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Abstract—In this paper, using tools from asymptotic random
matrix theory, a new cooperative scheme for frequency band
sensing is introduced for both AWGN and fading channels. Unlike
previous works in the field, the new scheme does not require the
knowledge of the noise statistics or its variance and is related to
the behavior of the largest and smallest eigenvalue of random
matrices. Remarkably, simulations show that the asymptotic
claims hold even for a small number of observations (which makes
it convenient for time-varying topologies), outperforming classical
energy detection techniques.

I. INTRODUCTION

It has already become a common understanding that current
mobile communication systems do not make full use of the
available spectrum, either due to sparse user access or to the
system’s inherent deficiencies, as shown by a report from the
Federal Communications Commission (FCC) Spectrum Policy
Task Force [1]. It is envisioned that future systems will be
able to opportunistically exploit those spectrum ’left-overs’,
by means of knowledge of the environment and cognition
capability, in order to adapt their radio parameters accordingly.
Such a technology has been proposed by Joseph Mitola in
2000 and is called cognitive radio [2]. Due to the fact that
recent advances on micro-electronics and computer systems
are pointing to a -not so far- era when such radios will be
feasible, it is of utmost importance to develop good performing
sensing techniques.

In its simplest form, spectrum sensing means looking for
a signal in the presence of noise for a given frequency band
(it could also encompass being able to classify the signal).
This problem has been extensively studied before, but it has
regained attention now as part of the cognitive radio research
efforts. There are several classical techniques for this purpose,
such as the energy detector (ED) [3]–[5], the matched filter
[6] and the cyclostationary feature detection [7]–[9]. These
techniques have their strengths and weaknesses and are well
suited for very specific applications.

Nevertheless, the problem of spectrum sensing as seen from
a cognitive radio perspective, has very stringent requirements
and limitations, such as,

• no prior knowledge of the signal structure (statistics, noise
variance value, etc...);

• the detection of signals in the shortest time possible;
• ability to detect reliably even over heavily faded environ-

ments;

The works by Cabric et al. [7], Akyildiz et al. [10] and
Haykin [11] provide a summary of these classical techniques
from the cognitive network point of view. It is clear from these
works, that none can fully cope with all the requirements of
the cognitive radio networks.

In simple AWGN (Additive White Gaussian Noise) chan-
nels, most classical approaches perform very well. However, in
the case of fast fading, these techniques are not able to provide
satisfactory solutions, in particular to the hidden node problem
[12]. To this end, several works [13]–[16] have looked into
the case in which cognitive radios cooperate for sensing the
spectrum. These works aim at reducing the probability of false
alarm by adding extra redundancy to the sensing process. They
also aim at reducing the number of samples collected, and thus,
the estimation times by the use parallel measuring devices.
However, even though one could exploit the spatial dimension
efficiently, these works are based on the same fundamental
techniques, which require a priori knowledge of the signal.

In this work, we introduce an alternative method for blind
(in the sense that no a priori knowledge is needed) spectrum
sensing. This method relies on the use of multiple receivers to
infer on the structure of the received signals using random
matrix theory (RMT). We show that we can estimate the
spectrum occupancy reliably with a small amount of received
samples.

The remainder of this work is divided as follows. In
section II, we formulate the problem of blind spectrum sensing.
In section III, we introduce the proposed approach based on
random matrix theory. In section IV, we present some practical
results which confirm that the asymptotic assumptions hold
even for a small amount of samples. Then, in section V, we
show the performance results of the proposed method. Finally,
in section VI, we draw the main conclusions and point out
further studies.

II. PROBLEM FORMULATION

The basic problem concerning spectrum sensing is the
detection of a signal within a noisy measure. This turns out
to be a difficult task, especially if the received signal power is
very low due to pathloss or fading, which in the blind spectrum
sensing case is unknown. The problem can be posed as a
hypothesis test such that [3]:
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y(k) =
{

n(k): H0

h(k)s(k) + n(k): H1
, (1)

where y(k) is the received vector of samples at instant k, n(k)
is a noise (not necessarily gaussian) of variance σ2, h(k) is the
fading component, s(k) is the signal which we want to detect,
such that E

[| s(k) |2] �= 0, and H0 and H1 are the noise-
only and signal hypothesis, respectively. We suppose that the
channel h stays constant during N blocks (k = 1..N ).

Classical techniques for spectrum sensing based on energy
detection compare the signal energy with a known threshold
VT [3]–[5] derived from the statistics of the noise and channel.
The following is considered to be the decision rule

decision =
{

H0, if E
[| y(k) |2] < VT

H1, if E
[| y(k) |2] ≥ VT

,

where E[| y(k) |2] is the energy of the signal and VT is
usually taken as the noise variance. One drawback of this
approach is that neither the noise/channel distribution nor VT

are known a priori. In real life scenarios VT depends on
the radio characteristics and is hard to be estimated properly.
Moreover, in the case of fading and path loss, the energy of
the received signal can be of the order of the noise, making it
difficult to be detected all the more as the number of samples
N may be very limited. Indeed, E

[| y(k) |2] is estimated by

1
N

N∑
k=1

| y(k) |2,

which is not a good estimator for the small sample size case.
In the following, we provide a cooperative approach for

cognitive networks to detect the signal from a primary system
without the need to know the noise variance using results from
random matrix theory.

III. RANDOM MATRIX THEORY FOR SPECTRUM SENSING

Consider the scenario depicted in Figure 1, in which
primary users (in white) communicate to their dedi-
cated (primary) base station. Secondary base stations
{BS1, BS2, BS3, ..., BSK} are cooperatively sensing the
channel in order to identify a white space and exploit the
medium.

Fig. 1. Considered scenario for spectrum sensing.

Before going any further, let us assume the following:

• The K base stations in the secondary system share
information between them. This can be performed by
transmission over a wired high speed backbone.

• The base stations are analyzing the same portion of the
spectrum.

Let us consider the following K×N matrix consisting of the
samples received by all the K secondary base stations (yi(k)
is the sample received by base station i at instant k):

Y =




y1(1) y1(2) · · · y1(N)
y2(1) y2(2) · · · y2(N)
y3(1) y3(2) · · · y3(N)

...
...

...
yK(1) yK(2) · · · yK(N)


 .

The goal of the random matrix theory approach is to
perform a test of independence of the signals received by the
various base stations. Indeed, in the presence of signal (H1

case), all the received samples are correlated, whereas when
no signal is present (H0 case), the samples are decorrelated
whatever the fading situation. Hence, in this case, for a fixe K
and N → ∞, the sample covariance matrix 1

N YYH converge
σ2I. However, in practice, N can be of the same order of
magnitude than K and therefore one can not infer directly
1
N YYH independence of the samples. This can be formalized
using tools from random matrix theory [17]. In the case where
the entries of Y are independent (irrespectively of the specific
probability distribution, which corresponds to the case where
no signal is transmitted - H0) results from asymptotic random
matrix theory [17] state that:

Theorem. Consider an K × N matrix W whose entries
are independent zero-mean complex (or real) random variables
with variance σ2

N and fourth moments of order O( 1
N2 ). As

K, N → ∞ with K
N → α, the empirical distribution of WWH

converges almost surely to a nonrandom limiting distribution
with density

f(x) = (1 − 1
α

)+δ(x) +

√
(x − a)+(b − x)+

2παx
where

a = σ2(1 −√
α)2 and b = σ2(1 +

√
α)2.

Interestingly, when there is no signal, the support of the
eigenvalues of the sample covariance matrix (in Figure 2,
denoted by M̌P) is finite, whatever the distribution of the
noise. The Marchenko-Pastur law thus serves as a theoretical
prediction under the assumption that matrix is ”all noise”.
Deviations from this theoretical limit in the eigenvalue distri-
bution should indicate non-noisy components i.e they should
suggest information about the matrix.

In the case in which a signal is present (H1), Y can be
rewritten as

Y =




h1 σ 0
...

. . .
hK 0 σ







s(1) · · · s(N)
z1(1) · · · z1(N)

...
...

zK(1) · · · zK(N)


 ,



M̌P

a b

Fig. 2. The Marchenko-Pastur support (H0 hypothesis).

where s(i) and zk(i) = σnk(i) are respectively the indepen-
dent signal and noise with unit variance at instant i and base
station k. Let us denote by T the matrix:

T =




h1 σ 0
...

. . .
hK 0 σ


 .

TTH has clearly one eigenvalue λ1 =
∑ |hi|2 + σ2 and

all the rest equal to σ2. The behavior of the eigenvalues of
1
N YYH is related to the study of the eigenvalue of large
sample covariance matrices of spiked population models [18].
Let us define the signal to noise ratio (SNR) ρ in this work as

ρ =
∑ |hi|2

σ2
.

Recent works of Baik et al. [18], [19] have shown that,
when

K

N
< 1 and ρ >

√
K

N
(2)

(which are assumptions that are clearly met when the number
of samples N are sufficiently high), the maximum eigenvalue
of 1

N YYH converges almost surely to

b′ = (
∑

|hi|2 + σ2)(1 +
α

ρ
),

which is superior to b = σ2(1 +
√

α)2 seen for the H0 case.
Therefore, whenever the distribution of the eigenvalues of

the matrix 1
N YYH departs from the Marchenko-Pastur law

(Figure 3), the detector knows that the signal is present. Hence,
one can use this interesting feature to sense the spectrum.

Let λi be the eigenvalues of 1
N YYH and G = [a, b], the

cooperative sensing algorithm works as follows:

A. Noise distribution unknown, variance known

In this case, the following criteria is used:

decision =
{

H0 : , if λi ∈ G
H1 : otherwise

(3)

Note that refinements of this algorithm (where the probabil-
ity of false alarm is taken into account in the non-asymptotic
case) can be found in [20]. The results are based on the

M̌P

a b b′

Fig. 3. The Marchenko-Pastur support plus a signal component.

computation of the asymptotic largest eigenvalue distribution
in the H0 and H1 case.

B. Both noise distribution and variance unknown

Note that the ratio of the maximum and the minimum
eigenvalues in the H0 hypothesis case does not depend on
the noise variance. Hence, in order to circumvent the need for
the knowledge of the noise, the following criteria is used:

decision =

{
H0 : , if λmax

λmin
≤ (1+

√
α)2

(1−√
α)2

H1 : otherwise
(4)

It should be noted that in this case, one needs to still take a
sufficiently high number of samples N such that the conditions
in Eq. (2) are met. In other words, the number of samples
scales quadratically with the inverse of the signal to noise ratio.
Note moreover that the test H1 provides also a good estimator
of the SNR ρ. Indeed, the ratio of largest eigenvalue (b′) and
smallest (a) of 1

N YYH is related solely to ρ and α i.e

b′

a
=

(ρ + 1)(1 + α
ρ )

(1 −√
α)2

To our knowledge, this estimator of the SNR has never been
put forward in the literature before.

IV. PERFORMANCE ANALYSIS

The previous theoretical results have shown that one is able
to distinguish a signal from noise by the use of only a limiting
ratio of the highest to the smallest eigenvalue of the sample
covariance matrix. For finite dimensions, the operating region
for such an algorithm is still an issue and is related to the
asymptotic distribution of a scaling factor of the ratio [20]. This
section provides some characterization of this region through
the analysis of the ratio between λmax and λmin of 1

N YYH

for various matrix sizes.
Figures 4 and 5 present the λmax/λmin for various sizes

of Y in the pure noise case, with α = 1/2 and α = 1/10,
respectively. From the figures we see that both cases provide
a good approximation of the asymptotic ratio even with small
matrix sizes. If one takes, for example, N = 100 (K = 50
for α = 1/2 and K = 10 for α = 1/10), it can be seen
that the simulated cases are respectively equal to 81% percent
and 83% of the asymptotic limit for α = 1/2 and α = 1/10.



As expected, for a larger Y matrix size, the empirical ratio
approaches the asymptotic one.
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Fig. 4. Behavior of λmax/λmin for increasing N (case H0, α = 1/2).
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Fig. 5. Behavior of λmax/λmin for increasing N (case H0, α = 1/10).

Figures 6 and 7 show the behavior of the λmax/λmin for the
signal plus noise case for α = 1/2 and α = 1/10, respectively.
In both cases, σ2 = 1/ρ (with a ρ of -5 dB) with

∑ |hi|2 =
1 (which holds under the criteria in Eq. (2)). In this case,
λmax

λmin
= b′

a , for the pure signal case. Interestingly, for N = 100
(K = 50 for α = 1/2 and K = 10 for α = 1/10), it can
be seen that the simulated case is approximately 70% percent
and 83% of the asymptotic limit for α = 1/2 and α = 1/10,
respectively. As expected, the larger the Y matrix sizes, the
closer one gets to the asymptotic ratio. A good approximation
was obtained for values of N as low as 100 samples.

V. RESULTS

Simulations were carried out to establish the performance of
the random matrix theory detector scheme in comparison to the
cooperative energy detector scheme based on voting [15], [16].
The framework for the energy detector is exposed in section II,
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Fig. 6. Behavior of λmax/λmin for increasing N (case H1, α = 1/2).
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Fig. 7. Behavior of λmax/λmin for increasing N (case H1, α = 1/10).

with h(k) modeled as a rayleigh multipath fading of variance
1/K . The variance is normalized to take into account the fact
that the energy does not increase without bound as the number
of base stations increases due to the path loss. A total of 10
secondary base stations were simulated. For the voting scheme,
the decision rule is the following: one considers the overall
spectrum occupancy decision to be the one chosen by most of
the secondary base stations. The threshold VT is taken as σ2

(for the known noise variance case). For the random matrix
theory based scheme, a fixed total of (K = 10) base stations
were adopted. Note that the algorithms can be optimized for
the voting and random matrix theory based rules by adopting
decision margins [20].

Figure 8 depicts the performance of the energy detector
scheme along with the random matrix theory one for N =
{10, 20, ..., 60} samples and a known noise variance of σ2

at SNR equal to -5dB. It is important to stress that since
K is fixed, α is not constant as in the previous section. As
clearly shown, the random matrix theory scheme outperforms
the cooperative energy detector case for all number of samples
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Fig. 8. Comparison between the ED and random matrix theory approach
(ρ = −5 dB).
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Fig. 9. Random matrix theory approach for an unknown noise variance.

due to its inherent robustness.
Figure 9 plots the performance of the random matrix theory

scheme for an unknown noise variance (the voting scheme
can not be compared as it relies on the knowledge of the
noise variance). One can see that, indeed, even without the
knowledge of a noise variance, one is still able to achieve a
very good performance for sample sizes greater than 30.

VI. CONCLUSIONS

In this paper, we have provided a new spectrum sensing
technique based on random matrix theory and shown its
performance in comparison to the cooperative energy detec-
tor scheme for both a known and unknown noise variance.
Remarkably, the new technique is quite robust and does
not require the knowledge of the signal or noise statistics.
Moreover, the asymptotic claims turn out to be valid even
for a very low number of dimensions. The method can be
enhanced (see [20]) by adjusting the threshold decision, taking
into account the number of samples though the derivation of

the probability of false alarm of the limiting ratio of the largest
to the smallest eigenvalue.
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