple access chan-

nel (MAC). In this specific context, the MAC consists of a

network of several mobile stations (MS) and one fixed base

station (BS). The network is said to be decentralized in the

sense that the base station does not dictate to the users the

information rates and transmit power levels. Hence, each

user can choose freely its power allocation policy in order

to selfishly maximize a certain individual performance cri-

terion.

The problem of decentralized power allocation in wire-

less networks is not new and has been properly formalized

for the first time in [1]. Interestingly, the problem can be

formulated quite naturally as a non-cooperative game with

different performance criteria (utilities) such as the carrier

to interference ratio [2], aggregate throughput [3] or energy

efficiency [4][5]. In this paper, the point of view adopted

is close to the one proposed by the authors of [6] for the

DSL (digital subscriber lines) systems, [7] for the single in-

put single output (SISO) and the single input multiple out-

put (SIMO) fast fading multiple access channels with CSIR,

CSIT (Channel State Information at the Transmitter and Re-

ceiver) and [8] for MIMO (Multiple Input Multiple Output)

with CSIR but only channel distribution information at the

transmitters (CDIT). More precisely, we assume, as in [7],

that the users want to maximize information-theoretic utili-

ties and more precisely their transmission rate. However our

approach differs from [7] on several key technical points.

In [7] the authors proposed different formulations (in par-

ticular the Stackelberg and repeated games formulations) to

try to obtain achievable rate regions as close as possible to

the centralized MAC capacity region. The corresponding

formulations and assumptions made, especially that of the

knowledge of all the instantaneous channels at each mobile

station, is not applicable to large decentralized networks. In

this paper, two key assumptions are made in order to fur-

ther minimize base station signaling towards the mobiles:

the base station can only send to the users a simple coordi-

nation signal and sufficient training signals for the users to

know the statistics of the different channels. If the channels

are stationary the training data will be sent once and for

all. The assumed coordination signal is simple because it

consists in sending periodically the realization of a K!-state

random signal, where K is the number of active users. Note

that the framework of this paper is not that of coordination

games [14]. Rather, the proposed formulation can be seen

from two different standpoints. If the distribution of the co-

ordination signal is fixed, than the addressed problem can

be seen as a non-cooperative game where the base station is

imposed to follow the realizations of the random coordina-

tion signal, which can be generated by any device (and not

necessarily the base station), in order to select its strategy

(decoding order). On the other hand, if the distribution of

the coordination signal can be optimized, the problem will

be addressed following a Stackelberg formulation where the

base station is the game leader and wants to maximize the

network uplink sum-rate by choosing its best mixed strategy

(namely a distribution over the possible decoding orders).

Additionally to the assumptions just mentioned, we will

assume that both the mobile and base stations are equipped



with multiple antennas. Therefore we make the same as-

sumptions as [8] where the authors investigated non-cooperative

and non-coordinated MIMO MACs when single-user de-

coding is assumed at the base station. In our framework

the main objective is to know how well a non-cooperative

but weakly coordinated system performs in terms of overall

sum-rate w.r.t. its centralized counterpart when successive

decoding is used at the base station.

In this setting, several interesting questions arise.

• When the user’s utility functions are chosen to be

their individual transmission rate, is there a Nash equi-

librium in the corresponding game and is it unique?

• What is the optimum way of allocating spatially and

temporally the transmit power for a selfish user?

• How to choose the coordination signal in order for the

network sum-rate to be maximized?

In Sec. 2, we begin by considering the SISO static mul-

tiple access channel, which is a simple case that provides

insights on the stated issues. Then, in Sec. 3 we consider

a more attractive framework for wireless networks, which

is the fast fading MIMO MAC channel. First we outline

the general problem which consists in determining for each

user, its optimal space-time power distribution. Then we

restrict our attention to two important special cases. In the

first case, the spatial correlation between the transmit anten-

nas is assumed to be absent. In this case the optimal spatial

power allocation is the uniform power allocation, and the

time allocation problem is studied. For the second case, we

assume that the temporal power allocation is uniform and

thus our objective is to derive the best spatial power alloca-

tion scheme. Numerical results are provided in Sec. 4. We

conclude by several remarks and possible extensions of our

work.

Note: for simplicity sake and without loss of generality,

we will assume MACs with two users. However, all the

results presented in this paper extend to K−user MACs,

K ≥ 3. In this respect, in some places K will be used

instead of K = 2.

2. GAUSSIAN SISO MULTIPLE ACCESS

CHANNELS

In this section we consider a simple case of MACs that cap-

tures several important aspects of the problem and serves as

baseline example. The two links between the two mobile

and base stations are assumed to be static, namely additive

white Gaussian (AWGN) channels. We also assume termi-

nals with single antennas. The main feature of the system

under investigation is that the base station sends a coordi-

nation signal to the (two) users. To generate this signal the

base station flips a coin and transmits the corresponding bit,

which does not always convey one information bit. Indeed,

as this coin is not necessarily fair, it provides a degree of

freedom for the base station for optimizing the system per-

formance. The realization of the random signal indicates in

which order the base station decodes the users with a perfect

successive interference canceler. Note that in a real wireless

system the frequency to which the coin would be tossed is

roughly proportional to the inverse of the channel coherence

time. In the special case of the AWGN MAC, the links are

static and therefore the coherence time is infinite.

In order to translate mathematically the proposed coor-

dination scheme, let us denote by S ∈ S the coordination

signal where S = {1, 2} is the set of realizations of S and

Pr[S = 1] = p (resp. Pr[S = 2] = 1− p) is the probability

that user 1 (resp. user 2) is decoded the second and therefore

sees no multiple access interference. The signal received by

the base station for the realization s ∈ {1, 2} of the coordi-

nation signal writes as: Y (s) =
∑2

k=1 hkX
(s)
k +Z(s), where

hk the channel gain for user k, X
(s)
k is the signal transmitted

by user k when the realization of the coordination signal is

s, and for all s, Z(s) ∼ N (0, σ2) is the (stationary) channel

noise. Note that the channel gains are assumed to be known

both from the transmitters and receiver. As these gain do

not vary over time in this section, acquiring the knowledge

of them is not a critical issue here. This can be done once

and for all with an arbitrary small loss for the average trans-

mission rate. The chosen transmit power constraints are as

follows:

∀k ∈ {1, 2}, pE
∣

∣
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(1)
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We will use the following notations: p1 = p, p1 = p =
1 − p, p2 = p = 1 − p and p2 = p. Also, let pkαk denote

the fraction that user k dedicates to the situation where he

sees an interference-free channel i.e. E
∣
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∣
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(1)
1
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and E
∣

∣

∣
X

(2)
2

∣

∣

∣

2

= α2P2. Thus the strategy of a user consists

in choosing αk in order to maximize its utility which is his

individual average transmission rate. The utility function

for user k ∈ {1, 2} is given by:

uk(αk, α−k) = pk log (1 + αkηk)+pk log

[

1 +
(1 − αkpk)ηk

pk(1 + η−kα−k)

]

(2)

where the notation a−k stands for the value of the quan-

tity a for the other user and ηk = |hk|
2Pk

σ2 . Given the fact

that each user wants to maximize its own utility uk w.r.t.

αk ∈
[

0, 1
pk

]

, the main issue is to know if there exists an

equilibrium (i.e. no user has interest in deviating from this

point), if it is unique and how to determine the correspond-

ing pair of parameters (α∗
1, α

∗
2). In fact, the existence and

uniqueness of a Nash equilibrium (NE) issues can be dealt

with by applying Theorem 1 and 2 of [9] in our context.



Existence of a Nash equilibrium. The existence is in-

sured because of the geometrical and topological properties

of the functions uk, and of the set over which the maximiza-

tion is performed. For each user k ∈ {1, 2}, the function uk

is (strictly) concave in αk and continuous in (α1, α2). For

each user k ∈ {1, 2}, the set of feasible actions or strategies

Ak =
[

0, 1
pk

]

is convex and compact. The conditions of [9]

for the existence of a NE are therefore met.

Uniqueness of the Nash equilibrium. Here, our goal is

to prove that the diagonally strict concavity condition of [9]

is met in our context and therefore there is a unique NE.

For all (α′
1,α′′

1) ∈ A2
1 and (α′

2,α′′
2) ∈ A2

2 such that either

α′
1 6= α′′

1 or α′
2 6= α′′

2 we want to prove that:

C =

{

(α′′
1 − α′

1)

[

∂u1

∂α1
(α′

1, α
′
2) −

∂u1

∂α1
(α′′

1 , α′′
2 )

]

(3)

+(α′′
2 − α′

2)

[

∂u2

∂α2
(α′

1, α
′
2) −

∂u2

∂α2
(α′′

1 , α′′
2 )

]}

> 0.

By denoting the two terms of each utility function of eq. (2)

as uk = R
(1)
k + R

(2)
k the strict positivity condition can be

rewritten as follows:

C = pT1 + (1 − p)T2 > 0 (4)

where for all s ∈ {1, 2},

Ts = (α′′
1 − α′

1)

[

∂R
(s)
1

∂α1
(α′

1, α
′
2) −

∂R
(s)
1

∂α1
(α′′

1 , α′′
2 )

]

(5)

+(α′′
2 − α′

2)

[

∂R
(s)
2

∂α2
(α′

1, α
′
2) −

∂R
(s)
2

∂α2
(α′′

1 , α′′
2 )

]

.

The term T1 can be re-expressed and shown to be positive:

T1 =
{

p(α′′

1 −α′

1)2η2
1

(1+α′

1η1)(1+α′′

1 η1)

+
p(1−p)2(α′′

2 −α′

2)2η2
2−(α′′

1 −α′

1)(α′′

2 −α′

2)p2(1−p)η1η2

(p(1+α′

1η1)+η2−η2(1−p)α′

2)(p(1+α′′

1 η1)+η2−η2(1−p)α′′

2 )

}

≥
p3(α′′

1 −α′

1)2η2
1+p(1−p)2(α′′

2 −α′

2)2η2
2−p2(1−p)(α′′

1 −α′

1)(α′′

2 −α′

2)η1η2

(p(1+α′

1η1)+η2−η2(1−p)α′

2)(p(1+α′′

1 η1)+η2−η2(1−p)α′′

2 )

> 0
(6)

In the same way, T2 can be shown to be positive, which

concludes the proof of the uniqueness of the NE.

Determination of the Nash equilibrium. In order to find

the optimal selfish strategies in the sets of actions A1 and

A2 we introduce four Lagrange multipliers (λ1, λ2, λ3, λ4) ∈
[0, +∞[4 and define the two constrained functions
{

L1(α1, α2, λ1) = −u1(α1, α2) + λ1(α1 −
1
p
) − λ2α1

L2(α1, α2, λ2) = −u2(α1, α2) + λ3(α2 −
1

1−p
) − λ4α2.

(7)

The Kuhn-Tucker (KT) conditions write as:






















λ1

(

α∗
1 −

1
p

)

= 0

λ2α
∗
1 = 0

λ3

(

α∗
2 −

1
1−p

)

= 0

λ4α
∗
2 = 0.

(8)

By setting the derivative of the constrained utility functions

to zero (7) and using the KT conditions (8) one can check

that the pair of parameters at the Nash equilibrium is given

by:

(α∗
1, α

∗
2) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

1
p
, 1
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)

if η2

η1
= 1−p

p
(

1
p
, 1 + η1

η2

)

if η2

η1
> 1−p

p
(

1 + η2

η1
, 1

1−p

)

if η2

η1
< 1−p

p
.

(9)

Interestingly, we observe that for a fixed game rule, which

is the value of parameter p, there will always be an equi-

librium. The users adapt their strategies to the rule of the

game accordingly to eq. (9) in order to optimize their in-

dividual transmission rates (2). The base station can there-

fore choose its strategy p to optimize the overall network

performance: p∗ = arg maxp Rsum(p), where Rsum(p) =
u1 [α∗

1(p), α∗
2(p)] + u2 [α∗

1(p), α∗
2(p)]. It can be checked

that for the three regimes we defined from the ratio η2

η1
(see

eq. (9)), at the equilibrium, the sum-rate is a constant and

Rsum(p) = log(1 + η1 + η2). In fact, this constant is the

sum-capacity of the centralized Gaussian SISO MAC. This

shows that for any rule of the game, even if it is unfair, the

selfish behavior of the users will always lead to maximiz-

ing the network sum-rate. Of course, the base station can

always chose p = 1
2 (fair coin) in order to make the game

fair without affecting the network performance in the case

of Gaussian SISO multiples access channels. However, in

general, the proven result means that any binary coordina-

tion signal can be used (1-bit quantization of an FM signal,

pseudo-random noise generator, etc.) without loss of global

optimality.

One can easily check that varying p from 0 to 1 allows

one to move along the sum-rate (or full cooperation) seg-

ment of centralized Gaussian MAC capacity region, which

is a pentagon. The main question that arises is to know to

what extent the obtained results apply to the fading MIMO

MAC. Indeed, it is known that for the centralized fading

MIMO channels, there is generally only one point where

the sum-capacity is achieved and therefore there must be

some differences to be identified. This is the purpose of the

next section.

3. LARGE FADING MIMO MULTIPLE ACCESS

CHANNELS

3.1. System Model

Notations: The notations v and M will stand for vector and

matrix respectively. The superscripts (.)T and (.)H will de-

note transpose and transpose conjugate, respectively. The

trace of the matrix M will be denoted by Tr(M).
Now each mobile station is equipped with nt antennas

whereas the base station has nr antennas (thus we assume



the same number of transmitting antennas for all the users).

In our analysis the flat fading channel matrices of the differ-

ent links vary from symbol vector (or space-time codeword)

to symbol vector. We assume that the receiver knows all the

channel matrices whereas each transmitter has only access

to the statistics of the different channels. The equivalent

baseband signal received by the base station can be written

as

y(s)(τ) =

K
∑

k=1

Hk(τ)x
(s)
k (τ) + z(s)(τ) (10)

where x
(s)
k (τ) is the nt-dimensional column vector of sym-

bols transmitted by user k at time τ for the realization s

of the coordination signal, Hk(τ) ∈ C
nr×nt is the chan-

nel matrix (stationary and ergodic process) of user k and

z(s)(τ) is a nr-dimensional complex white Gaussian noise

distributed as N (0, σ2Inr
). For sake of clarity we will omit

the time index τ from our notations. In order to take into ac-

count the antenna correlation effects at the transmitters and

receiver we will assume the different channel matrices to be

structured according to the Kronecker propagation model

[10]:

∀k ∈ {1, ..., K}, Hk = R
1
2 ΘkT

1
2

k (11)

where R is the receive antenna correlation matrix, Tk is the

transmit antenna correlation matrix for user k and Θk is an

nr×nt matrix whose entries are zero-mean independent and

identically distributed complex Gaussian random variables

with variance 1
nt

.

3.2. Space-time power allocation game

Now, in the vector case, the strategy of user k ∈ {1, 2}, con-

sists in choosing the best pair of precoding matrices Q
(s)
k =

E
[

x
(s)
k x

(s),H
k

]

, for s ∈ {1, 2}, in the sense of his utility

function:

u1(Q
(1)
1 ,Q

(2)
1 Q

(1)
2 ,Q

(2)
2 ) = pR

(1)
1 (Q

(1)
1 ,Q

(1)
2 )

+(1 − p)R
(2)
1 (Q

(2)
1 ,Q

(2)
2 )

u2(Q
(1)
1 ,Q

(2)
1 Q

(1)
2 ,Q

(2)
2 ) = pR

(1)
2 (Q

(1)
1 ,Q

(1)
2 )

+(1 − p)R
(2)
2 (Q

(2)
1 ,Q

(2)
2 )

(12)

where

R
(1)
1 (Q

(1)
1 ,Q

(1)
2 ) = E log |I + ρH1Q

(1)
1 HH

1 |

R
(1)
2 (Q

(1)
1 ,Q

(1)
2 ) = E log |I + ρH1Q

(1)
1 HH

1 + ρH2Q
(1)
2 HH

2 |

−E log |I + ρH1Q
(1)
1 HH

1 |

R
(2)
1 (Q

(2)
1 ,Q

(2)
2 ) = E log |I + ρH1Q

(2)
1 HH

1 + ρH2Q
(2)
2 HH

2 |

−E log |I + ρH2Q
(2)
2 HH

2 |

R
(2)
2 (Q

(2)
1 ,Q

(2)
2 ) = E log |I + ρH2Q

(2)
2 HH

2 |
(13)

with ρ = 1
σ2 The main point to mention here is the power

constraint under which the utilities are maximized. The vec-

tor version of the power constraint given in eq. (1) is:

∀k ∈ {1, 2}, pTr(Q
(1)
k ) + pTr(Q

(2)
k ) ≤ ntPk (14)

Obviously the optimum precoding matrices Q
(s,∗)
k (with (k, s) ∈

{1, 2}2) will depend on p. The problem of finding the cor-

responding matrices Q
(s,∗)
k (p) and then optimizing the sys-

tem sum-rate w.r.t. p is doable but requires more space to be

treated properly. In this paper we will restrict our attention

to two special but interesting cases:

1. Assumption 1. We assume the absence of spatial cor-

relation between the transmit antennas i.e. ∀k ∈ {1, 2},
Tk = I. Under this assumption, using the fact that

the payoff functions are strictly concave, and extend-

ing the results given in [11] for the single user chan-

nel, we obtain that the optimum precoding matrices

are proportional to the nt –dimensional identity ma-

trix (uniform spatial allocation), which allows us to

convert the space-time power allocation problem into

a purely temporal allocation problem (Sec. 3.3).

2. Assumption 2. Here we assume that the user are free

to share their transmit power between their antennas

but for each realization of the coordination signal the

transmit power is constrained as follows (uniform time

power allocation):

∀k ∈ {1, 2},∀s ∈ {1, 2},Tr(Q
(s)
k ) ≤ ntPk. (15)

This is a pure spatial power allocation problem (Sec.

3.4 ).

3.3. Temporal power allocation game

Under Assumption 1, the power constraint (14) becomes

pα
(1)
k + pα

(2)
k ≤ 1, which is exactly the power constraint

we had for Gaussian SISO channels (see eq. (1)). We will

use the same notations as in Sec. 2 (e.g. α
(1)
1 = α1). From

now on, we can investigate the same issues as in Sec. 2:

the existence of a NE, its uniqueness, its determination and

its social efficiency. Because of the lack of space we will

not provide all the details of the proofs but only a sketch of

them.

Existence of a Nash equilibrium. We apply [9] in our

matrix case. Without loss of generality, let us consider user

1. The utility of user 1 comprises two terms corresponding

to the two coordination signal realizations: u1(α1, α2) =

p1R
(1)
1 + p1R

(2)
1 . One can check that:

∂2R
(1)
1

∂α2
1

(α1, α2) = −ETr[BBH ] < 0

∂2R
(2)
1

∂α2
1

(α1, α2) = −ETr[CCH ] < 0
(16)



where

B = ρ1H
H
1 (I + ρ1α1H1H

H
1 )−1H1

C = p

1−p
ρ1H

H
1 (I + ρ1

1−pα1
1−p

H1H
H
1 + ρ2α2H2H

H
2 )−1H1

(17)

with ρk , Pk

σ2 . Thus for each k, the utility uk is strictly

concave w.r.t. to αk. Also it is continuous in (α1, α2) over

the convex and compact sets Ak =
[

1, 1
pk

]

. Therefore the

existence of a NE is guaranteed.

Uniqueness of the Nash equilibrium. We always apply

[9] in our matrix case and prove that the diagonally strict

concavity condition is always met. The key of the proof is

the following Lemma which will not be proved here.

Lemma 3.1 Let A′, A′′, B′ and B′′ be Hermitian and pos-

itive definite matrices such that either A′ 6= A′′ or B′ 6=
B′′. Then we have Tr(M + N) > 0 where

M = (A′′ − A′)
[

(I + A′)−1 − (I + A′′)−1
]

N = (B′′ − B′)
[

(I + B′ + A′)−1 − (I + B′′ + A′′)−1
]

.
(18)

The uniqueness of the NE can then be proved by following

the same steps as in the SISO case. The diagonally strict

concavity condition can exactly be written as equation (4)

but in the matrix case T1 can be checked to be equal to

Tr(M + N) with

M = (A′′ − A′)
[

(I + A′)−1 − (I + A′′)−1
]

N = (B′′ − B′)
[

(I + B′ + A′)−1 − (I + B′′ + A′′)−1
]

A′ = ρ1α
′

1H1H
H
1

A′′ = ρ1α
′′

1H1H
H
1

B′ = ρ2
1−(1−p)α′

2
p

H2H
H
2

B′′ = ρ2
1−(1−p)α′′

2
p

H2H
H
2 .

(19)

By using Lemma 3.1 twice, one can prove that T1 and T2

are positive, which ensures the unconditional uniqueness of

the NE in the considered game.

Determination of the Nash equilibrium. In order to ob-

tain the NE, we exploit a large system approach, derived in

[12] for the fading single user channels. This will lead us

to simple approximations of the utility functions which are

easier to optimize. From now on we assume the asymp-

totic regime in terms of the number of antennas: nt −→ ∞,

nr −→ ∞, and lim
nt→∞,nr→∞

nt

nr

= c < ∞. Under these

assumptions, for s = 1 (the expressions for s = 2 can be

written in a similar way) and each k ∈ {1, 2}, the rates R
1)
k

can be can be shown to be equivalent to [12]:

R̃
(1)
1 = nt log2(1 + ρ1α1γ1)+

+nr log2 (cγ1) − ntγ1 (cγ1 − 1) log2 e

R̃
(1)
2 = nt log2(1 + ρ1α1γ1)+

+nt log2

[

1 + 2ρ2
1−(1−p)α2

p
γ2

]

+

+nr log2 (2cγ2) − 4ntγ2 (cγ2 − 1) log2 e

−R̃
(1)
1

(20)

where the parameters γj , j ∈ {1, 2} are solutions of the

following 2−degree equations:

γ1 =
nr

nt

1

1 + ρ α1P1
1+ρα1P1γ1

γ2 =
nr

nt

1

+ρ
(

α1P1
1+2ρα1P1γ2

+ (1−(1−p)α2)P2
p+2ρ(1−(1−p)α2)P2γ2

)

(21)

The approximates of R̃
(1)
2 and R̃

(2)
1 can be obtained in a

similar way and the approximated utilities follows since:

ũ1(α1, α2) = pR̃
(1)
1 (α1, α2) + (1 − p)R̃

(2)
1 (α1, α2)

ũ2(α1, α2) = pR̃
(1)
2 (α1, α2) + (1 − p)R̃

(2)
2 (α1, α2).

(22)

Now in order to solve the constrained optimization problem,

we introduce the Lagrange multipliers (λ1, λ2, λ3, λ4) ∈
[0, +∞[4 and define the two functions:

L1(α1, α2, λ1) = −ũ1(α1, α2) + λ1(α1 −
1
p
) − λ2α1

L2(α1, α2, λ2) = −ũ2(α1, α2) + λ3(α2 −
1

1−p
) − λ4α2.

(23)

The Kuhn-Tucker (KT) conditions can be written in the same

way as in (8). Therefore the optimum selfish power allo-

cations can be obtained by using a fixed-point method and

an iterative algorithm following the same idea as in [8] for

non-coordinated MIMO MACs with single-user decoding.

At this point we have to make an important technical com-

ment. Our proof for the existence and uniqueness of the NE

holds for the exact game. For the approximated game, we

need the approximated utilities to have the same properties

as their exact counterparts. It turns out that the large sys-

tem approximation of the ergodic mutual information can

be shown to have the desired properties [13].

Now, let us focus on the network sum-rate. As the op-

timum precoding matrices are proportional to the identity

matrix, it can be checked that the sum-capacity of the con-

sidered decentralized MAC is reached for p = 0 and p = 1:

Rsum(p) = E log |I + ρ1H1H
H
1 + ρ2H2H

H
2 |. Unlike the

SISO case, it is not reached for any value of p. In partic-

ular, the fair choice p = 1
2 does not lead to a decentral-

ized network achieving the same sum-capacity of its cen-

tralized counterpart. We will quantify the corresponding

sub-optimality through simulation results.

3.4. Spatial power allocation game

In this section we assume that the user are free to share their

transmit power between their antennas but for each realiza-

tion of the coordination signal the transmit power is con-

strained as follows: ∀k ∈ {1, 2}, ∀s ∈ {1, 2}, Tr(Q
(s)
k ) ≤

Pk. This means that we assume that the users cannot dis-

tribute their power over time: they cannot decide the amount

of power they dedicate to a given realization of the coordi-

nation signal. The main feature of the game under the afore-

mentioned power constraint is that there exists a unique Nash



equilibrium in each sub-game defined by the realization of

the coordination signal. The proof is much simpler than

that of the time power allocation problem since the use of

Rosen’s Theorem [9] is not required. Without loss of gen-

erality assume that S = 1. Whatever the strategy of user

2, user 1 sees no multiple access interference. Therefore he

can choose Q
(1)
1 independently of user 2. As R

(1)
1 (Q

(1)
1 ,Q

(1)
2 )

is a strictly concave function to be maximized over a convex

set, there is a unique optimum strategy for user 1. As we as-

sume a game with complete information, user 2 knows the

utility of user 1 and thus the precoding matrix he chooses.

The same concavity argument can be used for R
(1)
2 (Q

(1)
1 ,Q

(1)
2 )

and therefore guarantees that user 2 will use a given precod-

ing matrix.

Determination of the Nash equilibrium. In order to find

the optimum covariance matrices we proceed in the same

way as described in [8]. First we will focus on the opti-

mum eigenvectors and then we will determine the optimum

eigenvectors by approximating the utility functions under

the large system assumption. In order to determine the op-

timum eigenvectors the proof in [8] can be applied to our

case to assert that there is no loss of optimality by restricting

the search for the optimum covariance matrix by imposing

the structure Qk = UkPkUk, where Tk = UkDkUk is

the spectral decomposition of the transmit correlation ma-

trix defined in (11) and the diagonal matrix

Pk = Diag(Pk(1), ..., Pk(nt)) represents the powers of

user k allocated to the different eigenvectors.

As a consequence, we can exploit once again the re-

sults of [12], assuming the asymptotic regime in terms of

the number of antennas, defined in the previous subsection.

The new approximated utilities are:

R̃
(1)
1 =

nt
∑

i=1

log2

[

1 + ρP
(1)
1 (i)d1(i)γ1

]

+

+
∑

j = 1nr log2

[

1 + ρd
(R)(j)δ1

]

− ntργ1δ1 log2 e

R̃
(1)
2 =

2
∑

l=1

nt
∑

i=1

log2

[

1 + 2ρP
(1)
l (i)dl(i)γ2

]

+

+

nr
∑

j=1

log2

[

1 + 2ρd
(R)(j)δ2

]

− 4ntργ2δ2 log2 e−

−R̃
(1)
1

(24)

where dl, l ∈ {1, 2} are the vectors that contain the

eigenvalues of the transmit correlation matrices Tl, d(R)

contains the eigenvalues of the receive correlation matrix

R. Also the coefficients γ1, δ1, γ2,δ2 are the solutions of

the following systems























γ1 =
1

nt

nr
∑

j=1

d(R)(j)

1 + ρd(R)(j)δ1

δ1 =
1

nt

nt
∑

i=1

P
(1)
1 (i)d1(i)

1 + ρP
(1)
1 (i)d1(i)1γ1

(25)























γ2 =
1

2nt

nr
∑

j=1

d(R)(j)

1 + 2ρd(R)(j)δ2

δ2 =
1

2nt

2
∑

l=1

nt
∑

i=1

P
(1)
l (i)dl(i)

1 + 2ρP
(1)
l (i)dl(i)1γ2

(26)

Then, optimizing the approximated rates R̃
(1)
1 w. r. t. P

(1)
1 (i),

and then R̃
(1)
2 w.r.t. P

(1)
1 (i) leads to the following water-

filling equations:

P
(1),∗
1 (i) =

[

1

nr ln 2λ1
−

1

ρd1(i)γ1

]+

(27)

P
(1),∗
2 (i) =

[

1

nr ln 2λ2
−

1

ρd2(i)γ2

]+

(28)

where λk ≥ 0 and for user k is the Lagrangian multipliers

tuned in order to meet the power constraint given in (15):
∑nt

i=1 P
(1)
k (i) = ntPk. We use the same iterative power al-

location algorithm as the one described in [8]. As we have

mentioned in the previous subsection, the results of [13]

show that the approximated utilities are strictly concave, but

also that if the iterative power algorithm converges, it con-

verges towards the global maximum. We obtain in this case

also that, under the large systems assumption, the approxi-

mated utilities have the same properties as the exact utilities.

One important point to notice here is that the obtained

optimum precoding matrices do not depend on p. This con-

siderably simplifies the base station’s choice for the sum-

rate optimal value for p. Indeed, the sum-rate Rsum(p) is

merely a linear function of p: Rsum(p) = ap + b where

a = E log |I + ρH1Q
(1),∗
1 HH

1 + ρH2Q
(1),∗
2 HH

2 |

−E log |I + ρH1Q
(2),∗
1 HH

1 + ρH2Q
(2),∗
2 HH

2 |

b = E log |I + ρH1Q
(2),∗
1 HH

1 + ρH2Q
(2),∗
2 HH

2 |.
(29)

Depending on the sign of a , if the base station wants to

maximize the sum-rate it will choose p = 0 or p = 1. If it

wants a fair game it will choose p = 1
2 and accept a certain

loss of global optimality. Note that even for p ∈ {0, 1} the

sum-capacity is not reached in general: this is because the

matrix Q
(1),∗
1 (resp. Q

(2),∗
2 ) does not coincide with the first

(resp. second) component of the pair of precoding matrices

that maximizes the (strictly concave) network sum-rate.

4. SIMULATION RESULTS

For the temporal power allocation problem we have seen

that the decentralized MAC depends on the rule of the game

i.e. the value of p. This is exactly what Fig. 1 depicts

for the following scenario: P1 = 10, P2 = 1, ρ = 5 dB,

nt = nr = 4. First, we see that the MAC sum-rate is

a convex function of p and the maximum of Rsum(p) is



reached for p = 0 and p = 1. One important observation to

be made is that the minimum and maximum only differ by

about 1%. Many other simulations have confirmed this ob-

servation. This shows that the sub-optimality is not marked.

This means that any game rule can lead to a almost sum-rate

optimal game, this holds in particular for a fair game. Fig. 2

shows the set of rate pair achieved by varying p from 0 to 1.

The corresponding looks like a straight line and is very close

to the sum-rate line given by the equation R1 +R2 = Csum

where Csum is the centralized MAC sum-capacity. It is in-

teresting to note that the base station can, through a single

parameter (i.e. p), force the system to operate at different

many points which corresponds to relatively large ranges of

transmission rates. It is also very interesting to note, that

the fast MIMO MAC behaves like a Gaussian SISO MAC

in the sense that the capacity region border comprises a seg-

ment over which the sum-rate is reached (up to a small er-

ror). This is not true for fast fading SISO MACs. Here,

we observe the consequence of the double averaging effect

present in the considered utilities (ergodic rates plus spatial

averaging). This shows that, although the ergodic capacity

region of the centralized MAC with CSIR and CDIT is not

known in general, it can be determined up to a small relative

error under the large system approximation and therefore

make possible the analysis of the decentralized MAC.

Now we consider the purely spatial power allocation

problem. We already know that the sum-rate is a linear

function of p and therefore is maximum in p = 0 or p = 1.

It turns out that this slope has a small value. This obser-

vation has been confirmed by many simulation scenarios.

This slope is even 0 for a symmetric MAC i.e. P1 = P2 and

T1 = T2. This can be checked analytically by inspecting

the sum-rate expression. Fig. 3 shows the set of rate pairs

achieved by varying p for the scenario: P1 = 10, P2 = 1,

ρ = 3 dB, nt = nr = 5, t1 = t2 = 0.2 where tk is the cor-

relation parameter that characterize the correlation matrix

chosen to be given by Tk(i, j) = t
|i−j|
k . Even in this sce-

nario, chosen to be a bad case in terms of sub-optimality, the

sum-rate is not far from the sum-capacity of the centralized

MAC.

5. SUMMARY

In this contribution, we have provided a game-theoretic frame-

work for decentralized multiple access channels using a sim-

ple coordination mechanism. We have provided several in-

teresting theoretical and simulation results. First, we proved

the existence and uniqueness of a Nash equilibrium both for

decentralized Gaussian SISO and fast fading MIMO MACs.

We also provided the corresponding optimum selfish power

allocation policies. We have seen that the base station can,

through a single parameter (i.e. p ∈ [0, 1], which represents

the distribution of the coordination signal), force the system
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Figure 1: Temporal power allocation case. MAC sum-rate versus

p for P1 = 10, P2 = 1,nr = nt = 4, ρ = 5dB. The sum-rate of

fading MIMO MACs is almost reached whatever the coordination

signal distribution.

to operate at different many points which corresponds to rel-

atively large ranges of of transmission rates. For Gaussian

MACs with single antenna terminals, the corresponding set

of rates corresponds to the full cooperation segment of the

centralized MAC. Said otherwise a decentralized Gaussian

SISO MAC with coordination achieves the same rate pairs

as a MAC with full cooperation or virtual MIMO system.

As a second step we wanted to know to what extent this

key result extends to fading MAC with multi-antenna ter-

minals. It turns out this is almost true in the MIMO setting.

For the cases of interest where the power was optimally al-

located either over space or time, the performance gap is

relatively small. Interestingly in large MIMO MACs, the

capacity region comprises a full cooperation segment just

like SISO MACs. The coordination signal precisely allows

one to move along the corresponding (almost) straight line.

This shows the relevance of large systems in distributed net-

works since they allow to determine the capacity region of

certain systems whereas it is unknown in the finite setting

and also induce an averaging effect, which makes the behav-

ior or users predictable. Indeed, in large MIMO MACs the

knowledge of the CDIT does not involve any performance

w.r.t. the case with perfect CSIT.
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