
HAL Id: hal-00334730
https://centralesupelec.hal.science/hal-00334730v1

Submitted on 15 Dec 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Framework for the Semantic Composition of Web
Services Handling User Constraints

Youssef Gamha, Nacéra Bennacer Seghouani, Guy Vidal-Naquet, Béchir Ayeb,
Lofti Benromdhane

To cite this version:
Youssef Gamha, Nacéra Bennacer Seghouani, Guy Vidal-Naquet, Béchir Ayeb, Lofti Benromdhane. A
Framework for the Semantic Composition of Web Services Handling User Constraints. IEEE Interna-
tional Conference on Web Services, Sep 2008, Beijing, China. pp. 228-237, �10.1109/ICWS.2008.78�.
�hal-00334730�

https://centralesupelec.hal.science/hal-00334730v1
https://hal.archives-ouvertes.fr

A Framework for the Semantic Composition of Web Services
Handling User Constraints

Y. Gamha2, N. Bennacer1, G. Vidal-Naquet1, B. Ayeb2, L. B. Romdhane2

1SUPELEC, Joliot-Curie road, Gif-sur-Yvette, 91192, France
2PRINCE Research Unit, Faculty of Sciences Monastir, Tunisia

Youssef_gamha@yahoo.fr, nacera.bennacer@supelec.fr, Guy.Vidal-Naquet@supelec.fr,
ayeb_b@yahoo.com, lotfi.ben.romdhane@usherbrooke.ca

Abstract

In this work, we present a framework for the semantic
composition of web services based on Statecharts and
uniform community service descriptions. Our model is a
two step process. In the first step, we derive the execution
model of the user’s query. The execution model is
specified in Statecharts formalism; whereas the user’s
query is described in OWL-S. Therefore, a mapping from
Statecharts formalism to OWL-S is developed. In the
second step, we instantiate the developed execution model
through invocation of available e-services instances.
Hence, and a result, we obtain an execution plan (said
also strategy) satisfying user constraints. The key features
of the proposed framework could be summarized as
follows. First, unlike other existing languages, using
OWL-S enables the semantic description of e-services.
These semantics are taken into consideration in our
composition strategy. Second, the user constraints (or
preferences) are taken into account during composition
and are expressed as a finite set of logical formulas with
the Knowledge Interchange Format (KIF) language.

1. Introduction

Nowadays, e-services are becoming more and more of
common use in everyday life. Unfortunately, they are still
unable to satisfy all users’ requests which, often, are too
complex to be satisfied by existing single (or atomic) e-
services. Hence, we have no escape but compose a set of
existing services to satisfy such requests. Intuitively, Web
service composition could be defined as the process that
specifies how to select, combine and execute a set of
available web services to obtain a composite service
which fulfils the user’s request. A central problem,
addressed by automated web services composition, is the
inherent structural and behavioral heterogeneity of current
web services caused by their strict autonomy.

Several efforts, at both academic and industrial levels,
were devoted to the automatic composition of web

services in order to realize such a new generation of
services. These efforts aim to build current web service
technology around SOAP, WSDL, and UDDI which
provide standardized foundations respectively for service
discovery, description, and messaging protocols.
Nevertheless, these languages are insufficient to achieve a
real automation of web services composition.

An emerging industry initiative to standardize some
aspects of web services composition is BPEL4WS [19].
BPEL4WS is based on a human driven process, and
focuses on specifying manually the coordination between
multiple web services described in WSDL language and
where the bindings between them are known a priori.
Moreover, BPEL4WS provides different constructs for
processes and data flow, but it does not support the notion
of world state. On one hand, the automated composition
of web services requires representing their abilities in a
way that is unambiguous and interpretable by a machine.
On the other hand, it involves a reasoning system which
selects, combines and executes compatible web services
by resolving constraints and by matching inputs, outputs,
preconditions and effects to achieve the overall goal of
the composition. The semantic descriptions of web
services make them machine interpretable and offers
agents the possibility to automatically compose different
services for a new composite service. The ontology Web
Language for services OWL-S [20] provides richer
semantic specifications with different views of the
capabilities of web services. In particular, it provides a
functional view of the service as a process which
describes both the information transformation which
results in the production of outputs from a set of inputs,
and the state transformation that results in the generation
of the effects starting from a state that satisfy the
preconditions.

This paper presents a framework for the semantic and
automatic composition of e-services. This framework is
based on a distributed architecture; on semantic uniform
based-ontology, and community service descriptions. The
concept of community has several appealing properties.
First, it provides a mean to define services not only with

the same language but also with an ontology which is
specific to the community. Second, the community is an
integrator of services. This means that it offers a unified,
homogeneous and a consistent access interface to existing
heterogeneous e-services exhibiting similar
functionalities. In addition, the use of the OWL-S
language [20] allows a rich expressivity for the semantic
description of services and user constraints. In the
proposed framework, the composition is realized in two
steps. In the first step, we derive the execution model of
the user query. The execution model is specified in
Statecharts formalism; whereas the user’s query is
described in OWL-S. Therefore, a mapping from
Statecharts formalism to OWL-S is defined. The use of
OWL-S and Statecharts is motivated by the fact that
OWL-S allows a semantic description of web services and
user constraints [20]; whereas, Statecharts are well-
established tools offering all required control-flow
constructs. In the second step, we instantiate developed
execution model through invocation of the available e-
services instances. Hence, and a result, we obtain an
execution plan (also said strategy) satisfying user
constraints. The key features of the proposed framework
could be summarized as follows. First, unlike other
existing languages, the use of OWL-S enables the
semantic description of e-services. These semantics are
taken into consideration in our composition strategy.
Second, the user constraints (or preferences) are taken
into account during composition and are expressed as a
finite set of logical formulas with the Knowledge
Interchange Format (KIF) language. Consequently, during
the composition, not all e-services instances are
considered, but only those satisfying the specified
constraints. This has several interesting properties as
reducing the search space and delivering a “quality”-
service since “user preferences” are not neglected. In
addition, when several service instances meet the needs of
the user’s request, then it is up to the user to select an
instance for the composition strategy1. Finally,
composition and coordination of the execution of a
composite service is distributed across several
components called composer agents (or community
composer agents).

The rest of this paper is organized as follows. In
section 2, we outline related research. Section 3 presents
our composition framework. In section 4, we present user
constraints descriptions; and in section 5, we show how
an OWL-S description could be mapped into statechart
formalism. Then, we present the statechart model for
composition execution in order to achieve the user
request. The final section offers concluding remarks and
future directions.

1 Hence, in case of non-determinism, we let the user select the
appropriate service instance. For example, when several airline
companies offer the same flight with the same price, etc.; then the user
should select the most suitable one for him.

2. Related work

The literature on Semantic Web services is abundant
and the need for a more rigorous formal foundation is
widely discussed. Many contributions come from the
artificial intelligence community and are often related to
classical planning. This similarity to planning problems
leads us to use the related techniques for web services
composition. A planning problem is generally described
by a set of possible states that should be reached, a set of
actions that can be used to reach the goal and a set of
transitions to reach a state from a given one with a
particular action. Hence, a transition is used to describe
the preconditions and effects of a particular action. The
main difference between web services planning and
classical planning problem is the dynamic behavior of
web services [14]. The output returned by a service can
either be based on input values, or can depend on the
internal state of the service and generally it can be
obtained in a non-deterministic way. In particular logic-
based approaches reduce the problem of checking the
existence of a composition into the satisfiability problem
in a knowledge base expressed in a Description Logic
[16], [18] and [11] or equivalently into the satisfiability of
a formula in a theory expressed in a variant of
Propositional Dynamic Logic (PDL) [4]. Some
approaches have been proposed which use transitions
systems as a composition framework with formalisms like
Statecharts or Petri nets [13], [2], [15] and [3]. The
different approaches are differentiated by the fact that
they consider or not non-functional requirements for
service composition based on QoS attributes [1] and [12].
These elements allow compensation for composition
deficiency and provide criteria for performance measures.
These approaches are also differentiated by the fact that
they deal or not with the nondeterministic behavior of
web services and that the behaviors can not be predicted a
priori.

The consideration of user preferences in Web services
composition is ignored in many researches. McIlraith and
his group [17] propose GologPref system handling user
preferences into Web services composition. Their system
is based an agent programming language Golog to
represent generic procedures and a first-order preference
language to represent rich qualitative temporal user
preferences. Using these two representations, the system
generate Web service composition that realize the generic
procedure satisfying the user’s hard constraints and
optimizing for user’s preferences. Authors makes
difference between user hard constrains and user
preferences, in our work we don’t make these difference.
We considered that a user can specify his constrains as
mono-service constraint related to one service or multi-
service constraint related to many services. Other
difference concern the language used to express

constraints, they uses a linear temporal logic (LTL) but
we use Knowledge Interchange Format (KIF)2 language
with a well defined syntax and semantic. We can express
all user constraints types with this language. The
verification of constraints is done by checking constraints
satisfaction techniques.

3. Composition model

The general architecture of our system “Semantic Web
Services Environment Composition” (SWSEC) is
depicted in Figure 1. As can be seen from this Figure, our
system supports the use of existing e-services able to
communicate using standard web service languages.

An existing e-service can join existing “service
communities” by exporting its service based-community
ontology description in OWL-S. Thereafter, the
Community Manager Agent (CMA) verifies that the
imported service is consistent with the ontology of that
community. In particular, the CMA verifies that the set of
operations of the service, their inputs and their outputs are
concepts of the ontology of the community; and the
preconditions are consistent with those already imported.
In addition, the CMA manages how the e-services join or
leave the community. It stores the set of OWL-S services
descriptions, their localizations in a knowledge base we
call the Community Knowledge Base (CKB). The
interface of a community of services is composed of the
set of common operations between services composing
that community. The Manager Agent (MA) stores the
services interfaces of the different communities in the
CKB. Thus the concept of community service brings
together a set of alternative and potential e-services; and
provides the semantic based-ontology of services
descriptions. For example, last minute e-bookers or
specific airlines provide the common operations of
finding, selecting and booking flights by joining the
“plane travel” community.

The composition process of e-services is achieved
under the collaboration of the “Composer Agent” (CoA)
and the “Community Composer Agent” (CoCA). A CoCA
selects a set of available e-services belonging to its
community to be instantiated to execute the required
operation according to a set of predefined conditions.
Hence, its role is to aggregate all responses provided by
the different invoked e-services for a process in order to
return it to the CoA. The latter is responsible for selecting,
coordinating, and assembling the CoCAs in order to
execute the required operations. In our system SWSCF,
we assume that the request composed with available
processes from CKB is consistent and it is not
underspecified. We also assume that the CoA could
interact with the user in case when several instances offer
equivalently the same service (or part of it).

2 logic.stanford.edu/kif/kif.html

Figure 1. SWSEC general architecture
A user formulates its query using existing available

community service descriptions expressed in OWL-S and
stored in the CKBs. For the sake of illustration, let us
consider the user query described in Figure 2.

A researcher wants to arrange for participation to a
conference: he would like to register to a conference,
arrange for the travel and book for a hotel room.
Therefore, he connects to a publicly accessible repository
of services, where he specifies his request and in his turn
he receives a service that realizes it (if one exists). Such
returned service should interact with the researcher, and
allow him to make some choices, which may depend on
the results of previously executed interactions.

In general, the researcher request cannot be realized by
any single available service, but by a new composite
service, obtained by coordinating a set of available
services. However the researcher is unaware of how many
services are involved in the fulfilment of his request.
Consider the situation when the researcher request can be
realized by composing the following set of component
services: Conference Registration service that
allows for registering to the conference, Details
Flight service that gives information in flight travel,
Book Flight service allows the researcher to book his
flight, and Book Hotel service for booking a hotel
room in conference hotel. Note that a correct execution of
the researcher request modelled by the composite
Conference Travel service consists of all the four
operations, performed in sequence order. First, the
Conference Registration service is executed to
make the researcher conference registration, after the
Details Flight service is executed to get details
about plane travel. Based in the previous step result the
Book Flight service is executed to book flight. At the
end step, the Book Hotel service is performed to book
conference hotel room.

Figure 2 show user query described in OWL-S.

Figure 2. A User request for travel
This representation corresponds to Process Model in

OWL-S description. It illustrates user request service
control structure (Sequence) and used services. For the
sake of readability, service parameters used to express
user constraints are presented here. The next section
outlines how user constraints are handled by our model
during the composition process.

4. Handling user constraints

Although handling user constraints (or preferences) is
essential in delivering customized and high-quality
services; it has been given little attention in the literature.

User constraints either concern parameters of one
single service or many services. In the first case, we call
them “mono-service” constraints; whereas, they are called
“multi-service” constraints in the second case. In our
model, use constraints (mono or multi-service) are
modeled as a set of first-order logical formulas related to
the inputs, the outputs, and the local parameters of e-
services. Hence, we distinguish the following classes of
user constraints:

- User constraint related to inputs parameters: it
concern restrictions put it in services inputs values. This
kind of constraints can be checked before service
execution; e.g., flight departure time should be after 08:00
am (DepartureTime >= 08:00 am).

- User constraint related to local parameters: They
are checked after the e-service execution; e.g, the plane seat
number is between 10 and 20 (seat_number >= 10 and
seat_number =< 20).

- User constraints related to outputs parameters:
They are checked after the e-service execution; e.g., flight
cost less then 500$ (flightCost < 500$).

Obviously, one can get the combination between the
three parameters ((inputs, locals), (locals, outputs),
(inputs, outputs) and (inputs, locals, outputs)). At this
stage, we should remark that a user constraint could be
related at once to both input and output parameters. For
example, the user wants a direct flight costing no more
than 650$ (FlightType = direct flight and FlightCost <=
650$). This kind of constraints is checked in two steps:
inputs are checked before e-service execution; and
outputs are checked after service e-service execution.

4.1. User constraints descriptions

4.1.1. OWL-S user constraints description. To describe
user constraints in the composite service parameters, we
add In OWL-S a new property called
“hasparameterCondition” used to expression conditions
on parameters values. Hence, we define three new
properties: hasInputCondition, hasOutputCondition and
hasLocalCondition related respectively to input, output
and local parameters.

We define these proprieties in OWL-S description as
shown in Figure 3.
<owl:ObjectProperty
rdf:ID="hasInputCondition">
<rdfs:subPropertyOf

rdf:resource="#hasInput"/>
<rdfs:range rdf:resource

="&expr;#Condition"/>
</owl:ObjectProperty>

<owl:ObjectProperty
rdf:ID="hasOutputCondition">
<rdfs:subPropertyOf

rdf:resource="#hasOutput"/>
<rdfs:range rdf:resource

="&expr;#Condition"/>
</owl:ObjectProperty>

<owl:ObjectProperty
rdf:ID="hasLocalCondition">
<rdfs:subPropertyOf

rdf:resource="#hasLocal"/>
<rdfs:range rdf:resource

="&expr;#Condition"/>
</owl:ObjectProperty>

Figure 3. Description of parameters conditions
properties.

4.1.2. User constraints expressions language. User
constraints, finite set of logical formulas, can be
expressed with XML literals languages, such as SWRL
[8] or RDF [10]; or with string literals languages as KIF
[9] and PDDL [6]. For our concern, we have chosen KIF
for the following reasons. First, KIF has declarative
semantics; i.e., it is possible to understand the meaning of
expressions in the language without appeal to an
interpreter for manipulating those expressions. Second,

KIF is logically comprehensive. Third, KIF permits the
introduction of new knowledge representation constructs
without changing the language.

To illustrate user constraints description in OWL-S
user request service description using KIF language,
let consider the example presented in section 2. The
researcher has many restrictions related to his trip. These
restrictions are expressed as user constraints related to
component services. He would like to get an Economic

class, the depart time after 08:00 am; and the go back
departure time after 07:00 pm. These constraints are
related to Details Flight service. Also, he prefers a plane
seat between seat number ten and number sixteen; and
flight travel and hotel cost less then 800$. These two
constraints are about the Book Flight and Book Hotel
services. The full description of user request service with
user constrains is shown in Figure 4.

Figure 4 - User request service description handling user requests

4.2. User constraints checking

In our SWSCF framework, user constraints consist of a
finite set of constraints whose cardinality may be reduced
at each step of the composition process. We denote by
UC(t) the set of user constraints at composition step t;
and by Card(UC(t)), the number of constraints in UC(t). It
is obvious that Card(UC(t+1)) ≤ Card(UC(t)). This is
natural since through composition; user constraints are
either completely or partially satisfied, or not satisfied,
leading to a reduction in the set of constraints.
User constraints checking were done related to their

category type (mon-service or mult-service). For mono-
service, we check constraint relatively to service
parameters values, but for multi-service constraint, we
decompose constraint to mono-service constraints and
checking is done partially service by service. In our
composition model, user constraints are checked in
the execution model by the composer agent (CoA) as we
will see in the next section.

5. Execution model

The CoA and the CoCAs collaborate in order to
compute an execution strategy of the composition. While
the CoA has a global view of the execution strategy using
“community services”, each CoCA has a local (or partial)
view of the execution strategy since each is concerned
only with the offered e-services of its corresponding
community. In this section, we will focus ourselves on
formalizing the execution model used by the CoA to
invoke the CoCAs of the distinct communities. For this,
we will use Statecharts [7] as an operational description
of the execution model of the composition; mainly due to
the fact that it offers the required control-flow constructs
and provides an executable model.

OWL-S gives a descriptive representation of services,
this description don’t present an execution model for
services composition. For this it’s necessary to map this
description to another formalism that present an
operational description. This formalism can be
Statecharts, Petri nets, process algebra, transaction logic
or fine state machine.

The choice of Statecharts as the language for capturing
the flow of operation invocations in our model is
motivated by several reasons. First, Statecharts possess a
formal semantics, which is essential for analysing
composite service specifications. Next, Statecharts are a

well-known and well-supported behaviour modelling
notation. They are part of the Unified Modeling Language
(UML). Furthermore, Statecharts offer most of the
control-flow constructs found in existing process
description languages: sequence, branching, concurrent
threads, and cycles. However, like any other process
modelling languages Statecharts have their relative
advantages and drawbacks.

In our SWSCF framework all services present an
OWL-S description either user query service. These
descriptions are mapped to Statecharts representations.
We first will describe the mapping algorithm from OWL-
S to Statecharts formalism. We then present the execution
model expressed with Statecharts.

5.1. Mapping from OWL-S description to
statecharts model

In OWL-S, processes could be either atomic or
composite. They are described by using control constructs
as Sequence, Any-Order, Choice, If-Then-Else, Iterate,
While and Repeat. We should notice at this stage that this
mapping is unique; i.e., for an OWL-S description there is
one and only one state chart model.

Each atomic process is represented by a simple state
with an initial pseudo state and an end pseudo state. This
representation is justified by atomic process semantic (it
takes one message in inputs, run on one step and returns
an output message). Each composite process is
represented by a composite state. If the control construct
is sequence, any-order, choice, if-then-else and iterate
(without concurrence execution) then the composite
service is represented by Or-states statechart. If the
control construct is split then the composite service is
modeled by And-states statechart. Composite service with
split-join control construct is represented by a statechart
with And-states followed by join transition. The transition
from a service to its successor is modeled by transition in
state chart. The data flow between its compounds is
modeled by transition actions. The process model
parameters are recuperated by actions in statechart. We
get service inputs values before service invocation with
GetInputs() function related to an Entry action. Service
outputs parameters are returned after service run with
ReturnOutputs() function related to Exit action.

For preconditions parameters, we distinguish two
cases: (i) precondition with Local parameters, (ii)
precondition without Local parameters. In the first case
need a checking step with two possible evaluations. The
condition is true, the service state is entered, and
otherwise, the system goes to a failed state. For these
reasons, we represented precondition with local parameter

by a Conditional pseudo state related to the incoming
transition to the state representing the service. In the
second case, a Guard related to the incoming transition to
the state is introduced. A Perform service is modeled by a
Do action (PerformState()). The parameters propriety
“InputBinding” correspond to an assign action between
two services inputs parameters, are modeled by an Action
(Assign (From; to)) related to the transition between the
two states. For a service with an If-Then-Else control
construct, its IfCondition propriety is represented by a
Guard related to the incoming transition to the state
representing the service. If a service presents a result
expressed by InCondition propriety, the InCondition is
modeled by a Guard of an internal transition with the
event “on Result”. The parameters propriety
“OutputBinding” correspond to an assign action between
to outputs parameters, we represented this propriety in
state chart by an Action (Assign (From; to)) of an internal
transition with the event “on Result”. If a service presents
an Effect parameter, we modeled this effect by an Action
(Predicate (term1; term2;…)) of an internal transition. For
more details in OWL-S description mapping in statechart,
we refer readers to [5].

 5.2. Execution model expressed with statecharts

Remind that the main goal is to develop the execution
model corresponding to the user request and which will
be used by the CoA. This model must take into account:
(1) the control flow between operations; (2) the type of
service (either providing-information or altering-world);
(3) the preconditions of the distinct operations; and (4) the
user constraints (either local or global). Each of these
requirements is detailed subsequently.

5.2.1. Matching inputs/outputs. Services could be
composed if there is a matching between the inputs of the
next invoked operation and the current output (which
could be either a user predefined input or an operation
output). This matching is ontology-based in the sense that
it can be reduced to the parameters subsume relations
defined in the ontology. The matching task is performed
upstream of the state chart composition model before
operations’ invocations. This task is modeled by a state
named MatchingParameters. The action performed
in this state consists in establishing, for each operation in
the order of invocation and for each of its inputs, the
parameter to be matched with. In case where this action
fails, the CoA cannot go through the next state and the
execution model outputs a failure - see Figure 5.

Figure 5. Execution model expressed with statecharts

5.2.2. Non deterministic behaviors. Web services are
described by non deterministic behaviors of service
processes in the sense that the process outputs (as well
as inputs from external processes) cannot be predicted
a priori execution. For example, several flights
complying as yet with some user constraints are found,
someone’s could not be confirmed by the concerned e-
service3, the CoA must execute the next operation for
each value until it finds a value that satisfies all of user
constraints. The user request is then executed
(RequestSucceded state in figure 5). To achieve
this, the CoA must be able to perform a backtracking
and to invoke the same operation for the next flight.

3A flight reservation service cannot know in advance whether a
reservation will be confirmed or cancelled by e-service.

If all alternatives of inputs are executed and no e-
service instance corresponds to the user constraints or
processes preconditions, we can say that no instance
corresponds to the user request (Requestfailed
state in figure 5). In the statechart composition model,
this task is modeled by a state named
AssigningValues and located between two
successive operations. In this state, the CoA can
interact with user to reduce the number of values to be
executed. In this example, the user choices only flights
that he/she prefers.
5.2.3. Providing and altering-word e-services
processes. Besides, once a composer community agent
CoCAi is identified and is invoked by the CoA for a
given value of each input, it selects using CKBi the e-
services offering the required process. Thus, at run-

time several instances of different e-services
simultaneously can be active. This concerns only
strictly information-providing e-services. For example,
to find a travel CoCAi may invoke different travel e-
services at the same time. In other cases, the CoCAi
invokes only one e-service instance designed to
execute the next process. This is always the case with a
world-altering web service processes. For example to
book a flight, the CoCAi invokes the e-service which
proposed this flight in the previous invocation.

The CoA invocations are the actions performed in
ExecutionProcess state using
callAllInstances (ProcessName) and
callUniqueInstance (ProcessName). In this
state the CoA waits the invocation return until a given
timeout is reached in figure 5.
5.2.4. User constraints. In addition to processes
preconditions, the CoA must take into account the user
constraints which described by KIF language and
related to inputs and/or outputs of service. Some ones
are local and concern one process at the same time,
multi-service constraint concern several processes and
could be validated only partially for each process
before or after its execution in state
ChekingPrecondition& Constraints.

Figure 5 depicts the statechart model for
composition execution. In this statechart we represent
atomic processes sequence. For each control construct,
in particular for choice, split-join and split strategies of
composition are defined.

5.3. Illustration

To illustrate the execution strategy of an execution
model that corresponds to user query, let us consider
the example in Figure 4. A researcher wants to arrange
for participation to a conference: he would like to
register to a conference, arrange for the travel and book
for a hotel room.

Consider the situation when the researcher request
can be realized by composing the following set of
component services: Conference Registration
service that allows for registering to the conference,
Details Flight service that gives information in
flight travel, Book Flight service allows the
researcher to book his flight, and Book Hotel
service for booking a hotel room in conference hotel.
Note that a correct execution of the researcher request
modelled by the composite Conference Travel
service consists of all the four operations, performed in
sequence order. First, the Conference
Registration service is executed to make the
researcher conference registration, after the Details

Flight service is executed to get details about plane
travel. Based in the previous step result the Book
Flight service is executed to book flight. At the end
step the Book Hotel service is performed to book
conference hotel room.

The researcher has defined many user constraints
restrictions related to his trip. The set UC of constraints
contains four mono-service constraints (UC1, UC2,
UC3, UC4) and one multi-service constraint (UC5).

Let UC = {UC1, UC2, UC3, UC4, UC5}, with:
- UC1: (>= ?DepartureTime 08:00am). The

user like that flight Departure time should be after
eight o’clock.

- UC2: (>= ?GoBackTime 07:00pm). The user
hopes that the flight go back time after seven
o’clock.

- UC3: (= ?Class Economic). The user
choices an economic class for his flight.

- UC4: (And ((>= ?SeatNumber 10) (=<
?SeatNumber 16))). The user likes a flight
seat between 10 and 16.

- UC5: (=< ?(+ ?FlightCost
?HotelCost)

800$). The user likes to get a trip cost less eight
hundred dollars.

The user constraints set cardinality is Card(UC) =
5. This cardinality will be reduced at each step of
service composition by checking constraints. At
composition end user constraints set should have
cardinality equal to zero.

Our composition model takes three inputs: (i) the
set of OWL-S descriptions of services selected for
composition, (ii) the user request service description
and (iii) the set of user constraints. The model first,
starts by mapping step to produce the set of Statecharts
describing user request service and, services used in
composition. The CoA applied the corresponding
strategy, in this case is the sequence composition
strategy.

Let us apply our strategy to the example; the first
step is the matching parameters between the different
services. In our case, the Conference
Registration service is directly executed because
there are no parameters to match, no preconditions to
check, and no user constraints related to this service.
After, the CoA runs the next service Details
Flight service. To execute this service, the execution
process get the inputs values from the user, each value
is assigned to the corresponding input. The inputs are
Departure Airport, Arrival Airport, OutDate, InDate,
Class and Round Trip. The values assigned to these
inputs are Paris, New York, 03/12/2007, 09/12/2007,

Economic and Ok. Moreover, the user gives departure
time value (09:00 am) and Go back time value
(07:30pm). After this assignment the execution process
passes to Checking Preconditions and user Constraints
step. In our case the Details Flight service
doesn’t present preconditions, but there are many user
constraints. These constraints are checked after
execution for constraints related to outputs or locals
parameters, before service execution for inputs
constraints. In this case, constraints UC1, UC2 and
UC3 are all checked relatively to inputs values (
DepartureTime = 09:00am, GoBackTime = 07:30pm
and Class = Economic).

After the previous step, the process goes to the
Execution Process step. First, it checks the Process
Type of Details Flight service, it’s an
information service, and for this the execution process
calls all the process instances. The result is a list of
flights, checking user constraints, we suppose that is
one flight result that corresponds to user constraints,
and this result is affected to the output FlightFounds.
The same steps of strategy are executed for Book
Flight service. The execution process runs the first
step Matching Parameters; FlightFounds output is
matched to the input SelectedFlights of. The result of
Matching Parameters step is an “Exact” matching.
Then the execution process passes to Assigning Values
step, the value of FlightsFound output is affected to
SelectedFlights input. Next, Precondition and user
constraints checking step is performed. There is not
precondition but there is a user constraints related to
Book Flight service. UC4 is a constraint related to
locals’ parameters, it will be checked after service
execution. UC5 constraint is a composed constraint for
this is partially checked. The plane ticket cost should
be less then 800$. The execution process passes to
Execution Process step. Before executing the process,
it checks his type. Book Flight service is an
altering world service, for this the executor call one
process instance. In our case, we suppose that the flight
booked cost 500$ and seat number kept is 12D. The
same steps of strategy are executed for Book Hotel
service that presents user constraints. The executor will
check this constraint. The constraint is partially
checked in the execution of Book Flight service, it will
be completely checked with the execution of Book
Hotel service. The hotel selected for booking should
offers a hotel room cost less or equal to 300$. The
executor call one process instance at Process Execution
step because Book Hotel service is an altering
world service.

In this composition run sample, we have supposed
that all user constraints have been checked and the
outputs values are the desired user values. In the worst

case, if one of user constraint is not checked or
composition run is failed at a particular step, the CoA
interact with user and inform him or it backtrack to
take other services parameters values.

In our model, execution space wasn’t fully explored
at each step. Execution space was reduced by user
constraints checking, or by applying heuristics based
on services scoring function or by inviting user to
choice the value to use.

6. Conclusion

In this paper, we have presented a framework for the
semantic composition of web services based on a
distributed architecture and able to handle user
constraints (or preferences). In this framework, the
composition problem is handled at three levels. The
first level enables building a description of a composite
service which is consistent from semantic point of
view. The user personalizes its request by combining
the required semantic services descriptions and its
constraints using OWL-S expressivity. The second
level concerns the composition of semantic
descriptions; and the third level concerns the
composition of the underlying e-services instances.
The responsibility of composing and coordinating the
execution of a composite service specified by a user
request is distributed across the composer agent (CoA)
and the composer community agents (CoCA). The
CoA carries out a global view of user request execution
using community services descriptions. The CoCA of
each community carries out a partial view of user
request execution using e-services of its community.
This paper focused on modeling the solution that
enables describing the execution of composition by the
CoA using Statecharts as execution formalism. Our
model deals with different aspects of composition
problem related to the nondeterministic dynamic
behavior of web services and to the fact that the
internal states of e-services are unknown a priori. It
allows the planning tasks to be generated (completely
or partially) and updates at run time by interleaving the
composition execution by enabling interaction with the
user. We can even say that semi-automatic
composition could be preferred to fully automated
composition because it takes into account the user
preferences if several alternatives responding to its
request are possible. Moreover, this alleviates the
combinatorial problem of composition. Presently, we
detail the different composition strategies related to
others OWL-S constructs such as choice split-join and
split. We plan to study the problem of user request
consistency by exploiting the correspondence that
exists between OWL and description logic formalism.

7. References

[1] B. Benatallah, M. Dumas, Q. Sheng, “Facilitating the
Rapid Development and Scalable Orchestration of
Composite Web Services”, Distributed and Parallel
Databases, Springer Science, 17, 2005, 5-37.

[2] B. Benatallah, M. Dumas, Q. Sheng, A. Ngu,
“Declarative Composition and Peer-to-Peer
Provisioning of Dynamic Web Services”, in Proc. 18th
ICDE IEEE International Conference on Data
Engineering. 2002.

[3] D. Berardi, G. De Giacomo, M. Mecella, D. Calvanese,
“Automatic Composition of Process-based Web
Services: a Challenge”, in Proc. 14th WWW
International World Wide Web Conference. ACM press,
2005, pp 403-410.

[4] D. Berardi, D. Calvanese, G. De Giacomo, R. Hull, M.
Mecella, “Automatic Composition of Transition-based
Semantic Web Services with Messaging”, The 31th
VLDB Very Large DataBases, 2005, pp 613-624.

[5] Y. Gamha, N. Bennnacer, L. Ben Romdhane, G. Vidal-
Naquet, B. Ayeb, “A Statechart-Based Model for the
Semantic Composition of Web Services”, in Proc. 2007
IEEE Congress on Services, Salt Lake City, 2007.

[6] M. Ghallab et al., “PDDL-The Planning Domain
Definition Language V. 2”, Technical Report, report
CVC TR-98-003/DCS TR-1165, Yale Center for
Computational Vision and Control, 1998.

[7] D. Harel, and A. Naamad, “The STATEMATE
semantics of statecharts”, ACM Transactions on
Software Engineering and Methodology. vol. 5, no. 4,
1996, pp. 293-333.

[8] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean, “Swrl: A semantic web rule
language combining owl and ruleml”, 2003.

[9] KIF.”Knowledge Interchange Format”: Draft proposed
American National Standard (dpans). Technical Report
2/98-004, ANS, 1998.

[10] G. Klyne and J. J. Carroll, “Resource description
framework (rdf): concepts and abstract syntax”, 2004.

[11] S. McIlraith, and T. Son, “Adapting Golog for
composition of semantic Web services”, in Proc. 8th
International Conference on Principles of Knowledge
Representation and Reasoning, 2002, pp. 195-202.

[12] B. Medjahed, A. Bouguettayan, “A Multilevel
Composability Model for Semantic Web Services”,
IEEE TKDE, vol. 17, no. 7, 2005.

[13] S. Narayanan, and S. McIlraith, “Simulation,
Verification and Automated Composition of Web
Services”, in Proc. 11th International World Wide Web
Conference, ACM Press, 2002, pp. 77-88.

[14] D. Nau, T. Au, O. Ilghami, U. Kuter, J. Murdock, D.
Wu and F. Yaman, “An HTN Planning System”.
Journal of Artificial Intelligence Research, 20, 2003, pp
379-404.

[15] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau and P.
Traverso, ”Planning and Monitoring Web Service
Composition”, in Proc. 2nd ICAPS International
Workshop on Planning and Scheduling for Web and
Grid Services, 2004.

[16] E. Sirin, P.Bijan, “Planning for semantic web services in
Semantic web services”, in Proc. 3rd ISWC
International Semantic Web Conference, 2004.

[17] S. Sohrabi, N. Prokoshyna, and S.A. McIlraith, “Web
Service Composition via Generic Procedures and
Customizing User Preferences”, in Proc, 5th
International Semantic Web Conference, 2006, pp 597-
611.

[18] D. Wu, E. Sirin, P. Bijan, J. Hendler and D. Nau,
“Automatic web services composition using SHOP2”, in
Proc. Planning for web services workshop in ICAPS,
2003.

[19] T. Andrews et al. Business Process Execution Language
for web Services, http://www.ibm.com/developerworks/
library/ws-bpel/

[20] Web Ontology Language for Web Services,
http://www.w3.org/Submission/OWL-S/

