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A unifying formulation of the Fokker-Planck-Kolmogorov
equation for general stochastic hybrid system's

Julien Bect

Department of Signal Processing and Electronic Systems,
Supelec, Gif-sur-Yvette, France.

Abstract

A general formulation of the Fokker-Planck-Kolmogorov EjRequation for stochastic hybrid systems is presented,
within the framework of Generalized Stochastic Hybrid &yst (GSHSs). The FPK equation describes the time
evolution of the probability law of the hybrid state. Our idation is based on the concept of mean jump intensity,
which is related to both the usual stochastic intensityl{éndase of spontaneous jumps) and the notion of probability
current (in the case of forced jumps). This work unifies aviously known instances of the FPK equation for
stochastic hybrid systems, and provides GSHS practitsonéh a tool to derive the correct evolution equation for the
probability law of the state in any given example.
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1. Introduction

Among all continuous-time stochastic models of (nonlipeignamical systems, those with the Markov property
are especially appealing because of their numerous nigeepties. In particular, they come equipped with a pair of
operator semigroups, the so-called backward and forwarigseups, which are the analytical keys to many prac-
tical problems involving Markov processes. When the sysi®mletermined by a stochastic differential equation,
these semigroups are generated by Partial Differentiabfimus (PDE) — respectively the backward and forward
Kolmogorov equations. The forward Kolmogorov PDE, alsownas the Fokker-Planck equation, rules the time
evolutiont — u;, wherey;, is the probability distribution of the staf€, of the system at time This paper deals with
the generalization of this Fokker-Planck-Kolmogorov (BRiguation to the framework of General Stochastic Hybrid
Systems (GSHSSs) recently proposed by Bujorianu and Lyd@&r@;.

The GSHS framework encompasses nearly all continuousMar&ov models arising in practical applications,
including piecewise deterministic Markov processes [2], dwitching diffusions [18, 19] and the stochastic hybrid
systems of Hu et al. [21]. The reader is referred to [9, 31Jfaletailed overview of these classes of models with a
view towards applications in Air Traffic Management (ATMyva kinds of jumps are allowed in a GSHS: spontaneous
jumps, defined by a state-dependent stochastic intehGKy), and forced jumps triggered by a so-called guardset
Generalized FPK equations have been given in the literaitutbe case of spontaneous jumps, for several classes of
models; see Gardiner [17], Kontorovich and Lyandres [23};skul et al. [24] and Hespanha [20] for instance. The
case of forced jumps is harder to analyze, at the FPK leve§us® no stochastic intensity exists for these jumps. Until
recently, the only results available in the literature weealing with one-dimensional models; see Feller [15, 16] an
Malhamé and Chong [28]. These results have been extendedassaof multi-dimensional models by Bect et al. [3].

The main contribution of this paper is a general formulatibthe FPK equation for GSHSs. It is based on the
concept ofmean jump intensitywhich conveniently substitutes for the stochastic intgnghen the latter does not
exist. This equation unifies all previously known instanoéthe FPK equation for stochastic hybrid systems, and

U A shorter version of this paper was presented at the 17th N&@d Congress (IFAC’08) in Seoul, Korea [2].
HOThe results presented in this paper come from the PhD thesie author [1], under the supervision of Pr. Gilles Fleung ®r. Hana Baili.
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provides GSHS practitioners with a tool to derive the cdrexolution equation for the probability law of the state in
any given example. The results presented in this paper tnacéed from the PhD thesis of the author [1].

The paper is organized as follows. Section 2 introduces otations for the GSHS formalism, together with
various assumptions that will be needed in what followstiB8e@ defines the crucial concept of mean jump intensity,
which is used in Section 4 to derive our unified measure-gafoemulation of the generalized FPK equation for
GSHSs. Section 5 shows that the measure-valued equatiattbs 4 yields an evolution equation with associated
boundary conditions in the case where a piecewise smoattsedection 6 provides several examples, showing that
the generalized FPK equation allows to recover all knowtaimses of the FPK equation for stochastic hybrid systems.
Finally, Section 7 concludes the paper and provides doastior future work.

Remark 1. The stochastic processes that we call GSHSs, following éipers by Bujorianu and Lygeros [7, 8], are
also called GSHPs in [9] — where GSHP stands for “Generaltistic Hybrid Process”. Note also that the terms
GSHS / GSHP are used by [14] to make a clear distinction betwee formal data defining the process and the
process itself. We shall stick to the “GSHS” terminologytimstpaper.

2. General Stochastic Hybrid Systems

From the probabilistic point of view, the object of interéstthe GSHS formalism is a continuous-time strong
Markov processY = (X;);>o0, With values in a metric spade®. It is defined on a filtered spa¢e, A, F), equipped
with a system{Px; T € EO} of probability measures off2, .4), with the property thaX starts fromz: underP,, for
all z € E°. As usual in the theory of Markov process#s;, denotes the expectation operator corresponding,to
The reader is referred to [6, 13, 34] for background infoiorabn continuous-time Markov processes.

It is assumed that, for each € (2, the samplepath — X, (w) is right-continuous, has left limitX;” (w) in the
completionE of E°, and has a finite number of jumps, denoted¥y(w), on the interval0; ¢] for all t > 0. The
last condition can be seen as a “pathwise non-Zenonessiteagent. We will denote by, the k™ jump time, with
T =+ oo if there is less tha® jumps.

2.1. The hybrid state space

The (completed) state space of the model is assumed to haxterid ktructure:E' = Ugco {¢} x E4, WhereQ
is a finite or countable set, and eakh is either the closure of some connected open subgetC R™ (n, > 1)
or a singleton (in which case we sef = 0). The state at time can therefore be written as a pa{t = (Q:, Z:),
wherth € QandZ; € Eq,. We denote byo? = {q € Q | ny = 0} the set of all “purely discrete” modes, and by
Ed = = Uged {q} x E, the corresponding subset bf The usual definitions for smooth maps and vector fields exten
without difficulty to such a hybrid structure (see Appendifok details).

The state spac® is regarded as the disjoint sum of the seis ¢ € Q, and endowed with the disjoint union
topology:. We denote by the Borels-algebra, and by, the subset of all relatively compakte £. Moreover, we
define a “volume measure” aii by the relation

m) =Y my(TNE)+ > 6:(), TeE, (1)

qg Q4 re B4

wherem, is then,-dimensional Lebesgue measurelgnandd, the Dirac mass at. (Note thatZ, C R"s has been
tacitly identified with{q} x E, C E.)

Let OF, be the boundary ofs, in IR"«, with the convention thabdE, = @ whenn, = 0. We define the
boundaryd E of the state space by the relatidf’ = U,co {q} x 0E,, and theguard setoy G = E \ E°. Itis not
required that? = JF.

Notations. Let i : £ — R be a (signed) measuré; : £ x £ — R akernel andp : £ — IR a measurable
function. The following notations will be used throughohetpaper, assuming the integrals exi§i:K)(dy) =

J u(de) K (z,dy), (Ko)(z) = [ K(z,dy) ¢(y) andup = [ p(dz) o(z).

lwhich is (here) locally compact, separable and completadtrizable



2.2. Stochastic differential equation with jumps
The processX is assumed to be driven by an Itd stochastic differentiabiqn between its jumps: there exist
r + 1 smooth vector field§; and ar-dimensional Wiener proceds such that, in mode € 9 \ Q¢,

dZ; = fo(q, Zt)dtJFZfl(Q; Z;)dB . 2)
=1

In other words, for allp € C?(E), X satisfies the following generalized Itd formula

P(X1) = p(Xo) = /0(Lw)(Xs)dS+ZA(fzw)(Xs)dBiJr Y (e(Xn) —e(X7), 3)
=1

0<1 <t

wherelL is the differential generator associated with (2), i.e.

LRSS ol por) e ®
i,j

We make the following smoothness assumptions:

Assumption 2. The driftf, is of classC', and the other vector fields, 1 < < r, are of classC?2.

Remark 3. It would be possible to slightly generalize the model by ddesng a mode-dependent numbgrof
Wiener processes. All the results of the paper would stilt vaith the same proofs. We choose to use the same
numberr of Wiener processes in each mode for the sake of notatiomglisity. Note that this is consistent with the
most recent definitions of GSHS [8, 14], but not with the ong7in(which uses a mode-dependent number of noise
processes).

2.3. Two different kinds of jumps
We assume that there exists a Markov kedsidtom E to E° and a measurable locally bounded functionE° —
R, such that the following évy system identityolds for allz € E°, ¢ > 0, and for allmeasurable : Ex E° — R

t
E, { D er P X X )} E, { /0 (K@(X;)dﬂs} (5)
where(K¢)(y) = [0 K(y,dy’) ¢(y,y’) andH is the predictable increasing process defined by
t
H, :/ MX)ds + D 1y o6 6)
0 T <t

The first part corresponds spontaneougimps, triggered “randomly in time” with a stochastic inség \(X; ), while
the other part correspondsfrcedjumps, triggered wheX hits the guard sef.

Remark 4. The terms “spontaneous” and “forced” seem to have beenddayn®ujorianu et al. [9]. They are closely
related to the probabilistic notions of predictability gothl inaccessibility for stopping times [see, e.g., 3utler VI,
§812-18], but we shall not discuss this point further in gaper.

Remark 5. The pair(K, H) is aLévy systenfor the processX in the sense of Walsh and Weil [35, definition 6.1].
Most authors require thd be continuous in the definition of a Lévy system, therebylldigéng predictable jumps.

3. Mean jump intensity

From now on, we assume that some initial probability Jayshas been chosen, wifhy (G) = 0 since the process
cannot start fronG. All expectations will be taken, without further mentionitiivrespect to the probability?,, =
J bo(dz) P,

It is assumed thaE(N;) < + oo. This is a usual requirement for stochastic hybrid proc@ssehich is clearly
stronger than piecewise-continuity of the samplepatrsbéing satisfied depends not only on the dynamics of the
system but also on the initial probability lgwy.

2See, e.g., Davis [11] or Bujorianu and Lygeros [7].



3.1. Definition and connection with the usual stochastierisity

In order to introduce the main concept of this section, ledefine a positive measufeon E x (0; +00) by

R(A) = E{Zk21 14 (X;k,rk)}. @)

For anyT" € &, the quantityR (T" x (0;¢]) is the expected number of jumps starting fréhduring the time inter-
val (0;¢]. The measure is in general unbounded, but its restrictionfox (0; ¢] is bounded for alt > 0 because

Definition 6. Suppose that there exists a mapping — r;, from[0; +00) to the set of all positive bounded measures
on E, such that, forall’ € &,

a) t — r(T") is measurable,
b) forallt >0, R(I x (0;1]) = [ r(T") ds.
Thenr is called themean jump intensitgf the process( (started with the initial lawu).

Let us splitR into the sum of two measurd®’ and R, corresponding respectively to the spontaneous and forced
jumps of the process. Then, using the Lévy system identitygasy to see that a mean jump intensthalways exist
for the spontaneous paR’: it is given by

r9(0) = B Lxser) = [ Ao) (o). ®)
In other words: for spontaneous jumps, a mean jump inteasitstlys exists, and it is the expectation of the stochastic
jump intensity\(X;) on the even{ X, € T'}.

Forced jumps are more problematic. The Lévy system idergtijowerless here, since no stochastic intensity
exists (because forced jumps are predictable). All hopeidast, though: a simple example will be presented in
the next subsection, proving that a mean jump intensity &&t anyway. This is fortunate, since the existence of a
mean jump intensity will be an essential ingredient for owifiad formulation of the generalized FPK equation. See
subsection 6.2 for further details on that issue.

3.2. Whereuy comes into play: an illustrative example

Consider the following hybrid dynamics dii= [0; 1]: the stateX; moves to the right at constant speed- 0 as
long as itis inE® = [0; 1), and jumps instantaneously @cas soon as it hits the guafd = {1} (i.e., the reset kernel
is such thats (1, - ) = do).

If we takepo = do for the initial law, then the process jumps frdnto 0 each time is a multiple ofl /v, i.e. 7, =
k/vandX_ = 1almost surely. There is therefore no mean jump intensithig¢ase, sinc&® = >, -, 31, x/v)-

Now takep to be the uniform probability ofd; 1] (which is, incidentally, the only stationary probabiligw of
the process). Then

1 o
R(T x (0;¢]) = 01(T) /0 ar%;nlax{k ” < t} dz 9)
o
= 01(I) / [vt + 2] dx (10)
0
= vt 61(1—‘), (11)

where [vt + 2] is the smaller integer greater or equahio+ . Therefore the mean jump intensity exists in this
case, and is equal tod; (it is of course time-independent, singg is stationary). In particular, the global mean jump
intensity isr;(E) = v.



4. Generalized FPK equation

4.1. A weak form of the FPK equation

Taking expectations in (3), the followingeneralized Dynkin formulé obtained: for all compactly supported
¢ € C*(E) and allt > 0,

E{o(X:) — o(Xo)} = E{/O (Lw)(Xs)dS}JrE{ > w(XTk)—w(X;)}- (12)
0<m <t

Let us assume the existence of a mean jump intensiy all times. Then (12) can be rewritten as

t t
- — s s - ) 3
(e — po) ¢ /0 s (Lep) d8+/0 rs(K — I)pds (13)

wherey, is the law ofX; andI is the “identity kernel” onF, i.e. the kernel defined bi(y, dy’) = J,(dy’). Formally
differentiating (13) yields

py = L7 +ro(K — 1), (14)

wheret — p; is the time derivative of — p, (in a sense to be specified later), ahtithe “distributional adjoint”
of L, defined over the se¥!..(E) of all signed Radon measuresn E by

(L) () = v(Ly) = /E (L)) v(dz),  Wv € Mo(E), Yo € CX(E). (15)

As a consequence of Assumption 2, the regalt of applyingL* to a Radon measuteis, in general, a second-order
distribution. It is important to note that, because theestpiacer has a boundar§ F, the operator* is not a simple
second-order partial differential operator — it also imgs “boundary terms”.

Equation (14) begins like the usual Fokker-Planck equdbodiffusion processesy = L* ;) and ends with an
additional term that accounts for the jumps of the process.

Definition 7. We will say thatt — . is a solution in the weak sense of theneralized FPK equatiofor the GSHS
if

a) there exists a mean jump intensity> r;,

b) there exists a mapping— u;, from [0; +00) to M (E), such that — u(T") is absolutely continuous with
a.e.-derivative — p;(T'), forallT € &,

¢) L*u is a Radon measure for ali> 0,

d) equation (14) holds as an equality between Radon measwres, (') = (L*u:)(T') + r(K — I)(T") for all
t>0andalll’ € &..

Such a weak form of the FPK equation is the price to pay for fiathtreatment of both kind of jumps. Condi-
tions 7.a and 7.b can be seen as smoothness requirementsesyi#tt to the time variable, and 7.c with respect to the
space variables.

3In this paper, a “Radon measure” will always bsignedRadon measure, in other words a distribution of order zexe;Rudin [33] for the
basic definitions and properties of distributions. Any sigifiRadon measurecan be written as the difference= v — v~ of two positiveRadon
measures (i.e. locally finite measures); see, e.g., Cohrcfiebter 7] for more information on the connection betwéenftinctional analytic and
the measure-theoretic point of view.



4.2. "Physical” interpretation

The usual FPK equation admits a well-known physical intetigition as a conservation equation for the “probability
mass” [see, e.g., 17]. Indeed, assuming the existence obatbrpdfp € C%!(E x R, ), the equation:, = L*u,
can be rewritten as a conservation equatipyy 9t + div(j,) = 0, with theprobability currentj, defined by

2 023

1) r .
TR Sl LU ot 1] (a6)
j =1
The additional “jump term”, in the generalized FPK equat@aimits a nice physical interpretation as well. To see
this, let us rewrite it as the difference of two bounded pesimeasurer,(K — I) = r§* — r, wherery™® = r, K.
Thereforer, andr;*® behave respectively assink and asourcein the generalized FPK equation: for edche &,
r+(I") dt is the probability mass leaving the déduringdt, because of the jumps of the process, whijté(T") dt is
the probability mass enteriig
These two measures are in fact connected by the reset k&raeldy). In particular, the relation;(E) =
r;"(E) holds at all timeg > 0, ensuring that the total probability mass is conserved. deer, introducing the
measure$V; (dz,dy) = r(dz)K (z,dy), we haver, = [W(-,dz), ri** = [ W(dz,-) and the generalized FPK
equation can be rewritten more symmetrically as

b= Dt [ (Wildo,) = Wit da)) a7

It appears clearly, under this form, as a generalizatiometlifferential Chapman-Kolmogorov formut# Gardiner
[17, equation 3.4.22] — which only allows spontaneous jumps

4.3. Sufficient conditions for the existence of a weak smiuti

The main result of this paper shows that the various requirgsof definition 7 are not independent. We denote
by |v| the total variation measure of a Radon measyrehich is finite oné.. We shall say that a function— v,
from [0; 00) to M (FE) is right-continuous (resp. locally integrable)tifi— v;¢ is right-continuous (resp. locally
integrable) for all bounded measurable £ — R.

Theorem 8. Consider the following assumptions:
a) there exists a mean jump intensitysuch that — r; is right-continuous,
b) t — p. is differentiable in the sense of 7t p; is right-continuous and — ;| locally integrable,
¢) L*u; is a Radon measure for all> 0, t — L*p, is right-continuous and — |L* .| is locally integrable.

If any two of these assumptions hold, then the third holdselsamd ¢ — p, is a solution in the weak sense of the
generalized FPK equation.

The proof of this theorem is given in Appendix B. We will noy tio give general conditions under which as-
sumptions 8.a—8.c are satisfied, since such conditionsdanalitably be, in the general setting of this paper, very
complicated (involving the initial law:, the vector fieldg of the stochastic differential equation, the geometry of
the state spacE and the reset kerné{).

5. The case when a piecewise smooth pdf exists

Equation (14) is an evolution equation for the measureadfunctiont — ;. In many situations of practical
interest, the measures admit a pdfp;, with respect to the volume measurneon E. In this section we show that,
if the functionp : (z,t) — p:(x) is — at least piecewise — smooth, then equation (14) simedtasly gives birth to
an evolution equation for — p; and to static relations that hold for &lI> 0 (the so-called “boundary conditions”,
although the name is not entirely appropriate here).



5.1. Assumptions about the guard and the boundary

Turning equation (14) into an evolution equation for the pitifnately boils down to playing with “integration by
parts” formulas, for judiciously chosen test functions.dfioso, we shall need additional assumptions concerning the
topological regularity of the guard set and the smoothnésedoundary.

Assumption 9. The guard set is a regular closed subset 6fF (i.e.,G is a closed set and it is equal to the closure
of its interior in OF).

Assumption 10. For eachg € Q such that, > 2, the domainE, is C?-manifold with corners.

See Lee [26, chapter 14] for basic definitions and results@ming manifolds with corners. Assumption 10 is
sufficient for the divergence theorem to hold (see Appendfrrfa precise statement). The divergence theorem is a
multi-dimensional generalization of the “integration bgr{s” formula, and will be the key tool to compuk& v for
Radon measures with a smooth density.

We denote by, the surface measure éiv,, and define the surface meassien 0F by

s= > s+ > > b (18)

qeQ qEQ z€IE,
ng>2 ng=1

We further denote bw the outward-pointing unit normal vector @, which is well-defined-almost everywhere
ondE. Since the procesX is allowed to start o@E \ G, which is a subset of° (see Section 2), the vector fields
have to satisfy the following conditions (on the smooth pad E \ G, hences-almost everywhere):

(fo,n) <0, and (f;,n)=0,1<I<r. (29)

Otherwise, for anyq, z) € OE\ G, the solution of equation (2) would leave the domain “insaeously” (i.e. almost
surely in any time neighborhood 0j.

5.2. Connecting the mean intensity of forced jumps with tbeability current (local result)

Let G° denote the subset of the guard éethere at least one of the “noise” vector fields is not tangerthé
boundary, i.e.G° = {z € G, 3l €{1,...,r}, (f;,n) # 0}. The following results relates the mean intensity of
forced jumps with the probability currejitdefined by equation (16).

Proposition 11. Assume that the measurgsadmit a pdfp, = p(-,t) for all ¢ > 0 on some open subskt C E,
withp € C?1(U x Ry ). Define the outward probability currepf®® = (j,,n) onU N G. Then, for allt > 0,

a) j't > 0andrf(T) = [ jP"* ds is the mean intensity of forced jumpsBm G,
b) the pdfp; vanishes o/ N G°.

See Appendix C for the proof. This proposition provides twgportant conclusions concerning forced jumps.
The first one is that, when a smooth pdf exists in a neighbatlodthe guard set, the mean intensity of forced jumps
(which appears in the FPK equation) is equal to the outwamd éibthe probability current. This is consistent with
the physical interpretation of the probability currejyids dt is the probability mass (“number of particles”) escaping
from the domain througts duringdt.

The second conclusion is that the familiar “absorbing bauyitconditionp, = 0 holds on the guard set as soon as
one of the “noise” vector fields is active in the normal dii@et Note that the pdf does not vanish on the boundary in
the example of subsection 3.2, which is a piecewise detéstitiprocess with forced jumps. A “physical” explanation
of absorbing boundaries, in the spirit of subsection 4.8, lafound in [28] and also, more recently, in [27].

5.3. Evolution equation for the pdf and “boundary” conditi® (global result)

The local result of subsection 5.2 will now be used to obtagreaeral formulation of the FPK equation (14) in
terms of a probability density function, when one exists @nsimooth enough. Lel ¢ E°\ E9 be a closed set
of m-measure zero — typically] will be a closed hypersurface in applications. Note ttia= E \ H is an open
neighborhood of the boundaf)#. Assume now that the following holds:



Assumption 12.  a) u; admits a pdp; with respect tan, on the whole state space, for alP> 0,
b) p € C*! (U x Ry), with 22 and Fp locally integrable onE x R .

Then, it follows from the proof of Proposition 11 (see Appkrd, equation (48)) that
(L u) () = / Fpydm + / o ds , VvI' € & suchthafl Cc U, (20)
r OENT

where[" is the formal adjoint of_, i.e., the differential operator defined by

8 foq
F:qw— — i o Z azzaza . (21)

The (possible) lack of differentiability gf; on H therefore translates into the fact that the Radon meagures

Be(T) = /FFpt dm + /(9Emrj°” ds — (L™u) (T). (22)

do not vanish in general. This, in turn, is closely relatethexistence of a non-vanishingsingular part (see Ap-
pendix D for a definition) in the source tenfi® = r, K, as stated by the following result.

Theorem 13. Let Assumption 12 hold. Then the conditions 8.a—8.c of Hmed@ are satisfied, and the following
evolution equation holds of° \ H, for all t > 0:

dp d(r K)
& _ p
ot~ P Tim

—Aps. (23)
Moreover, according to Proposition 11,

a) r&( fmG j2" ds is the mean intensity of forced jumps,

b) and the absorbing boundary conditign,= 0, holds onG°

Finally, them-singular part(r; K )+ of r, K is supported by the séf U (9F \ G) and satisfies the following “conser-
vation equations”:

c) (nK)t=p8>00nH,
d) (nK)*=—[ jo"tds >00ndFE\G.

See Appendix E for the proof.

6. Examples

6.1. A class of models with spontaneous jumps

Ouir first series of examples covers a large family of modelbauit forced jumps® = @). The reset kernek is
assumed to satisfy the following assumption:

Assumption 14. There exists a kerndt™* on E such that
m(dz) K (z,dy) = m(dy) K (y,dz) . (24)

(We donotassume thak* is a Markov kernel, i.e. thak™*(y, -) is a probability measure.) The following result is an
easy consequence of Theorem 8:
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Corollary 15. If there exists a pdp € C?!(E x R,.), then the measures andr$™ are absolutely continuous with

respect tam,
dry drre
— =\ = K*(\ 25
dm Dt ( Pt) (25)

dm
and the following evolution equation holds:

e

ot

Assumption 14 holds for several classes of models knowrdtitdrature: pure jump processes with an absolutely
continuous reset kernel, the switching diffusions of Gheisal. [19, 18] and also the SHS of Hespanha [20].

Example 16. Pure jump processes occur when= 0, i.e. when there is no continuous dynamics. We consider here
the case wher& is absolutely continuousk (z, dy) = k(z,y) m(dy). For instance, if the amplitude of the jumps
is independent of the pre-jump state and distributed amgrd the pdfp, thenk(z,y) = p(y — z). In this case
Assumption 14 holds witt*(z, dy) = k(y, «) m(dy). Introducing the function(z, y) = A(z)k(z,y), equation 26
turns into the well-knowmaster equatiofiL 7, eq. 3.5.2]:

Op '
Rt = [Olple.n) - 2(m)pl.0) mdo). 27)
In particular, when all modes are purely discretg & 0), this is just the usual forward Kolmogorov equation for a
continuous-time Markov chain.

Example 17. In the case of switching diffusions, the state space is ofdha £ = Q x R™ (with Q a countable set
andn > 1) and the reset kernel of the form

K((0.2).) = > mag(2) q12) - (28)
q'#q
wheren(z) = (myq (2)) is @ stochastic matrix for al € R™. Assumption 14 is fulfilled withi(* defined by
K*((Qa Z)a ) = Z FQ/Q(Z) 6(‘1’72) ! (29)
q'7#q

Equation 15 becomes in this case the familiar generalizéddeRiation for switching diffusion processes [see, e.g.,
23, 24]: forallx = (¢,z) € E andt > 0,

Ip .

3¢ (@ 1) = (Lpe)(2) + D Aa(2)pe(d' s 2) = M) pi () (30)
q'#q

wherel,,(z) = M, z) mgrq(2).

Example 18. The SHS of Hespanha [20] are also definedtr: Q x R™, but this time the post-jump stafe,, is

determined by applying a reset mé@p: £ — E° to the pre-jump staté(~ , ¥ being chosen randomly in a finite of
reset mapd ;. The reset kernel can therefore be written as

K(z,) = Z T5(2) 0w, () » (31)
;

with 74 () the probability of choosing the reset mép given thatX - = x. Provided that the functions;, are local
C!-diffeomorphisms, the kernd{ fulfills Assumption 14 with

K @)=Y Y m@ |k 6, (32)
ko yew, T({z})

where Ji(y) is the Jacobian determinant &f, aty. Therefore, introducing a stochastic intensiy = )\ g, for
each one of the reset maps, we recover thanks to Corollayel§eneralized FPK equation given by Hespanha [20,
p. 1364]:

FLURNZOEEDY > (TEw - i) (39)
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Figure 1: State space for the model of subsection 6.2.

6.2. A class of models with forced jumps

The measure-valued formulation of the generalized FPK temuél4) paves the way for an easier proof of some
recent results [3], concerning GSHS with forced jumps artdrd@nistic resets. A typical example of this class of
process is the thermostat model of Malhamé and Chong [28thatas been extended to several dimensions in [3].
We consider the class of GSHS models satisfying the follgwissumptions.

Assumption 19. a) The model only has forced jumps € 0) with deterministic resets, i.e. there exists a map
¥ : G — E°suchthatK (z, - ) = dy(,) forall z € G.

b) All modes have the same dimensign= n, the guard set is the whole boundary & JE) and is of class>!
(in particular, it has no corners).

c) H = ¥(G) is aC* hypersurface, closed i, and ¥ is a C'-diffeomorphism frond; to H.

The state space of this model is depicted on figure 1. The gggmthatG = OF is only here for the sake of
simplicity and could easily be relaxed. Boundaries withnews and piecewise smooth reset maps could be considered
as well. The model considered in [3] also includes purelgrdie modes (i.en, € {0,n} for eachg € Q), which
cause no real additional difficulty.

The measurd (x, - ) is supported by for all z, which implies that the source tenmpK is also supported b¥/,
hence ism-singular. Therefore, even if the diffusion is non-degate(i.e. the diffusion matrixa®) is uniformly
positive definite), we know from subsection 5.3 that the pd#ill not be smooth on. Accordingly, we make the
following smoothness assumption for the measures

Assumption 20. a) u; admits a pdp; with respect tan on the whole state space, for al> 0,
b) pe C>' ((E\ H) x R,), p; andVp, have at most a jump discontinuity (discontinuity of the fistl) onH.

Then Assumption 12 holds, which allows Theorem 13 to be agpMoreover, the result of subsection C.1 holds on
each componertt of £\ H —i.e., forallp € C2(E),

. 1 K n
(L") (1) = /@Fptder/ ¥ (Jr,moc) ds + 3 Z/ fiope (f1,000) ds,
c ac — Joc

wherenyc is the outward-pointing unit vector a#C. Summing over the components and using Proposition 11.b
yields

* -ou -in 1 : a
(L) p = /Fptsodm+/GJ§t<pd5 —/Jt pds — 52/ fip (£1,m00) (p; —pf) dsu,  (34)
E H 1=17H

wheren,, is the unit normal vector ofl oriented from side to sideb and;i* = <j§b) —ji“), nab>. The superscripts

a/bindicate the value of a discontinuous function on the cgwesling side off (but none of these quantities actually
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depend on the chosen labelling of the sides). The last tertheoright-hand side vanishes, becaligg; is a Radon
measure by Theorem 8, whereas this term only involves thedfider derivatives op (throughf;p). Thereforep, is
continuous on the séf® = {z € H, 3l € {1,...,r}, (f;,n.) # 0} and the measure% of Theorem 13 are given
by

50 = [ e, (35)
HNTr
The conclusions of Theorem 13 can then be summarized asviollo
a) The usual Fokker-Planck equatidi, /0t = Fp;, holds on each component&f \ H.
b) The conservation probability current through the resap s ensured by the relation

-ou d(sg oW -in
Jtt:%.jto\pv (36)

wheres; o U is the pushforward (image measure)ygf by ¥ 1.
¢) The absorbing boundary conditign,= 0, holds onG®.

d) The density; is continuous orff°.

7. Conclusions

A general measure-theoretic formulation of the FokkenBkaKolmogorov equation has been presented, in the
modern framework of GSHSs. This formulation is new, and sthallow GSHS practitioners to get a better under-
standing of how a given system behaves in terms of evolufidimeoprobability mass in the state space.

Technical tools have been provided, in order to derive tipfieikform of the evolution equation when a probability
density function exists and satisfy sufficient regularitpditions. In particular, it has been shown that the gerte?&l
equation allows to recover all previously known instandethe FPK equation for stochastic hybrid systems.

Of course, an important issue is now to provide sufficientditions for the existence of a “smooth enough”
probability density function and the uniqueness of thetsmiLto the generalized FPK equation. The literature alyead
provides such conditions for processes defined by stochdstéerential equations and (in some cases) switching
diffusions; see, e.g., [5, 22, 25] and the references theEsitending these results to other types of GSHSs, incfudin
models with forced jumps, is an important perspective fturfeiwork.

In addition to providing a better understanding of GSHSs RRK equation is also a powerful tool for the analysis
of low-dimensional systems, for which an approximate $otutan be obtained using numerical methods (for instance
finite volume methods). It is especially useful for the comagpion of the stationary distribution, as shown in [4] a
nontrivial three-dimensional model of a wind turbine. Thipe of application of the FPK equation to the analysis
of GSHSs relies on the availability of software componefitsrdng an easy implementation of efficient numerical
methods, in the spirit of Mitchell’s Level Set Toolbox [29]¥or Hamilton-Jacobi equations. The development of
such a toolbox is another important direction for future kvor
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A. Smooth maps and vector fields orE

The following definitions are natural extensions to the ylstate spacé” of the usual definition on subsets
of R™.

Amapy : E — R is said to bek-times continuously differentiable off — in short,p € C*(E) — if , =
©(q, -)is C* on E, in the usual sense for afle Q \ QY, i.e. if there is an open substof R"« such thatz, C U
andy extends to @'* map onU.

A vector fieldg on F is defined as a first-order differential operator with respec¢he continuous variables. Its
action on a continuously differentiable functipne C'*(E) will be denoted by, where

Y gi(a.2)52(q,2) onE\ EY,
(89)(@:2) =4 ! d onEl (37)

The number of “components” @f depends on the mode To simplify the notations, we shall agree that the indices
andj always correspond to summations on the number of continvamiesbles, and drop the explicit dependence.on
For instance, the definition @fp on £ \ E< can be rewritten agy = >, g’ gﬁ. A vector field is said to bé-times
continuously differentiable o if g’(g, - ) is C* on E, in the usual sense for ajle 9\ Q¢ andalli € {1,...,n,}.
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Finally, under Assumption 10, the following version of theedgence theorem holds (since each component of
the state space is@2-manifold with corners) :

Theorem 21(see, e.g., [26]) Let Assumption 10 hold. Then, for all compactly suppoéédsector fieldf on E,

/E div(f) dm — /8 (fn) ds. (38)

B. Proof of Theorem 8

Let C2(E) denote the set of all compactly supported C?(E). The following lemma is an easy consequence
of the smoothness of the vector fields:

Lemma 22. For all ¢ € C*(E), t — fo ws)(p)ds is differentiable on the right, with the right-continuous
derivativet — (L* ) ().

In the sequel, “right-continuous” is abbreviated as “rc

< Assume that both 8.a and 8.b hold. Then each term of (13) hatedvative on the right. Differentiating both
sides proves that (14) holds for all> 0, hence that*u, is a Radon measure and that> L*u, is rc. Moreover,
integrating the inequalityL* 1| < |u}| + 2r; yields that, for all” € &,

t t
[ pl@ds < [ ] ) ds + 2 B{N} < oo, (39)
0 0

Thereforet — |L* 4] is locally integrable, which proves 8.c.
o Assume now that 8.a and 8.c hold, and get= L*u; + r(K — I), forall ¢ > 0. Clearly, u; is a Radon
measuret — u; is rc and

t
/ pp = (e — po)p, Vt>0, Ve C2(E). (40)
0

Moreover, for alll’ € &,

ot ot
/ ] (T) ds < / L j1s] (D) ds + 2 B{ N} < 00, (1)
0 0

which shows that — || is locally integrable. Therefore, using standard appratiom techniques and a monotone
class argument, it can be proved that (40) still holdsfet I, ' € &, i.e. thatt — p; is the “derivative” oft —
in the sense of definition 7.b.

o Finally, assume that 8.b and 8.c hold. Then, forat C?(E), equation (13) can be rewritten as

/ / (RC(dw,ds) — (L*ps)(dz)ds) / / ((REK)(dx,ds) — & (dz) ds) , (42)
G x]05t] E°x]0;t]
where¢, = p, — (L*ps) (E°N - ) —r®(K—I). The measureB“ andr® have been defined in subsection 3.1. Clearly,

& € M. (F) andt — & is locally integrable. Using once more standard approxonaechniques, one can prove
that (42) still holds wherp = 11, with T" a compact subset @f. In this case the right-hand side vanishes, yielding

RE@Eg0st)) = [ (2 () ds. (43)

Moreover, since — R%(I'x]0;t]) is increasing and +— (L*u;)(T) is rc, we have(L*u;)(T') > 0 for all ¢ > 0.
This allows to extend (42) to all € &, using a monotone class argument, thus proving the exisigie mean jump
intensityry” = (L*us)(G N -) for the forced jumps.

C. Proof of Proposition 11

Sincep is of classC?! on U x R, it is easily seen that the assertions 8.b and 8.c holt pwith y}(dz) =
%(m, t)m(dz). Using the same arguments as in the proof of Theorem 8, dviglthat 8.a and the generalized FPK
equation hold o/ as well. The rest of the proof is split into three parts.
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C.1. Computation of.* u,
Using the definitions of. (equation (4)) and, (equation (16)), we find that

Lepy = (Z 0% Z azlazj) Pt

. 1 ajpt

N Jt¢+§; 027 821 Z az@zﬂ
) -

= jt@+%Z@ <awpt8zi>

0

o3 5 5 (niin )

i,

. 1 .
= Jt(p—f— 5 l_zldlv (fl(ppt fl) . (44)

Moreover, using the product rule for the divergence operatal the fact tha¥'p, = — div(j,), which is a direct
consequence of equations (16) and (21), we get

jrp = div(pi,) — ¢ div(§,) = div(ei) + ¢ Fpe. (45)
Finally, equations (44) and (45) together with the divergetheorem yield :

@)@ = [ Lodu = [ Lopam
E E
. 1
/ div(gj,) + ¢ Fpi+ 5 > div(fippe 1) | dm
2 25
: 1 ¢
/ (is,m) d5+/ o Fpydm + o Z/ (fropif1,m) ds
OF

/sDFptdm+/ pigttds + 5 Z/ fipp: (fi,m) ds. (46)
E oFE

C.2. Proof of assertion 11.b

LetV = (0F)gmootn U, Where(9F) .0 denote the smooth part of the boundakryis an open subset 6fE.
For eachyy € C%(V), there exists a sequence of functians € C2(U), with their support in a fixed compact set,
such thatp,, = 0 anddy,,/On = n onV, andy,, — 0 uniformly. Equation (46) holds for each Taking limits
with respect ton on both sides, and using the fact thiat 1., ) (¢,) — 0 (sinceL*y, is a Radon measure dh), we
find that}, [, np: (fi, n)2 ds = 0. Thereforex — p(z,t) >, (fi, n>2 vanishes-almost everywhere oW, hence

everywhere o E by continuity. This proves assertion 11.b since (f;, n)> > 00onG°.

C.3. Proof of assertion 11.a

It is now proved that, for each € OF, eitherp;(x) = 0 or (f;,n), = 0foralll € {1,...,r}. As a consequence,
forall ¢ € C?(U), the last term of equation (46) vanishes :

(L) () = / Fpopdm + / oI ds, (47)
E oF

and therefore the Radon measiirg:; can be rewritten as

wmm:/mm+/ jo ds (48)
T OENT
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forallI" € & such thaf® C U. Substituting the result into the generalized FPK equdti@ yields
i) = [(Fpdmt [ s () (T) - (r). (49)
r OENT

Finally, forall¢ > 0 and alll’ € & suchthal’ ¢ GNU, we haveu; (') = 0 and .. Fp; dm = 0, both becausa(T") =
0, and(r,K)(I') = 0 becauseX is a kernel fromE to E°. Therefore, as a consequence of (4$)(I') = [, jo"" ds
forallT' € & such tha ¢ G N U. The outward currenf®®® is thus positives-almost everywhere oY, hence
everywhere by continuity. This proves assertion 11.a.

D. The Lebesgue-Radon-Nikodym theorem

This appendix recalls a fundamental result of measure yhedrich is used in the statement and proof of Theo-
rem 13. The reader is referred to, e.g., [10, chapter 4], dsiddefinitions and terminology not recalled here. In this
section,(E, £) denotes any measurable space — not necessarily the hydiedsgiace as defined in subsection 2.1.

Theorem 23(Lebesgue-Radon-Nikodym)etwvy, 12 be positives-finite measures ofF, £). Then there is a unique
positives-finite measure;;- and a unique (up te-everywhere equality) measurable functipsuch that

a) vi- andv, are mutually singular, i.edA € &, vi-(A) = 0 andwy(E \ A) =0,

b) 14 has the following decomposition

vi(A) = /Afdug +vi(A), VAeE. (50)

The measured — [, fdi, andvi- are respectively called thrabsolutely continuous pagnd thesingular part
of v1 with respect tas. Equation (50) is called the Lebesgue-Radon-Nikodym deuasition ofr;, with respect tas.
The functionf is called the Radon-Nikodym derivative of with respect tas, is usually denoted bgl’j—;.

E. Proof of Theorem 13

The assumption 8.b of Theorem 8 holds witlil') = [ %, sincea—f existsm-almost everywhere and is locally
bounded. Moreover, as in the proof of Proposition 11, theterce of;” onGNU = G follows from the fact that 8.b
and 8.c hold orU. We have thus proved that the assumptions 8.a (existeng ahd 8.b of Theorem 8 (existence
of ) hold on the whole state space, which implies that 8.c and¢neralized FPK equation (14) hold as well.

As a consequence of equation (48), we have

(L) (CNU) = Fpydm + / jotds = / Fp,dm + / 5o ds (51)
rnU OENTNU T OENT

forallT € &, sincem(E C U) = 0 anddE C U. Equation (22) thus simplifies int6,(I") = — (L*u,) (I'N H),
which proves that the measurgsare supported byi.
According to (51), the generalized FPK equation (14) candmthposed as

() = /Fptdm + / §ouds + (L*py) (DN H) + (K — I)(T). (52)
r OENT

Uniqueness of the Lebesgue-Radon-Nikodym decomposititnrespect tan yields

By WDy (53)
0= / JeRtds + (L) (DOH) + (rK)" () — (r€) (), (54)
OENI’
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where we have used that
/ __op
Mt(dz) - —($, t) m(dx) )

(ref)(cte) = S0 () ) 4 (o) (),

re(dz) = A(z) pe(x) m(dz) + r{ (dz).

The first line of the system (53)—(54) is precisely (23), amelgecond one readily splits into 13.c and 13.d by consid-
ering the terms that are supported respectivelybgnddFE \ G. The proof of Theorem 13 is thus complete.



