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Abstract The following paper addresses a problem of inference in financial engi-
neering, namely online time-varying volatility estimation. The proposed
method is based on an adaptive predictor for the stock price, built from
an implicit integration formula. An estimate for the current volatility
value which minimizes the mean square prediction error is calculated
recursively using an LMS algorithm. The method is then validated
on several synthetic examples as well as on real data. Throughout
the illustration, the proposed method is compared with both UKF and
off-line volatility estimation.
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1 Introduction

In 1973 Black, Scholes and Merton [1, 2], reasoned that under certain idealized

market assumptions the prices of stocks and the derivatives on these stocks are

coupled. One of the crucial assumptions is that the traded asset price S follows

dSt = µStdt + σStdBt. (1)

where Bt is a Brownian motion. µ and σ are called respectively drift and volatility

of the stock; both are deterministic constants. Nevertheless, it turns out that the

assumption of constant volatility does not hold in practice.
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Traders in the market are supposed to assess returns which have different

horizon times in order to predict volatility. Researchers in empirical finance have,

therefore, developed an increasing interest in the possibility of uncovering the

complex volatility dynamics that exist both within and across different financial

markets. Even to the most casual observer of markets, it should be clear that

volatility is a random variable. Stochastic volatility models provide a framework

for such modeling, especially when dealing with high frequency data. Neil Shep-

hard traces the origins of the subject in [3] and attributes it to five sets of people.

Back in 1995, the ARCH/GARCH models were a hot topic in econometrics re-

search, and their discoverer, Robert Engle, published a collection of papers on

the topic. Now, ten years later, the ARCH/GARCH models are still widely used

but their limitations are motivating research into alternative models, specifically,

stochastic volatility models (usually abbreviated as SV models). In modern fi-

nance, stochastic volatility models represent the latest research which tries to

understand financial volatility in continuous time. The resulting process is the

non-negative spot volatility which is assumed to have càdlàg sample paths. The

preference given to SV models necessarily follows from the theoretical develop-

ment of stochastic calculus, which is closely related to continuous time Markov

processes. SV models are expected to allow for more comprehensive empirical

investigation of the fundamental determinants of certain phenomena:

a) options with different strikes and maturities have different implied volatili-

ties

b) the empirical distributions of stock returns are leptokurtic.

SV models, consequently, allow for safer measures of risk, for pricing accurately

and for hedging options.

We refer to Shephard (2005)[4] in order to have a thorough account of the

topic of stochastic volatility. All the following studies, for instance, Hull and

White (1987)[5], Stein and Stein (1991)[6], Heston (1993)[7], Scott (1997), support

only off-line processing. They aim to calibrate a given model for the volatility

dynamics, on the observed sample path of the asset price. The main feature

of the method proposed in this paper is an online estimation of volatility: the

object to be estimated is one particular trajectory of the volatility process. We use
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the trajectory of the stock price process, as and when its observation proceeds.

Jazwinski in [11] studied the problem of online estimation within continuous time

models. In the context of a nonlinear model identification, the use of nonlinear

filters such as the unscented Kalman’s filter [12, 13] is required.

It is proven, however, in [13] and [14] that traditional UKF is ill-suited for the

problem of time-varying volatility estimation. Actually, the UKF never updates

prior beliefs and, consequently, it is not able to track volatility fluctuations. We

do, however, implement UKF as literature provides no online estimation methods

for volatility. Furthermore, we have recourse to an off-line estimation method. It

is based on an SV model: a continuous time model of volatility dynamics in the

form of a stochastic differential equation. Its driving process is Lévy rather than

Brownian. The method has been the subject of a recent paper [18]. The model

frame is built by a "shaping filter" technique [19], using prior information on the

covariance function of the squared volatility process.

2 The proposed method

To estimate the latent instantaneous volatility σt of the stock price St, the stochas-

tic differential equation for the log-price yt = log St is considered. Applying Itô’s

formula to (1) yields:

dyt =

(

µ − σ2
t

2

)

dt + σtdBt. (2)

This SDE may be expressed as:

dyt = F(t)dt. (3)

The basic idea of the proposed method is to build a predictor from (3) for the

observation yt at t = ti+1. Consequently, (3) is to be discretized at observa-

tion instants; this leads us to the question of numerical stability of discretization

schemes. It is well known that implicit schemes, such as

yi+1 = G (yi−1, yi, Fi, Fi+1, ...) (Fi = F(ti)),

guarantee numerical stability better [15]. Generally, implicit formulae use con-

stant time steps. However, since observations here are made according to arbi-

trary sampling (i.e. discretization instants are not necessarily equally spaced),
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only the so called order 1 and order 2 Adams Moulton formulae are applicable.

It is indeed the latter formula (the trapezoidal) that has been chosen:

yi+1 = yi +
ti+1 − ti

2
[Fi + Fi+1]. (4)

Previously, it has also been used for the identification of a continuous time au-

toregressive model [16]. Equations (2-4) lead to

yi+1 = yi + µ(ti+1 − ti) −
(ti+1 − ti)

4

(

σ2
i + σ2

i+1

)

+
1

2
σi∆Bi +

1

2
σi+1∆Bi+1.

The terms holding the Brownian increments ∆B have null expectations. Thus the

following predictor ŷi+1 of the observation yt at t = ti+1 is unbiased.

ŷi+1 = yi + µ(ti+1 − ti) −
(ti+1 − ti)

4

(

σ2
i + σ2

i+1

)

.

The sense of this choice is that the best model shall cause the drift to capture the

main course line of the dynamics to the detriment of the diffusion part. Having

such a predictor, the estimate of σi+1 (σt at t = ti+1) that minimizes the mean

square prediction error is computed in a recursive way using a stochastic gradient

algorithm, the so-called least mean squares algorithm abbreviated to LMS. In this

context, the LMS minimizes at each discretization time the following criterion J

J(i) = (yi − ŷi)
2,

using a gradient optimization formula:

σ̂i+1 = σ̂i − λ
∂J

∂σi

∣

∣

∣

∣

σi=σ̂i

.

The resulting formulae are ordered as follows:

σ̂
(1)
i+1 = σ̂

(1)
i (1 − λ(yi − ŷi)(ti+1 − ti)) ,

ŷi+1 = yi + µ(ti+1 − ti) −
(ti+1 − ti)

4

(

σ̂2
i +

[

σ̂
(1)
i+1

]2
)

,

σ̂i+1 = σ̂i (1 − λ (yi+1 − ŷi+1) (ti+1 − ti)) .

Initial values ŷ0, σ̂
(1)
0 and σ̂0 are taken non strictly null but arbitrarily small. As

usual when using an LMS algorithm, it is the parameter λ that is responsible for

the robustness and the right track [17].
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3 Illustration

In order to show the performance of the proposed method, different models for

the volatility are considered. A constant volatility, for example, is useful in order

to evaluate the performance in terms of residual error. A volatility sample path

as a step function is interesting in order to evaluate the influence of the initial

value on convergence. In addition, it has been widely documented that there is

a systematic pattern in average volatility; where this is the case, we shall show

how estimation of the periodic component of the volatility is feasible. Further-

more, the volatility is modeled as a stochastic process, the solution for an SDE of

Vasicek. Finally, we apply our method to real data: the German electricity price

observed each hour from the 1st of July 2000 to the 30th of June 2001 and the

daily price of the Hang Seng index of the Hong Kong market from 1995 to 2007.

It is worth noting that in all illustrative synthetic examples of this paragraph, the

parameters can be chosen arbitrarily. The only essential thing to account for are

realistic values of the volatility.

The proposed method is compared with the UKF for, first, the case of a pe-

riodic function of time, and second, the case of a "synthetic" stochastic process.

UKF is based on a state which has the unobservable volatility process as one of its

components. UKF equations of the time and measurement updates for the first

moment µ of the conditional density are respectively:

µ(ti+1|ti) = µ(ti|ti) + E(Fi)(ti+1 − ti), (5)

µ (ti+1|ti+1) = µ (ti+1|ti) . (6)

E stands for the mathematical expectation. UKF, thus, does not update prior es-

timates µ(ti+1|ti) and, consequently, it is not able to track time varying volatility.

Similar behavior is exhibited in [13][14].

Next, a comparison is made between the above method and an off-line esti-

mation of the volatility. The latter was proposed in [18] which deals with the

construction of a black-box continuous time model for the squared volatility pro-

cess in the form of a stochastic differential equation. The starting point in this
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construction is a parametric form for the covariance function of this process. The

model frame derives from a control theory technique known as the shaping filter.

We give a brief account of the work presented in [18] and show that our present

study outperforms it.

As regards observations, they are made according to both periodic and non

periodic sampling schemes. For instance, the case of jitter sampling, as in [16],

is considered in section 3.2. The obtained performance is as good as that of a

periodic sampling scheme.

3.1 Constant volatility
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Figure 1: True constant volatility (dashed) versus its estimate (continuous)

The observations are simulated with a volatility of 0.15. The initial value of the

volatility, in the proposed method, is deliberately taken equal to the true value

(=0.15) so that we evaluate the residual estimation error. A periodic sampling

scheme has been used. The result is reported in figure 1. Both the mean value

and the standard deviation of the relative error of estimation are about 1% and

6% respectively. They are calculated by time averaging since the volatility value

is constant along its trajectory.
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3.2 Volatility as a step function
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Figure 2: True volatility (dashed) versus its estimate (continuous)

In order to illustrate the convergence behavior of the proposed method, a step

function with the initial value of 0.1 and the final value of 0.2 is taken as the volatil-

ity sample path. The proposed method is implemented with an initial value of 0.1

for the volatility. A jitter sampling scheme has been used with maximum value of

half the sampling period. Many simulations have been carried out with different

values of λ; the value 0.04 for λ makes a good trade-off between robustness and

right track. The result is reported in figure 2 above; it shows the capability of the

algorithm to follow rapid variations even for non-uniformly sampled data. Both

the mean value and the standard deviation of the relative error of estimation are

about 1% and 10% respectively. Here again they are calculated by time averaging;

this is legitimate since there is piecewise repetition of the volatility value along its

trajectory. To explore further the performance evaluation of this result, we have

computed the Theil index. It is approximately 3 10−5. The Theil index formula is:

Theil =
1

N ∑
samples

σest
σref

log

(

σest
σref

)

.

Here N is the number of samples in the reference trajectory to be estimated. σest
is the estimate of the volatility σt at t = ti+1, denoted σ̂i+1 in §2, and σref is the

reference: the (true) volatility σt at t = ti+1, denoted σi+1 (i = 0, ..., N − 1).
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In addition, Monte Carlo simulations have been carried out: the mean sample

path for 100 estimated trajectories of the volatility is reported in figure 3. The

mean value and the standard deviation of its relative error of estimation are about

1% and 5% respectively. This shows that the standard deviation of the estimation

error drops significantly as the simulation number increases.
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Figure 3: True volatility (dashed) versus the mean for 100 of its estimates (contin-

uous)

As has been said in the introduction to section 3, the parameters can be chosen

arbitrarily within all synthetic examples. The only essential thing to take into

consideration are realistic values of the volatility. The general validity of our

method should thus be studied by varying these parameters. They are the initial

and the final values of the step function in the context of this subsection. Column

1 in the table below shows initial values of three different step functions; column

2 shows their corresponding final values. Columns 3 and 4 show the mean value

and the standard deviation of the relative error of estimation obtained by Monte

Carlo simulations (25 estimated trajectories of the volatility for each couple of

parameters). The last two columns show the mean Theil index of the 25 estimated

trajectories of the volatility using our method versus the Theil index of UKF for

each couple of parameters.
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Table 1:
Initial Final Relative error Relative error Theil index Theil index

value value Mean StD UKF

0.1 0.2 −0.2 10−5 0.05 2 10−3 0.2

0.05 0.25 0.6 10−4 0.1 4 10−2 1.49

0.01 0.29 −1.5 10−4 0.06 1.5 10−2 20

3.3 Volatility as a deterministic periodic function of time

Whenever the volatility is subject to seasonality, we wish to recover the season(s)

using our method. We consider the following deterministic function of time for

the volatility trajectory:

σ(t) = a0 + a1 sin(ω1t) + a2 sin(ω2t).

The pulsations ω1 and ω2 correspond to a one-week and a one-day seasonality;

this is, for instance, the case of German electricity price treated in §3.6. a0 , a1 and

a2 are chosen so as to have realistic values of the volatility. In the simulation of

figure 4, they are 0.15, 0.05 and 0.01 respectively.

Both the true volatility and its estimate for a periodic sampling scheme, and

for λ of 0.07, are plotted in figure 4. The estimated volatility using UKF is con-

stant, yet the proposed method is able to track the volatility oscillations. The

Theil index is about 10−3; UKF yields a Theil index of 10−2. The mean value and

the standard deviation of the relative error of estimation are about 1% and 16%

respectively. The mean trajectory of 100 estimated trajectories of the volatility is

reported in figure 5. The mean and the standard deviation of its relative error

of estimation are about 1% and 8% respectively. In addition, the power spectral

densities (PSD) for the true volatility sample path and the mean of its estimates

are confronted in figure 6; the two PSDs therein are clearly close to each other.

We furthermore vary the parameters a1 and a2 and perform Monte Carlo sim-

ulations (100 estimated trajectories of the volatility for each couple of parameters)

so that we obtain the results in table 2.
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Figure 4: True (dashed) versus estimated volatility: proposed method (continu-

ous), UKF (dotted)
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Figure 5: True volatility (dashed) versus the mean for 100 of its estimates (contin-

uous)
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Figure 6: PSD of the true volatility (continuous) and that of its estimate (dotted)

Table 2:
Relative error Relative error Theil index Theil index

a1 a2 Mean StD UKF

0.05 0.01 0.015 0.08 10−4 3 10−2

0.1 0.01 2 10−2 0.1 2 10−3 0.4

3.4 Volatility as a stochastic process

To synthesize sample paths of the volatility process as well as the stock price, the

following SDE of Vasicek is considered:

dσt = α (θ − σt) dt + ξdBt, (7)

where α = 0.0001, θ = 0.15 and ξ = 0.0007. We assume the drift µ is known

(µ = 0.015). The true volatility sample path and the estimated one, using both

the proposed method and UKF, are reported in figure 7. The volatility is esti-

mated at every half hour for 416 days. For this simulation we choose the initial

value of the volatility equal to θ(= 0.15). As above, the estimated volatility using

UKF is constant. The proposed method, however, is able to track the volatility

fluctuations.
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The empirical distribution of the estimation error for the sample path in figure

7 is reported in figure 8. Like UKF, the proposed method is subject to bias, but

the bias is clearly smaller. The standard deviation obtained with UKF is 0.033,

whereas within the proposed method it is 0.015.
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Figure 7: True (continuous) versus estimated volatility sample path: proposed

method (dotted), UKF (dashed)
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Figure 8: Empirical distribution for the estimation error. At the top: the proposed

method, at the bottom: UKF
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3.5 Illustration using real data
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Figure 9: log-price of the Hang Seng index

Figure 9 shows the daily price of the Hang Seng index of the Hong Kong

market from 1995 to 2007. This sample path exhibits a volatility clustering phe-

nomenon: periods of high price fluctuations are followed by periods of high

fluctuations, and the same can be said about periods of low price fluctuations.

The implementation result on this sample path is shown in figure 10. Notice the

beginning of a period of high volatility around the 700th day; this corresponds to

the Asian financial crisis of October 1997.
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Figure 10: Estimated volatility sample path
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3.6 Comparison with off-line estimation of the volatility

We assume prior information about the unknown process (σt)2: its stationarity

in the large sense and a parametric model for its covariance function. Let the

covariance function of the process (σt)2 be given by the following formula:

k(τ) = D e−α|τ| α > 0, (8)

where D is the process variance. This type of covariance function allows one to fit

the observed time dependence in the returns. Such a covariance function includes

memory in the correlation pattern of the volatility. The spectral density of (σt)2

is then given by the formula:

s(ω) =
1

2π

2D α

ω2 + α2

The spectral density s(ω) is rewritten as:

s(ω) =
1

2π

∣

∣

∣

∣

H(jω)

F(jω)

∣

∣

∣

∣

2

ω ∈ R,

where

H(jω) =
√

2D α , F(jω) = jω + α .

Now

Φ(s) =
H(s)

F(s)
s ∈ C ,

represents the transfer function of a stationary linear system; the system is, fur-

thermore, stable as the root of F(s) is in the left half-plane of the complex variable

s. Recalling that 1/2π is the spectral density of a white noise of intensity 1, we

come to the following conclusion. (σt)2 may be considered as the response of the

filter whose transfer function is Φ(s) to a white noise with unit intensity. From

the ordinary differential equation describing such a filter, we obtain the following

stochastic differential equation as a model for the squared volatility process (σt)2.

This is the first state component denoted by X1
t :

dX1
t = X2

t dt

dX2
t = −αX1

t dt −
√

2D α dWt.

(9)
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Here W is a stochastic process with independent and stationary increments of

intensity 1. If we suppose that W starts at 0 and that its trajectories are continuous

in probability, then we can give it the name Lévy process. We suppose further the

existence of stationary solutions to the SDE when W has positive increments so

as to assure the positivity of X1
t . According to the above notation, (2) is rewritten

in the form

dyt =

(

µ − X1
t

2

)

dt +
√

X1
t dBt . (10)

We suppose that the condition in the proposition of paragraph 4 of [18] ap-

plies, which ensures that (9) has stationary solutions. We then calibrate the model

(9-10) on the observations from which seasonality has been removed. The calibra-

tion is based upon stochastic calculus and the Lévy processes theory.
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Figure 11: log-price of the electricity.

First, we apply the above off-line method to electricity price; observations of

the German market for each hour from the 15th of June 2000 to the 31st of De-

cember 2003 are processed. Figure 11 shows the asset log-price trajectory. The

obtained variance D and rate α amount to around 2.98 10−6 and 0.03 respectively.

Figure 12 displays two histograms: at the top the histogram of the sample path

of the volatility process obtained from the above method, at the bottom the his-

togram of the volatility sample path estimated by the main method of the paper.

Second, since volatility is actually impossible to observe, showing only an appli-

cation of the online method on real data is not ideal for a comparison with the
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off-line method of this subsection. We compare the two methods on the synthetic

stochastic process of subsection 3.4; this is shown in figure 13 below.
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Figure 12: Histograms of online volatility estimate (at the bottom) and an off-line

one (at the top)
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Figure 13: Histograms of sample paths for the true volatility (the first from the

top), of the off-line volatility estimate (the second) and of the online volatility

estimate (the third)
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4 Conclusion

Evidence to date suggests that stochastic volatility models for market prices are

likely to be useful in practice. A real time estimation algorithm of the volatility

when observing the market asset price is proposed. The obtained estimate shows

a clear improvement of precision when compared with the unscented Kalman

filter. The proposed method inherits a low computational cost from LMS algo-

rithms. Our algorithm has a complexity of 9 elementary operations per sample.

It outperforms in precision the off-line method above, especially on real data. It

is worth noting that our online method does not require any effort to transform

data, for example, to take off seasonality. This, on the other hand, was necessary

in the method of the previous subsection.
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