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Abstract

Classification studies from microarray data have
proved useful in tasks like predicting patient class.
At the same time, more and more biological infor-
mation about gene regulation networks has been
gathered mainly in the form of graph. Incorpo-
rating the a priori biological information encoded
by graphs turns out to be a very important issue
to increase classification performance. We present
a method to integrate information from a network
topology into a classification algorithm: the graph-
Constrained Discriminant Analysis (gCDA). We
applied our algorithm to simulated and real data
and show that it performs better than a linear Sup-
port Vector Machines classifier.

1 Introduction

In functional genomics, the issue of inte-
grating information about gene-coregulation
arises more and more frequently in the anal-
ysis of microarray data: this information may
consist in a priori or results from other exper-
iments. For example, some differential analy-
sis procedures, incorporating gene networks,
were recently proposed [14]. Several methods
can be found in the literature to achieve the in-
tegration of the a priori information one have

on the relations between genes into the classi-
fication task [9], [11].

In [9], the authors proposed to fit a linear
model y = βX on the dataset X to predict the
binary variable y. Their approach follows reg-
ularization ideas that consist in optimizing the
following criterion

J(β, c1, c2) = (y− βX)>(y− βX) + c1 |β|
+ c2β>LGβ

with respect to β, where LG is the Laplacian
of the a priori graph G (see paragraph 2.1).
The solution of this optimization problem is
achieved through a Lasso procedure [5] and
leads to a sparse model ; it is used to charac-
terize the subnetworks from the reference net-
work that are “expressed” in the dataset.

In [11], a spectral transformation is applied
to the graph G and then a kernel Support Vec-
tor Machines classification is performed. The
new metric between two expression profiles f
and g is:

dφ( f ; g) = f>Kφg (1)

, where Kφ is the positive semidefinite matrix
obtained after the spectral transformation of
graph G.

These procedures lead to a better graph-
interpretability of the resulting classifiers. But
the goal of these integration algorithms is not
to improve classification performance.



We propose a method, based on the Dis-
criminant Analysis introduced by Fisher [6],
that takes into account an a priori and im-
proves classification performance when com-
pared to competitive classification algorithm
(here Support vector Machines [4]). We con-
sidered first simulated data to demonstrate
our point; the parameters of the simulated
dataset generator were tuned in order to
mimic any given real dataset while following
some interaction constraints. Then, we ap-
plied our method on data from the literature
[1]. We focused on binary classification prob-
lems, and left multiclass problems as future
work.

The remainder of the paper is structured
as follows: in the second part gCDA is pre-
sented and the last part is devoted to the val-
idation of gCDA and its comparison with the
state-of-the-art methods on simulated and real
datasets.

2 Graph-Constrained Discriminant
Analysis

A constrained version of Discriminant
Analysis is developed to compute, from a
learning dataset, a classifier able to predict the
class of a new sample.

2.1 Interaction between genes

A graph G is defined by the set of its edges
E and the set of its vertices V . Let w be the
function w : V × V → {0, 1} such that w(i, j)
is 1 if there is an edge between vertices i and
j and 0 otherwise. For each vertex i of V , the
connectivity degree di is defined as the cardi-
nality of the set of the vertices in V connected
to i. In the following, G is a finite graph with p
vertices (genes) and m edges.

We take a graph of independence as equiv-
alent to a graph of gene regulations (which is
only a partial view of the biological concept
of a regulation network). Each vertex repre-
sents a variable and the absence of an edge be-

tween two vertices means that the two vari-
ables are independent knowing the remaining
variables. For example, there is no edge be-
tween variables 4 and 5 (denoted respectively
by x4 and x5) in the graph depicted on fig-
ure 1: x4 and x5 are independent knowing
the remaining variables. The precision ma-
trix of the multivariate Gaussian variable X =
[x1, ..., xn], which is also its inverse covariance
matrix Σ−1, has the following property [15]:

x4 ⊥⊥ x5|
{

xj, j ∈ {1, ..., p} \ {4, 5}
}

(2)

⇔
[
Σ−1]

4,5 = 0

In this paper, we propose to use property
(2) to derive an estimation of the covariance
matrix ΣG from the Laplacian matrix LG of an
a priori graph G. Indeed LG , is a semi definite
positive p× p matrix which coefficients are:

[LG ]i,j =
{
−w(i, j) , if i 6= j
di , if i = j

and in which each null term corresponds to an
absence of edge in G. Thus, after the addition
of a δ > 0 on the diagonal of LG , we have a
good positive definite candidate for the pre-
cision matrix of a multivariate Gaussian vari-
able of which G is an independence graph:

Σ−1
G = LG + δI (3)

with I the identity matrix of size p. In the
gCDA algorithm, the property 3 is used to
compute covariance matrices from both mi-
croarray data and an a priori graph.

2.2 Discriminant Analysis

Let X1 = (x(i)
1 )i∈{1,...,n1} (resp. X2 =

(x(i)
1 )i∈{1,...,n2}) be an n1-sample (resp. n2) of a

Gaussian multivariate variable with mean µ1
(resp. µ2) and covariance matrix Σ, and let
X = [X1, X2] be the corresponding 2 classes
dataset. With these notations, we can define
the between and within classes covariances as

Sb = n1(x1− x)(x1− x)>+ n2(x2− x)(x2− x)>

(4)



and

Sw =
1

n− 2

2

∑
k=1

1
nk

nk

∑
j=1

(
x(j)

k − xk

) (
x(j)

k − xk

)>
,

(5)
where xk is the empirical mean of Xk and x the
empirical mean of X.

The goal of the Discriminant Analysis is
to determine a linear transformation W of
dataset X that minimizes the within class vari-
ance to between class variance ratio. Provided
that S−1

w exists, this problem is equivalent to
perform the eigenvalue decomposition of the
matrix SbS−1

w :

SbS−1
w = VDV>

and to choose W = V as the linear transforma-
tion.

Once W is computed, the prediction of the
class of a new individual xnew is based on the
estimation of the posterior probability of the
class ωk knowing the sample xnew:

log Pr(ωk|znew = Wxnew) =

−1
2
(znew − µk)>Σ̂−1

k (znew − µk)

− log det Σ̂k + log πk + a

where πk is the prior probability of each class,
Σ̂k is the estimation of the covariance matrix
of class k after the transformation by W and
a ∈ R is a constant which does not depend
on the class k. xnew will be attributed the class
knew maximizing the posterior probabilities ac-
cording to two different strategies. The so-
called Linear Discriminant Analysis assumes
that Σ̂k = Σ̂ does not depend on the class k. On
the contrary, the Quadratic Discriminant Anal-
ysis assumes that the estimation of Σ̂k has to be
different from one class to another.

2.3 Taking into account the a priori
graph

In the n � p case, the Maximum Likeli-
hood Estimators (MLE) presented in equations

4 and 5 are unbiased but show poor perfor-
mances as regards their variance. In order to
overcome this problem several approaches are
proposed in the literature. In [8], the authors
present a method that consists in inferring a
regularized version of the covariance matrix:

Σ̃ = αΣ̂ + (1− α)I (6)

and in [12], a similar strategy of regularization
is used to shrink the estimator of the covari-
ance matrix by replacing I in equation 6 by
sparse positive definite matrices, and the pa-
rameter α is analytically computed.

Our method is inspired by the previously
reported ideas: in the graph-Constrained Dis-
criminant Analysis, I is replaced by the covari-
ance matrix obtained from the Laplacian of the
a priori graph:

Σ̃ = αΣ̂ + (1− α) (LG + δI)−1

The α parameter is determined with a cross-
validation procedure.

In this context, the within class variability
estimation can be redefined:

Σ̃w(α) =
n1

n
Σ̃1(α) +

n2

n
Σ̃2(α) (7)

to perform a Linear or a Quadratic graph-
Constrained Discriminant Analysis.

In the Linear gCDA, each class is supposed
to have the same covariance and there is only
one a priori graph:

Σ̃w(α) = αSw + (1− α) (LG + δI)−1 (8)

In the Quadratic gCDA, each class is char-
acterized by a different a priori graph:

Σ̃w(α) = αSw + (1− α)
((
LG1 + δI

)−1

+
(
LG2 + δI

)−1
)

(9)

3 Results

In this section the two datasets we used to
challenge gCDA are presented. The first one is



a simulated dataset and the second one is a mi-
croarray dataset [1]. In what follows, n1 and n2
are the number of individuals in classes 1 and
2, p is the number variables, G the graph of in-
dependence, µ the mean and Σ the covariance
matrix. We compare gCDA to Support Vector
Machines [4].

The characteristics of the two datasets are
represented in table 1, the number of itera-
tions used to compute the test error rate with a
Monte Carlo Cross Validation algorithm [3] is
fixed to B = 50.

p n1 n2
Simulated 100 20 20

Alon 100 26 14

Table 1. Characteristics of the
datasets

3.1 Data simulation

Since we want to evaluate the integration
of a graph into a classification, we have to
design a dataset with a given independence
graph structure. Classically, microarray data
are simulated by sampling the covariance ma-
trix of a real dataset ; the underlying structure
of interactions remains unknown in those sim-
ulations. Other simulation strategies consider
the generation of a random graph, followed by
the solution of a system of Ordinary Differen-
tial Equations [10], which implies the choice of
numerous parameters for a graph with a real-
istic size. We formulate the graph constraint
as follows: the dataset is a multivariate Gaus-
sian sample with known mean, and with a co-
variance matrix built from the given graph of
independence between the variables.

We make the assumption that the graph
of independence underlying each class is the
same and is characterized by a scale free distri-
bution of the node degrees [2]. Figure 1 shows
a graphical representation of a random graph
according to the algorithm we used. We no-

tice that no loop is generated in such graphs,
which is probably unrealistic from a biological
point of view, but does not impact the classifi-
cation procedure.
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Figure 1. An example of a random
graph.

For each class k, our simulation algorithm
can be summed up as follows:

a) random generation of network G

b) the mean vector µk of the expression pro-
files mimics the distribution of mean ex-
pressions in real datasets [7]

c) the covariance matrix ΣG is computed from
the graph G with respect to equation 3

d) an expression profile is a multivariate
Gaussian random vector of mean µk and
covariance matrix ΣG

For a given graph, we compute a corre-
sponding covariance matrix and generate two
samples of Multivariate Gaussian Variables X1
and X2. We tested gCDA with the “real” graph
and with another random graph. The results
are presented on figure 2.

It can be seen that constraining the classifi-
cation with a random graph is not better than



0.0 0.2 0.4 0.6 0.8 1.0

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

alpha

N
um

be
r 

of
 e

rr
or

s

True graph gCDA
SVM
Random graph gCDA 

Figure 2. Test error rate against α.

performing SVM, while gCDA shows an im-
provement of the error rate of approximately
4 % (1.6 errors out of 40 individuals).

3.2 Real microarray data

100 genes were randomly chosen among
the 2000 genes of the Alon dataset [1]. Since
we do not have any a priori graph of genetic
regulation for this dataset, we applied a new
algorithm using Partial Least Squares regres-
sions [13] to infer the independence graph
on an independent set of microarrays. The
Alon dataset is then split into two independent
datasets: the first one is used to infer a regu-
lation graph for each class and on the second
one is applied the Quadratic procedure de-
scribed in section 2: the Linear procedure does
not work, hypothetically because the indepen-
dence graphs are different from one class to
another (which is confirmed by the graph in-
ference step: there are only 7 % common edges
between the two graphs). Results are given in
table 2. To compare the performance, we also
report the results on the simulated data

data gCDA SVM
simulated 13.75% 17.75%

Alon 3.75% 4.5%

Table 2. Results on real data

On figure 3, we see that there is an optimal
α = 0.21 for which the test error rate is signif-
icantly inferior to the test error rate obtained
with SVM (a Wilcoxon test applied on the two
sets of B error rates gave a p-value of 1 %).
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Figure 3. Test error rate against α.

4 Conclusion

We show a significant improvement in clas-
sification performance when the underlying
graph of regulation is known in the case of
simulated data or when the underlying graph
of regulation is inferred in the case of real mi-
croarray data.



5 Perspective

The graph-constrained estimator of the co-
variance matrix will be studied in the spirit of
[12] to characterize its bias and variance. We
will also study the differences on simulated
data between the Linear and the Quadratic
versions of gCDA. And finally we will work
on an implementation of gCDA able to cope
with thousands of variables (for the moment it
is possible to run gCDA with only hundreds
of variables).
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