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Abstract—This paper describes a power allocation strategy
for fixed constellation over parallel Gaussian channels in the
multiuser context. The criterion under consideration is mutual in-
formation, given arbitrary input distributions over users and over
subcarriers. The algorithm achieves with very low complexity
the multi-user aggregate sum mutual information upper bound.
The algorithm is based on an iterative Mercury/waterfilling
procedure. Moreover, we extend the framework to a decentralized
scenario using a linear approximation of the MMSE function. We
show, in particular that each user can, under certain assumptions,
independently determine the power allocation without knowing
the channel information of other users. Simulation results vali-
date the theoretical claims.

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) is
now considered in many standards for transmitting data at high
spectral efficiency. This technique is instrumental in the phys-
ical layer of several well-known high speed data transmission
systems such as wireless local area network (WLAN) or Dig-
ital Subscriber Line (xDSL). In order to increase the spectral
efficiency, power allocation can be used as an additional degree
of freedom [1]-[3]. For a given limited power budget, when the
capacity is considered as the optimization criterion, the optimal
solution is given by the well-known waterfilling algorithm [4].
However, since capacity is achieved in the context of Gaussian
channels with Gaussian inputs, reaching capacity implies the
use of Gaussian constellations while these can never be used
in practice. Therefore, waterfilling is generally followed by a
bit-loading step which consists in deriving for each subcarrier
the constellation to use, subject to a target bit error rate.
In its actual form, waterfilling is inherently suboptimal. For
this reason, mutual information should be a more relevant
criterion than capacity. The problem of optimizing power
allocation in order to maximize mutual information has been
solved in [5] using the Mercury/waterfilling principle. In this
paper, we extend this power allocation policy to the multiuser
context. Our algorithm presents some similarity with multi-
user waterfilling, as implemented in [6].

The paper is organized in the following form: the problem
formulation is introduced in section II. In section III, we
derive the optimal solution and prove the convergence and
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Fig. 1. N parallel Gaussian multiple access channels.

the optimality of the proposed algorithm. In section IV, we
provide a decentralized implementation of the power allocation
policy. Finally, numerical results are provided in section V
followed by conclusions in section VI.

II. PROBLEM FOMULATION
A. OFDM model

We consider N parallel Gaussian multiple access channels
(MAC) with K users in the system as depicted in Fig. 1. These
parallel channels can be treated as different subchannels in a
multi-carrier system, or the eigenmodes of a MIMO system
in the uplink transmission. At the transmitter side, the signal
T,; transmitted on the it subcarrier by user k£ to the base
station (BS) is the normalized (i.e. unit-power) symbol s ;
balanced by some power coefficient py ;: Tr; = /PkiSk.i»
where the symbols {sj;} are usually drawn from some
discrete constellations (i.e. PSK, QAM). At the receiver side,
y; represents the received signal on the i*" channel, which is
the sum of the contributions received from all users

K K
Yi = Z hi iz +n; = Z Nk in/Pl,iSk,i + M

k=1 k=1
where hy ; represents the complex gain of the i'" subchannel
between user k£ and the BS, and the noise n; is a zero-
mean unit-variance complex Gaussian random variable which
is independent of the noise on the other channels. Since MAC
correspond to the uplink case, individual power constraints
have to be taken into account, which can be expressed as!

N
> pri < P k. ()
i=1

!To alleviate notations and w.1.0.g., all users are here assumed to be subject
to the same power constraint P.



B. Power allocation policy

We tackle the problem of finding the optimal power alloca-
tion maximizing the aggregate sum rate that can be reached
under the assumption of arbitrary input constellations, while
satisfying (1). Since this aggregate sum rate [7], [8] satisfies

N K N
Z Z Ry < Z I(s1,iy82,i- -+ SK,i3Yi)
i=1 k=1 i=1
where Ry, ; is defined as user k’s mutual information on the
it" subcarrier for a given input constellation. Therefore, it is
equivalent to consider the problem of maximizing its upper
bound I,,x, Which is the sum of the joint mutual information
at the right side. Furthermore, by using the mutual information

chain rule, it can be decomposed as follows

N
Imax :ZI(Sl,i7-"7SK,i;yi)
i=1
N
i=1
N
+ Z I(‘Swl(K)m yi|sm,(1),ia EERE) STI'»L(K—l),i) (2
i=1
where vector II; = [m;(1),...,m;(K)] is a permutation of the
integer vector [1,2, ..., K] and represents the decoding order

index on the i*" subcarrier (users 7;(1) and 7;(K) being the
first and last decoded users respectively). At the receiver side,
the chain rule decomposition can be interpreted as applying
successive interference cancellation (SIC) on every subcarrier,
decoding from user m;(1) to m;(K). Indeed, assuming known
the contribution of other users, the last decoded user is
then able to remove multiuser interference and get a mutual
information equal to the last sum of expression (2).

Let us add some notations to ease the introduction of power
coefficients. The signal-to-interference-plus-noise ratio (SINR)
of the first decoded user 7;(1) can be expressed as follows

|h7ri(1),i|2p7ri(1),i
K
> im2 ()il P ),i + 07
Let px = [Pr1,..-,Pkn), Yk = 1...K. We assume the
number of users is sufficiently large. Then the sum of the joint

mutual information expressed in (2) can be approximated as
a function of all users’ power allocation as below?

g(p1,-..

N N
Z Ly, 1)i (SINRy, (1y,5) + ZAz‘(Pﬂri(l),iB)
i=1 i=1

SINI{W1 (1) K ==

Imax

apK)

where function I‘m(l),i(.) denotes the mutual information of
user 7;(1) on the i*" subcarrier and A;(.) denotes the joint
mutual information of all remaining users (except user 7;(1))

on the it subcarrier, which is a function of these users’ power
p—m,(l),i = [p‘n',-(Z),iv e apwi(K),i]

2With this assumption, the interference seen by user 7;(1) can be treated
as Gaussian noise, therefore, his mutual information is a function of SINR.

It is obvious that function A;(.) does not depend on p, (1),
because the contribution of user 7;(1) on the i" subcarrier is
removed from y; at the first decoding step.

Following expression (3), different decoding orders can be
used across channels. However, w.l.0.g. we assume a particular
case where the first decoded user on all channels is the same
user, the index of which is denoted u. This is expressed as

m(l)=u, i=1...N

then (3) can be simplified to (4) as below, which will be useful
for the proof in the next section.

N N

Imax = Z Fu,i (SINRu,z) + Z Az (pfu,i) (4)

i=1 i=1

Based on all presented above, the problem is therefore to
find the optimal power allocation that maximizes the aggregate
sum mutual information while satisfying constraint (1)

g(plv"'apK) (5)

max

N Pk, i<PYVEk

[P --,PK] = arg
b
It can be verified that the objective function is concave (this
proof is not provided due to lack of space) and the related
constraint is convex, which can be further simplified to

N
> pri=P vk (6)
=1

The proof of this result will be provided in the next section.

III. MULTI-USER ITERATIVE MERCURY/WATERFILLING
ALGORITHM

In this section, we assume perfect channel state information
(CSI) at the receiver and transmitters. We propose an iterative
power allocation algorithm which maximizes (3) following the
steps of [5]. It is described as follows,

Algorithm 1 Iterative Mercury/waterfilling
initialize py; =0, fork=1,...,Kandi=1,...,N
repeat
for K =1to K do
fori=1to N do
K
w; = Zj:l,j;ék |hjil*pj,i + 0F
SINR}, ; = |hi.il*pr.i
end for '
N N
{pr,it;=y = argmaxp, > i i (SINRy ;)
subject to sz'\;pk,i <P
end for
until aggregate sum mutual information converges

Each step of the multi-user iterative Mercury/waterfilling
algorithm consists in finding the basic single-user Mer-
cury/waterfilling solution for each user while regarding all
other users signals as additional noise. In the following para-
graphs, we prove the algorithm convergence and optimality.



A. Algorithm Convergence

In this section, we will show that the multi-user itera-
tive Mercury/waterfilling algorithm converges to the maxi-
mal aggregate sum mutual information. First, as shown in
equation (4), when one does single-user Mercury/waterfilling
for user u, the left part vazl I, (SINR, ;) is shown to
be a non-decreasing function with respect to py, the right
part Zivzl A;(p—u,) is a constant with respect to py, and
this holds true for any user v = 1,...,K. The multi-
user objective is therefore non-decreasing with each single-
user Mercury/waterfilling step in the algorithm. Moreover,
since each user has finite power constraint, there exists an
upper-bound for the aggregate sum mutual information. This
confirms the convergence.

B. Convergence to the optimality

We show in this section that by using multi-user iterative
Mercury/waterfilling, the set {pi,...,pk} converges to the
optimal values which maximize the aggregate sum mutual
information. To prove the optimality part, we show that the
necessary and sufficient condition of our optimization problem
(5), is that each user applies single-user Mercury/waterfilling
while taking multi-user interference as noise.

Theorem 1: In the context of K users and N parallel mul-
tiple access Gaussian channels, {pj,...,p}} is the optimal
solution to the multi-user maximization problem

maximize G(p1,...,PK)
N

subject to me < PVk
i=1
— pri <O VE Vi

if and only if each user’s power allocation is the single-user
Mercury/waterfilling result while treating other users’ signals
as noise’.

1) Proof of necessary condition: Let us assume that at the
global optimal point, only one user’s (e.g. user k) power allo-
cation would not satisty the single-user Mercury/waterfilling
condition: {p’{7 s Pr_1> Pk Py - s p’I}} In this case,
according to (4), user k’s power should satisfy

Pk = arg_ max G(pi,...;Pk-1,Pk Pkt1:- - PK)
2L pe <P
N
= arg max ZFM(SINRM)

SN Pk <P =1

N
—arg max Zpk 4 |h i |*Dr,i
= g _
21N:1pk,lSP Zj:2 ‘hﬂ'z(J),'L 2p7Ti(j),i T O_ZQ

=1

The optimal result is obviously given by single-user Mer-
cury/waterfilling algorithm, where user k should consider other
users’ interference as noise, and therefore contradicts the initial
assumption. This proof is true for any user £k =1,..., K. At

3with arbitrary input constellations, this last assumption is only valid when
K is large enough, which will ensure the overall interference from other K —1
users follows Gaussian distribution.

the global optimal point, each user should satisfy single-user
Mercury/waterfilling condition, which is a necessary condition.
In addition, at global optimal, single-user Mercury/waterfilling
indicates that each user must allocate all its available power,
providing therefore an explanation for power constraint (6).

2) Proof of sufficient condition: We will take advantage of
the fact that Karush-Kuhn-Tucker (KKT) conditions [9] of the
optimization problem is necessary and sufficient for optimality.

1. The Lagrangian function of the multi-user optimization
problem is

K,N K K,N
L({pk,i}k:Li:l , {)‘k}k:l ) {Vkai}k:]_’i:]_)

K N

= G(p1,--PK) = DM (Zpkz - P) +
. k=1 =1

+ ZZVk,ipk,i

k=11i=1

and the multi-user KKT conditions are

0g
3Pk,z‘

— i+ Vgi = 0, Vk Vi
Ap > 0, Vk @)
Vi > 0, Vk Vi

2. The Lagrangian function of the single-user (e.g. user k)
optimization problem is

N N
L({pk,i}izl ) )‘;fa {Vllc,i}izl)
N

N
=) Tk (SINRg;) — N, <Zpk,i - P> +
i=1

i=1

N
!
+ E Vi,iPkyi
i—1

and the single-user (user k) KKT conditions are

IN
L\ v =0, Vi
Opk,i b Vi 7
N> 0, ®)
V,’w» >0, Vi

It can be verified that the Slater’s condition [9] is satisfied
for the above two problems. Therefore, the strong duality
holds, i.e. the KKT conditions provide necessary and sufficient
conditions for optimality. From (3) we have

oG Oy,
3Pk,z' apk,i
and this equation holds for any user £ = 1,..., K. Since

multi-user KKT conditions (7) are equivalent to gathering each
single-user KKT condition (8), global optimal is reached if
and only if each user satisfies single-user Mercury/waterfilling
treating other users’ signals as noise. This confirms the opti-
mality of iterative Mercury/waterfilling algorithm.



IV. DECENTRALIZED ALGORITHM

As we have shown above, multi-user iterative Mer-
cury/waterfilling is the optimal power allocation scheme to
maximize the sum of joint mutual information. However, when
the number of user increases, implementation of algorithm 1
induces a large amount of overhead signaling to estimate all
the channels. For this reason, we seek a decentralized power
allocation scheme. In this section, we assume K and NN are
large enough, and K/N — 3,0 < 3 < 1.

Each step of algorithm 1 can be considered as a single-
user Mercury/waterfilling such that the current user (e.g.
user k) tries to maximize his sum mutual information while
treating other users’ signals as background noise. So Mer-
cury/waterfilling is performed based on user k’s channel gain*

{7/?,177/6,27 s 77]6,1\/'}’
|ogei]?
K B |20 4 o2
Zj:l,j;ﬁk |hjil?pji + 0;

which is a measure of the strength of his channels. Note that
SINRy ; = Dr,iVk,: Vi. The corresponding optimal result p; =
[Pk.1>- - Pk ] should satisfy [5]

9)

Ve,i =

(10)
(1)

Vei < Nk
Ve,i > Mk

pZﬂ: =0
Vi MMSE(py, ;Vk,i) = Nk

with 7y such that the power constraint (6) is satisfied.

In the system model, when K increases, the value of
SINRy, ; is low due to the large interference enhancement from
other K —1 users. Therefore, with the assumption of a large K,
we can approximate the MMSE function by using the linear
function in [5], [10]

MMSE(p) = 1+ 1(0)p+¢e(p?) p—0

~ 1+ 1(0)p p—0  (12)

For simplicity let us assume 7, = 7 Vk, and we use BPSK
(1(0) = —2) as input constellation. From (11), we obtain

Vi — 2Vk.iDkyi =1 Vi > 1) (13)

Note that n has a special meaning, it plays the role of a cut-off
power threshold for channel gain vy, ;. Let use define e, = 7,

Pri > 0 Vhyi > Veut

Pki = 0 Vk,i < Yeut
From (10) and (13), we obtain

(’Yk,i - fYcut)jL

Pk, = (14
27/3,1‘
which should satisfy the power constraint (6):
N N +
Yk,i — Yeu
Spu=y e _p oy
i=1 i=1 2%,1‘

“More precisely, it is based on user k’s channel gain-to-noise-plus-
interference ratio.

The interference seen by user k on the i*" subcarrier is

K K
Qg = Z |hyil*pji = Z |hj.il* i (16)
=10k j=1

which converges to the same constant ay; = o Vk Vi for
a high number of users. Therefore, from (9) we obtain the
channel gain approximation (assuming o2 < «)

\heal>  lheal?

i = 17
Thi = oy s o (17)
Put (17) into (14) and define: ., = % we obtain
+
o (|hk,7ﬁ|2 - |hcut|2) 18
Pk,i = WG (18)
and put (18) into (15), we have
P
o= (19)
N (Jhiil?=lheue DT
dimi IR

also put (18) into (16),
= (
o= Z |hy.iPa
k=1

i (|hk,7, Z_ |hcut|2)+ _

=2
k=1 [ i

Jr
|hk,i|2 - |hcut|2)
2| P | *

and let M be the number of active (powered-on) subcarriers
among K subcarriers, we derive

M (|heril* = \hcut|2)+ _

=2
M -2
|hcut‘2 = (20)

Yht
k=1 Thy 2

Based on (13)-(20), the following algorithm is obtained.

Algorithm 2 Multi-user Mercury/waterfilling using MMSE
approximation

1. For arbitrary 4, sort {hy,..
to get {h) ;... W }.

2. Initialize m = 2.

3. For the same i, Do m = m + 1, find m until it satisfies:
i il? > s = i gl

3. Use (20) to calculate |heut|?, let M = m.

4. Use (19) to calculate multi-user interference a.

5. Use (18) to calculate {py;}Y ;.

.,hk;} in decreasing order

Furthermore, in order to handle a fully decentralized al-
gorithm, each user k should be able to assign his power P
without the knowledge of other users’ channel coefficients.
However, as we can see, steps 1 and 4 require each user
k to have this knowledge on the i*" subcarrier. These two
steps thus cannot be done by user k£ himself without any
feedback. One solution to avoid this feedback and to make



the algorithm completely decentralized is the following: in the
large number of user K and subcarriers N case (assuming all
users’ channel coefficients follow the same distribution related
to the environment), equation (20) can be rewritten as

M—2 M/B -2
|hcut|2 = M ~ M 2n
B
Zk/:l |h;€11|2 21:/1 ‘hltl,z‘z

where |h},|? is the i'" element of user k’s coefficients
{Ihr,1[?, ..., |hi,n|?} sorted in the decreasing order.

V. NUMERICAL RESULTS

In this section, numerical results are presented to validate
our theoretical claims. We consider parallel multiple access
Gaussian channels with N (= 500) subcarriers and K (= GN)
users while QPSK is taken as unique input constellation. For
all simulations, the system load 3 varies from 0.1 to 1. The
SNR is defined as P/ch, where P (= 1) is the single user
power constraint and o2 is the Gaussian noise of variance 0.1.
The SNR is set to 10dB.

In Fig. 2, we show the convergence behavior of itera-
tive Mercury/waterfilling algorithm. The spectral efficiency
(bit/subcarrier) versus the system load g are plotted for five it-
erations. As expected, one can easily observe the convergence.

In Fig. 3, we show the comparison of spectral efficien-
cies obtained with iterative Mercury/waterfilling (algorithm
1), uniform power allocation (each user allocates the same
power P/N on all subcarriers) and the proposed decentralized
scheme (algorithm 2). With regard to channel knowledge,
the related upper bound and lower bound are provided by
iterative Mercury/waterfilling and uniform power allocation
respectively, since the former needs perfect channel knowledge
and the latter does not need any channel knowledge at all.
Thus, we define the increase of maximum sum mutual infor-
mation rate as power allocation gain, this increase being due
to applying a smarter power allocation strategy. As expected,
in Fig. 3, both strategies (algorithms 1 and 2) offer up to
80% power allocation gain, while the decentralized scheme
(algorithm 2) reaches more than 90% of the upper bound.

VI. CONCLUSION

In this paper, Mercury/waterfilling policy has been extended
to a multi-user context. We found the optimal power allocation
that achieves the maximum sum mutual information of paral-
lel multiple access Gaussian channels under the assumption
of arbitrary fixed input constellations and individual power
constraints. We showed that the multi-user objective is a
non-decreasing function with respect to the power allocation
of single-user Mercury/waterfilling performed while treating
other users’ signals as noise. We proved the convergence
and optimality of iterative Mercury/waterfilling algorithm. A
decentralized power allocation algorithm was proposed based
on the MMSE approximation. We found that the spectral
efficiency of this algorithm had a satisfying result with respect
to that of the uniform power allocation and close to the
optimal, which was shown in the simulation results.
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Fig. 2. Convergence of iterative Mercury/waterfilling.
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