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Channel Capacity Estimation Using
Free-Probability Theory

Øyvind Ryan, Member, IEEE, and Mérouane Debbah, Senior Member, IEEE

Abstract—In many channel measurement applications, one
needs to estimate some characteristics of the channels based on
a limited set of measurements. This is mainly due to the highly
time varying characteristics of the channel. In this paper, it will
be shown how free probability can be used for channel capacity
estimation in MIMO systems. Free probability has already been
applied in various application fields such as digital communica-
tions, nuclear physics, and mathematical finance, and has been
shown to be an invaluable tool for describing the asymptotic
behavior of many large-dimensional systems. In particular, using
the concept of free deconvolution, we provide an asymptotically
(with respect to the number of observations) unbiased capacity
estimator for MIMO channels impaired with noise called the
free probability based estimator. Another estimator, called the
Gaussian matrix-mean-based estimator, is also introduced by
slightly modifying the free-probability-based estimator. This
estimator is shown to give unbiased estimation of the moments
of the channel matrix for any number of observations. Also, the
estimator has this property when we extend to MIMO channels
with phase off-set and frequency drift, for which no estimator has
been provided so far in the literature. It is also shown that both
the free-probability-based and the Gaussian matrix-mean-based
estimator are asymptotically unbiased capacity estimators as the
number of transmit antennas go to infinity, regardless of whether
phase off-set and frequency drift are present. The limitations in
the two estimators are also explained. Simulations are run to assess
the performance of the estimators for a low number of antennas
and samples to confirm the usefulness of the asymptotic results.

Index Terms—Deconvolution, free-probability theory, limiting
eigenvalue distribution, MIMO, random matrices.

I. INTRODUCTION

R ANDOM matrices, and in particular, limit distributions of
sample covariance matrices, have proved to be a useful

tool for modelling systems, for instance in digital communi-
cations [1], nuclear physics [2], and mathematical finance [3].
A typical random matrix model is the information-plus-noise
model

(1)
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and are assumed independent random matrices of di-
mension , where contains i.i.d. standard (i.e., mean
0, variance 1) complex Gaussian entries. Equation (1) can be
thought of as the sample covariance matrices of random vectors

. can be interpreted as a vector containing the system
characteristics (direction of arrival for instance in radar applica-
tions or impulse response in channel estimation applications).

represents additive noise, with a measure of the strength of
the noise. Classical signal processing estimation methods con-
sider the case where the number of observations is highly
bigger than the dimensions of the system , for which (1) can
be shown to be approximately

(2)

Here, is the true covariance of the signal. In this case, one
can separate the signal eigenvalues from the noise ones and infer
(based only on the statistics of the signal) on the characteristics
of the input signal. However, in many situations, one can gather
only a limited number of observations during which the char-
acteristics of the signal does not change. In order to model this
case, and will be increased so that , i.e.,
the number of observations is increased at the same rate as the
number of parameters of the system [note that (2) corresponds
to the case ].

Previous contributions have already dealt with this problem.
In [4], Dozier and Silverstein explain how one can use the
eigenvalue distribution of to estimate the
eigenvalue distribution of by solving a given equation. In
[5] and [6], we provided an algorithm for passing between the
two, using the concept of multiplicative free convolution, which
admits a convenient implementation. The implementation
performs free convolution exactly based solely on moments.

In this paper, channel capacity estimation in MIMO systems
is used as a benchmark application by using the connection
between free probability theory and systems of type (1). For
MIMO channels with and without frequency off-sets, we de-
rive explicit asymptotically unbiased estimators which perform
much better than classical ones. We do not prove directly that
the proposed estimators work better than the classical ones, but
present simulations which indicate that they are superior. We
remark that the proposed capacity estimators will not be unbi-
ased, it is needed that either the number of transmit antennas
or the number of observations be large to obtain precise esti-
mation. This limitation is most severe for channels with fre-
quency off-sets, where it is needed in any case that the number
of transmit antennas is large to obtain precise estimation. A case
of study where channel estimation using free deconvolution has
been used can be found in [7] and [8].
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This paper is organized as follows. Section II presents the
problem under consideration. Section III provides the basic con-
cepts needed on free probability, including free convolution.
In Section IV, we formalize a new channel capacity estimator
based on free probability, and explain some of the shortcom-
ings for MIMO models with frequency off-sets. Another esti-
mator, called the Gaussian matrix-mean-based estimator is then
formalized to address the shortcomings of the free-probability-
based estimator. We also present arguments for the Gaussian
matrix-mean-based estimator performing better than the free-
probability-based estimator, in some specific cases. These ar-
guments are, however, not definite; we do not prove that one
estimator is better than the other for the cases considered. The
limitations of the estimators are also explained. The low rank
of the channel (less than or equal to four) is the most notable
limitation. In Section V, simulations of the estimators are per-
formed and compared, where several quantities are varied, like
the noise variance, rank, and dimensions of the channel ma-
trix, and the number of observations. In the following, upper
(lower boldface) symbols will be used for matrices (column vec-
tors) whereas lower symbols will represent scalar values,
will denote transpose operator, conjugation and

Hermitian transpose. will represent the iden-
tity matrix. will denote the nonnormalized trace on
matrices, while denotes the normalized trace.
Also, we will throughout the paper use as a shorthand nota-
tion for the ratio between the number of rows and the number
of columns in the random matrix model being considered.

II. STATEMENT OF THE PROBLEM

In usual time-varying measurement methods for MIMO sys-
tems, one validates models [9] by determining how the model
fits with actual capacity measurements. In this setting, one has
to be extremely cautious about the measurement noise, espe-
cially for far-field measurements where the signal strength can
be lower than the noise.

The MIMO measured channel in the frequency domain can
be modeled by [10] and [11]

(3)

where and are, respectively, the measured
MIMO matrix ( is the number of receiving antennas, is the
number of transmitting antennas), the MIMO channel
and the noise matrix with i.i.d. standard Gaussian entries.
Note that we suppose the noise matrix to be spatially white.
In the realm of the channel measurements under study, the an-
tenna outputs are connected to different radio frequency (RF)
chains. As a consequence, for the case under study, the channel
noise impairments are independent from one received antenna to
the other. When one RF chain is used, the noise to be considered
is not white. This case can also be studied within the framework
of free deconvolution but goes beyond the scope of the paper.
We suppose that the channel , although time varying, stays
constant (block fading assumption) during blocks. and

are and diagonal matrices which represent
phase off-sets and phase drifts (which are impairments due to
the antennas and not the channel) at the receiver and transmitter

given, respectively, by (these are supposed to vary on a block
basis)

where the phases and are random. We assume all phases
independent and uniformly distributed.

We will also compare (3) with the simpler model

(4)

which is (3) without phase off-sets and phase drifts.
The capacity per receiving antenna (in the case where the

noise is spatially white additive Gaussian and the channel is not
known at the transmitter) of a channel with channel matrix
and signal-to-noise ratio (SNR) is given by

(5)

where are the eigenvalues of . The problem con-
sists, therefore, of estimating the eigenvalues of
based on few observations , which is paramount for mod-
elling purposes. Note that the capacity expression supposes
that the channel is perfectly known at the receiver and not
at the transmitter. In practice, with the noise impairment, the
channel will never be estimated perfectly and, therefore, (5) is
not achievable. However, for MIMO modelling purposes, for
which the capacity is often the matching metric, one needs to
compare the capacity of the model with (5).

There are different methods actually used for channel ca-
pacity estimation [12]–[15]. Usual methods discard, through
an ad-hoc threshold procedure, all channels for which the
channel-to-noise ratio is lower than a
threshold and then compute

where is the number of channels having a signal to
noise ratio higher than the threshold. One of the drawbacks of
this method is that one will not analyze the true capacity but only
the capacity of the “good channels.” Moreover, one has to limit
the channel measurement campaign (in order to have enough
channels higher than the threshold) only to regions which are
close (in terms of actual distance) enough to the base station.

Other methods, in order to have a capacity estimation at a
given SNR (different from the measured one with noise vari-
ance ), normalize each channel realization and then com-
pute for a different value of the noise variance (for example
10 dB) the capacity estimate . In the case where is high
and is low, one usually finds a high capacity estimate as one
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measures only the noise, which is known to have a high multi-
plexing gain.

In this contribution, we will provide a neat framework, based
on free deconvolution, for channel capacity estimation that cir-
cumvents all the previous drawbacks. Moreover, we will deal
with model (3), for which no solution has been provided in the
literature so far.

III. FRAMEWORK FOR FREE CONVOLUTION

Free-probability [16] theory has grown into an entire field
of research through the pioneering work of Voiculescu in the
1980s. Free probability introduces an analogy to the concept of
independence from classical probability, which can be used for
noncommutative random variables like matrices. These more
general random variables are elements in what is called a non-
commutative probability space. This can be defined by a pair

, where is a unital -algebra with unit , and is a nor-
malized (i.e., ) linear functional on . The elements
of are called random variables. In all our examples, will
consist of matrices or random matrices. For matrices,
will be . The unit in these -algebras is the identity
matrix . The analogy to independence is called freeness.

Definition 1: A family of unital -subalgebras will
be called a free family if

(6)

A family of random variables are said to be free if the algebras
they generate form a free family.

When restricting to spaces such as matrices, or functions
with bounded support, it is clear that the moments of uniquely
identify a probability measure, here called , such that

. In such spaces, the distributions of and
give us two new probability measures, which depend only

on the probability measures associated with when these
are free. Therefore, we can define two operations on the set of
probability measures: Additive free convolution for the
sum of free random variables, and multiplicative free convolu-
tion for the product of free random variables. These
operations can in many cases be used to predict the spectrum of
sums or products of large random matrices: If has an eigen-
value distribution which approaches and has an eigen-
value distribution which approaches , then in many cases the
eigenvalue distribution of approaches .

One important probability measure is the Marc̆henko Pastur
law [17], which has the density

(7)

where ,
and is Dirac measure (point mass) at 0. According to the
notation in [18], is also the free Poisson distribution with rate

and jump size . We will need the following formulas for
the first moments of the Marc̆henko Pastur law:

(8)

Equation (8) follows immediately from applying what is called
the moment-cumulant formula [18], to the free cumulants [18]
of the Marc̆henko Pastur law . The (free) cumulants of the
Marc̆henko Pastur law are [5]. Cumulants and the
moment-cumulant formula in free probability have analogous
concepts in classical probability.

describes asymptotic eigenvalue distributions of Wishart
matrices, i.e., matrices on the form , with an

random matrix with independent standard complex Gaussian
entries, and . This can be seen from the following
result, where the difference from (8) vanishes when .

Proposition 1: Let be a complex standard Gaussian
matrix, and set . Then

(9)

This will be useful later on when we compute mixed moments of
Gaussian and deterministic matrices. The Proof of proposition 1
is given in Appendix B.

We will also find it useful to introduce the concept of multi-
plicative free deconvolution: Given probability measures and

. When there is a unique probability measure such that
, we will write , and say that is

the multiplicative free deconvolution of with . There is no
reason why a probability measure should have a unique decon-
volution, and whether one exists at all depends highly on the
probability measure which we deconvolve with. This will not
be a problem for our purposes: First of all, we will only have
need for multiplicative free deconvolution with , and only in
order to find the moments of the channel matrix. The problem
of a unique deconvolution is therefore addressed by an existing
algorithm for free deconvolution [6], which finds unique mo-
ments of (as long as the first moments of is nonzero).

We will need the following definitions.
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Definition 2: By the empirical eigenvalue distribution of an
random matrix we mean the random atomic measure

where are the (random) eigenvalues of .
Definition 3: A sequence of random variables in

probability spaces is said to converge in distribution if,
for any , we have that
the limit exists as .

To make the connection between models (4), (3) and model
(1), we need the following result [5].

Theorem 1: Assume that the empirical eigenvalue distribu-
tion of converges in distribution almost
surely to a compactly supported probability measure . Then
we have that the empirical eigenvalue distribution of also
converges in distribution almost surely to a compactly supported
probability measure uniquely identified by

(10)

where is dirac measure (point mass) at .
Theorem 1 can also be restated (through deconvolution) as

When we have observations in a MIMO system as in (4)
or (3), we will form the random matrices

(11)

with

This is the way we will stack the observations in this paper. It
is only one of many possible stackings. A stacking where the
ratio between the number of rows and the number of columns
converges to a quantity between 0 and 1 would allow us to use
Theorem 1 (which implicitly assumes ) directly to
conclude almost sure convergence, which again would help us
to conclude that the introduced capacity estimators are asymp-
totically unbiased. Such a stacking can also reduce the variance
of the estimators. Even though the stacking considered here may
not give the lowest variance, and may not give almost sure con-
vergence, we show that its variance converges to 0 and provides
asymptotic unbiasedness for the corresponding capacity esti-
mator. For the case

(12)

can be combined with Theorem 1 to give the approximation

(13)

for a single observation. This approximation works well when
is large. For many observations, note that

when there is no phase off-set and phase drift, so that
the approximation

(14)

applies and generalizes (13). The ratio between the number of
rows and columns in the matrices and is

, considering the horizontal stacking of the ob-
servations in a larger matrix. It is only this stacking which will
be considered in this paper.

When phase off-set and phase drift are added, it is much
harder to adapt Theorem 1 to produce the moments of

. The reason is that Theorem 1 really helps us to
find the moments of . In the case without
phase off-set and phase drift, this is enough since these mo-
ments are equal to the moments of . However,
equality between these moments does not hold when phase
off-set and phase drift are added. A procedure for converting
between these moments may exist, but seems to be rather
complex, and will not be dealt with here. In Section IV, we will
instead define an estimator for the channel capacity which does
not stack observations into the matrix at all. Instead, an
estimation will be performed for each observation, taking the
mean of all the estimates at the end.

IV. NEW ESTIMATORS FOR CHANNEL CAPACITY

In this section, two new channel capacity estimators are
defined. First, a free probability based estimator is introduced,
which [for model (4)] will be shown to be asymptotically
unbiased with respect to the number of observations. Then,
by slightly modifying the free probability based estimator, we
will construct what we call the Gaussian matrix mean based
capacity estimator. This estimator will be shown, for model
(4) and (3), to give unbiased estimates of the moments of the
channel matrix for any number of observations. The computa-
tional complexity for the two estimators lies in the computation
of eigenvalues and moments of the matrix , in addition
to computing the free (de)convolution in terms of moments.
For the matrix ranks considered here, free (de)convolution
requires few computations. The complexity in the computation
of eigenvalues and moments of the matrix grows with

(the number of receiving antennas), which is small in this
paper. The computational complexity in the estimators grows
slowly with the number of observations, since the dimensions
of does not grow with .

The two estimators are stated as estimators for the lower order
moments of . Under the assumption that this ma-
trix has limited rank (such as here), estimators for lower
order moments can be used to define estimators for the channel
capacity, since the capacity can be written as a function of the
lowest moments when the matrix has rank , as explained here.

A. The Free-Probability-Based Capacity Estimator

The free-probability-based estimator is defined as follows.
Definition 4: The free-probability-based estimator for the ca-

pacity of a channel with channel matrix of rank , denoted
, is computed through the following steps.
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1) Compute the first moments of the sample co-
variance matrix (i.e., compute

for );
2) use (14) to estimate the first moments of

,
3) estimate the nonzero eigenvalues of

from . Substitute these in
(5).

We also call the free probability based estimators
for the first moments of .

Steps 2 and 3 in definition 4 need some elaboration. To ad-
dress step 3, consider the case of a rank 3 channel matrix. For
such channel matrices, only the lowest three moments
of need to be estimated in order to estimate the
eigenvalues. To see this, first write

(15)

where , and are the three nonzero eigenvalues of
. This quantity can easily be calculated from the

elementary symmetric polynomials

by observing that

can be written as

(16)

can in turn be calculated from the power poly-
nomials

by using the Newton-Girard formulas [19], which for the three
first moments take the form
and . If the channel matrix has
a higher rank , similar reasoning can be used to conclude that
the first moments need to be estimated. In the simulations, the
eigenvalues themselves are never computed, since computation
of the moments and the Newton-Girard formulas make this un-
necessary.

To address step 2 in definition 4, a Matlab implementation
[20] which performs free (de)convolution in terms of moments
as described in [6] was developed and used for the simulations
in this paper. Free (de)convolution is computationally expen-
sive for higher order moments only: For the first four moments,
step 2 in definition 4 is equivalent to the following.

Proposition 2: Let and be
as in definition 4. Then

(17)

where .
The Proof of proposition 2 can be found in Appendix A. The

following is the main result on the free probability based es-
timator, and covers the different cases for bias and asymptotic
bias with respect to number of observations or antennas.

Theorem 2: For observation, the following holds for
both models (3) and (4):

1) and are unbiased. and are biased, with the
bias of given by

In particular, and are asymptotically unbiased
when (with kept fixed), i.e.

2) is asymptotically unbiased when (with
kept fixed) and has rank , i.e.,

.
For any number of observations with model (4), the following
holds:

1) and are unbiased. and are biased, with the
bias of given by

In particular, and are asymptotically unbiased
when either or (with the other kept
fixed), i.e.

for .
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2) is asymptotically unbiased when either
(with kept fixed), or (with
kept fixed) and has rank , i.e.,

.
The Proof of Theorem 2 can be found in Appendix C. The

bias in Theorem 2 motivates the definition of the estimator of
the next section. The free probability based estimator performs
estimation as if the Gaussian random matrices and deterministic
matrices involved were free. It turns out that these matrices are
only asymptotically free [16], which explains why there is a bias
involved, and why the bias decreases as the matrix dimensions
increase.

B. The Gaussian Matrix-Mean-Based Capacity Estimator

The expression for the Gaussian matrix-mean-based ca-
pacity estimator is motivated from computing expected values
of mixed moments of Gaussian and deterministic matrices
(Lemma 1). This results in expressions slightly different from
(17). We will show that the Gaussian matrix-mean-based esti-
mator can be used for channel capacity estimation in certain
systems where the free probability based estimator fails. The
definition of the Gaussian matrix-mean-based capacity esti-
mator is as follows for matrices of rank .

Definition 5: The Gaussian matrix-mean-based estimator for
the capacity of a channel with channel matrix of rank ,
denoted , is defined through the following steps.

1) For each observation, perform the following:
a) Compute the first moments of the

sample covariance matrix (i.e., com-
pute for ),

b) find estimates of the first four mo-
ments of by solving

(18)

where .
Form the estimates , of
the first moments of ;

2) estimate the nonzero eigenvalues of
from . Substitute these in

(5).

We also call the Gaussian matrix mean based es-
timators for the first moments of .

While a Matlab implementation [20] of free (de)convolution
is used for the free (de)convolution in the free probability based
estimator, the algorithm for the Gaussian matrix mean based
capacity estimator used by the simulations in this paper follows
the steps in definition 5 directly.

Note that (18) resemble the formulas in (17) when
. is used in Definition 5 since the

observation matrices are not stacked together in a larger
matrix in this case. Instead, a mean is taken of all estimated
moments in step 1 of the definition. This is not an optimal
procedure, and we use it only because it is hard to compute
mixed moments of matrices where observations of type (3)
are stacked together.

The following theorem is the main result on the Gaussian
matrix mean based estimator, and shows that it qualifies for its
name.

Theorem 3: For either model (4) or (3), the following holds.
1) The estimators are unbiased, i.e.

2) is asymptotically unbiased as (with
kept fixed) when has rank , i.e.,

.
3) In the case of observation, and

. In particular, when has rank
.

The Proof of Theorem 3 can be found in Appendix C.

C. Limitations of the Two Estimators

We have chosen to define two estimators, since they have dif-
ferent limitations.

The most severe limitation of the Gaussian matrix-mean-
based capacity estimator, the way it is defined, lies in the
restriction on the rank. This restriction is done to limit the
complexity in the expression for the estimator. However, the
computations in Appendix C should convince the reader that
capacity estimators with similar properties can be written down
(however complex) for higher rank channels also. Also, while
the free-probability-based estimator has an algorithm [6] for
channel matrices of any rank, there is no reason why a similar
algorithm can not be found for the Gaussian matrix-mean-based
estimator also. The computations in Appendix C indicate that
such an algorithm should be based solely on iteration through a
finite set of partitions. How this can be done algorithmically is
beyond the scope of this paper.

For the free probability based estimator the limitation lies
in the presence of phase off-set and phase drift [model (3)]:
When model (3) is used, the comments at the end of Section III
make it clear that we lack a relation for obtaining the moments
of from the moments of .
Without such a relation, we also have no candidate for a ca-
pacity estimator (capacity estimators in this paper are motivated
by first finding moment estimators). In conclusion, the stacking
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of observations performed by the free-probability-based esti-
mator does not work for (3). Only the Gaussian matrix mean
based estimator can perform reliable capacity estimation for
many observations with (3). The second limitation of the free
probability based estimator comes from the inherent bias in
its deconvolution formulas (17). The bias is only large when
both and are small (see Theorem 2), so this point is less
severe (however, channel matrices down to size 4 4 occur in
practice). The bias in the lower order moments is easily seen to
affect capacity estimation from the following expansion of the
capacity

(19)

which can be obtained from substituting the Taylor expansion

(20)

into the definition of the capacity. Here is SNR, and
are the moments of . It is clear from (19) that,

at least if we restrict to small , the expression is dominated
by the contribution from the first-order moments. If is small
we therefore first have a high relative error in the first moments
after the deconvolution step, which will propagate to a high rel-
ative error in the capacity estimate for small due to (19). Thus,
free-probability-based capacity estimation will work poorly for
small and . The same limitation is not present in the
Gaussian matrix-mean-based estimator, since its moment esti-
mators are unbiased.

The limitation on the rank can in some cases be avoided, if
we instead have some bounds on the eigenvalues: If we instead
knew that at most four of the eigenvalues are not “negligible,”
we could still use proposition 2 to estimate the capacity. This
follows from results on the continuity of multiplicative free con-
volution, which has been covered in [21]. Such continuity issues
are also beyond the scope of this paper.

V. CHANNEL CAPACITY ESTIMATION

Several candidates for channel capacity estimators for (4)
have been used in the literature. We will consider the following:

(21)

These will be compared with the free-probability-based
and the Gaussian matrix-mean-based estimators.

Fig. 1. Comparison of various classical capacity estimators for various number
of observations, model (4). � � ���� � � �� receive antennas, � � ��

transmit antennas. The rank of� was 3.

Fig. 2. Comparison of � and � for various number of observations,
model (4). � � ���� � � �� receive antennas, � � �� transmit antennas.
The rank of � was 3.

A. Channels Without Phase Off-Set and Phase Drift

In Fig. 1, and are compared for various number of
observations, with , and a 10 10 channel matrix of
rank 3. It is seen that only the estimator gives values close
to the true capacity. The channel considered has no phase drift
or phase off-set. and are seen to have a high bias.

In Fig. 2, the same and channel matrix are put to the test
with the free-probability based and Gaussian matrix mean
based estimators for various number of observations. These
give values close to the true capacity. Both work better than
for small number of observations.

The free-probability based estimator converges faster (in
terms of the number of observations) for lower rank channel
matrices. In Fig. 3, we illustrate this for 10 10 channel ma-
trices of rank 3, 5, and 6. Simulations show that for channel
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Fig. 3. � for various number of observations, model (4). � � ���� � � ��

receive antennas, � � �� transmit antennas. The rank of� was 3, 5, and 6.

Fig. 4. Comparison of capacity estimators which worked for model (4) for in-
creasing number of observations. Model (3) is used. � � ���� � � �� receive
antennas, � � �� transmit antennas. The rank of� was 3.

matrices of lower dimension (for instance 6 6), we have
slower convergence to the true capacity.

B. Channels With Phase Off-Set and Phase Drift

In Fig. 4, the estimator is compared to the free-prob-
ability-based estimator, the Gaussian matrix-mean-based esti-
mator and the true capacity, for various number of observations,
and with the same and channel matrix as in Figs. 1 and 2.
Phase off-set and phase drift have also been introduced. In this
case, the free-probability-based estimator and the -estimator
seem to be biased.

In Fig. 5, simulations have been performed for various .
Only observation was used, receive antennas, and

transmit antennas. The channel matrix has rank 3. It is
seen that the Gaussian matrix mean based capacity estimator is
very close to the true capacity, There are only small deviations
even if one observation is present, which provides a very good

Fig. 5. � for� � � observation, � � �� receive antennas,� � �� transmit
antennas, with varying values of �. Model (3). The rank of� was 3.

Fig. 6. � for � � � observation, � � � receive antennas, � � � transmit
antennas, with varying values of �. Model (3). The rank of� was 3.

candidate for channel estimation in highly time-varying envi-
ronments. The deviations are higher for higher .

In Fig. 6 we have also varied and used only one observation,
but we have formed another rank 3 matrix with, receive
antennas, transmit antennas. It is seen that the deviation
from the true capacity is much higher in this case. We have in
Fig. 7 increased the number of observations to 10, and used the
same channel matrix. It is seen that this decreases the deviation
from the true capacity.

Finally, let us use a channel matrix of rank 4. In this case,
we have to increase the number of observations even further to
accurately predict the channel capacity. In Fig. 8, Gaussian ma-
trix-mean-based capacity estimation is performed for a rank 4
channel matrix with receive antennas, transmit an-
tennas. 1 observation is performed. If we increase the number of
observations, Gaussian matrix-mean-based capacity estimation
is seen to go very slowly towards the true capacity. To illustrate
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Fig. 7. � for� � �� observations, � � � receive antennas,� � � transmit
antennas, with varying values of �. Model (3). The rank of� was 3.

Fig. 8. � for � � � observation, � � � receive antennas, � � � transmit
antennas, with varying values of �. Model (3). The rank of� was 4.

this, Fig. 9 shows Gaussian matrix-mean-based capacity estima-
tion for 10 observations on the same channel matrix. It is seen
that this decreases the deviation from the true capacity.

VI. CONCLUSION

In this paper, we have shown that free probability provides
a neat framework for estimating the channel capacity for
certain MIMO systems. In the case of highly time varying
environments, where one can rely only on a set of limited noisy
measurements, we have provided an asymptotically unbiased
estimator of the channel capacity. A modified estimator called
the Gaussian matrix-mean-based estimator was also introduced
to take into account the bias in the case of finite dimensions
and was proved to be adequate for low rank channel matrices.
Moreover, although the results are based on asymptotic claims
(in the number of observations), simulations show that the

Fig. 9. � for� � �� observations, � � � receive antennas,� � � transmit
antennas, with varying values of �. Model (3). The rank of� was 4.

estimators work well for a very low number of observations
also. Even when considering discrepancies such as phase drifts
and phase off-set, the algorithm, based on the Gaussian ma-
trix-mean-based estimator, provided very good performance.
Further research is being conducted to take into account spatial
correlation of the noise (in other words, deconvolving with
other measures than the Marc̆henko Pastur law).

APPENDIX A
THE PROOF OF PROPOSITION 2

Let be the moments of the
moments of . Then [6]

(22)

Note that (22) can also be inverted to express the in terms of
the instead

(23)

Note also that the moments of are

(24)
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By the definition of the free-probability-based estimator

where the moments of are . Denoting by
, we have that

. Denote also the moments of by , the moments
of by , and as before the moments of
by . Write also as in proposition 2.
For the third moment, we can apply (22), (24) and (23) in that
order

which is the third equation in (17) of proposition 2. Calcula-
tions are similar for the other moments, but more tedious for the
fourth moment.

APPENDIX B
THE PROOF OF PROPOSITION 1

In all the following, the matrices are of dimension . We
need some terminology and results from [22] for the Proof of
proposition 1. Let be the set of permutations of elements

. For , let also be the permutation in
defined by

(25)

let denote the equivalence relation on generated
by

(26)

and let and denote the number of equivalence classes
of consisting of even numbers or odd numbers, respectively.
In [22, Corollary 1.12] (slightly rewritten), it is stated that

(27)

Equation (9) can, thus, be proved by calculating all values of
and for in and . We prove here the case
, to get an idea on how the calculations are performed. For

the six permutations in , we obtain the following numbers by
using (25) and (26) shown in Table I.

TABLE I

Here means that .
Putting the numbers into (27) we get

which is the third equation in (9). We skip the computations for
the other equations in (9), since they are very similar and quite
tedious, since has elements.

APPENDIX C
THE PROOF OF THEOREMS 2 AND 3

We will first show the following.
Lemma 1: For systems of type (1), the following holds when

is deterministic:

(28)

where .
We remark that it is the assumption that is Gaussian which

makes the mixed moments expressible in terms of
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the individual moments . Without the Gaussian assumption,
there is no reason why such a relationship should hold. Also,
while our statements are made only for the four first moments,
we remark that similar relationships can be written down for
higher moments also, which deviate from corresponding free
probability based estimates only in terms of the form
(that the deviation terms are on this form is actually a conse-
quence of [22, Theorem 1.13]).

Before we prove Lemma 1, let us explain how it proves The-
orems 2 and 3. We substitute for (i.e., )
for the case of observations, for (i.e., ) for
the case of one observation, and for in Lemma 1.
Since the first two equations in (28) coincide with the corre-
sponding first two formulas in (17) and (18), we see that the
free probability based and the Gaussian matrix mean based es-
timators coincide for the first two moments in the case of only
one observation, and that they are both unbiased for these two
moments (regardless of which model is used). This proves the
third statement of Theorem 3, and the statements on and

in Theorem 2.
The third and fourth formulas in (18) are seen to equal the

third and fourth formulas in (28), which explains why the
Gaussian matrix mean based estimator has no bias in the third
and fourth moments, thereby proving the first statement of
Theorem 3 [model (3) is also addressed due to (12)]. The bias
in the free probability based estimator is easily found by noting
that the only differences between the third formula in (17) and
the third formula in (28) are the terms and

. This proves statements 2 in Theorem 2.
To see that is asymptotically unbiased when

(with kept fixed), it is sufficient to prove that the variance
of all moments go to zero. This will remedy the fact
that the capacity is a nonlinear expression of the moments. The
proof for this part is a bit sketchy, since a similar analysis of
such variances has already been done more thoroughly in con-
nection with the theory of second order freeness [23]. We need
to analyze

(29)

This analysis is very similar to the one in the Proof of Lemma 1
below: One simply associates each term in with a circle
with edges, and identify the edges which correspond to
equal, Gaussian elements (this corresponds to the equivalence
relation of Appendix B). Computation of
and is thus reduced to counting the number
of terms which give rise to the different identifications of
the edges on two circles (one circle for each trace). We need
only consider identifications which are pairings, due to the
statements in Appendix B when the matrix entries are Gaussian
(see also [24], [22]).

One sees immediately that the edge identifications which can
be found in is a subset of the edge identifica-
tions which can be found in . These edge iden-
tifications, therefore, cancel each other in the expression for the
variance, and we may, therefore, restrict to edge identifications
which only appear in . These correspond to the

edge identifications where at least one identification across the
two circles takes place. If we perform one such edge identifica-
tion first, we are left with one circle with edges (when
the two identified edges are skipped). After the identification
of the remaining edges, the vertices can be associated with a
choice among the elements , or a choice among the
elements (matching with matrix dimensions). Simi-
larly as in Appendix B, let denote the number of vertices of
the first type, the number of vertices of the second type. It is
clear that after the identification of edges. Since

is not enough to cancel the leading -factor
in (recall that only goes to infinity, not ),
we conclude that (29) is , so that the variance of all mo-
ments go to 0 as claimed, and we have established the second
statement of Theorem 3.

is, following the same reasoning, asymptotically unbiased
when or for model (4), and when and

for model (3). This proves the two second statements
in Theorem 2, which concludes the Proof of Theorems 2 and 3.

Proof of Lemma 1: Two facts are important in the proof.
First of all, if are standard i.i.d. complex Gaussian
random variables, then, according to remark 2.2 in [24],

(30)

Second, for such . we remark that the
proof presented here can be simplified by using the following
trick, taken from [22]: Rewrite a complex standard Gaussian
random variable to the form , where

are i.i.d. complex, standard, and Gaussian. ([22] uses
this trick, and lets go to infinity).

Set . Let us first look at the case for the
second moment. Note that

(31)

where the terms in have expectation zero due to (30). We see
that

• the first (deterministic) term is , matching the first term
in the second equation of (28);

• the next-to-last term is , according to the second
equation in (9). This matches the last term in the second
equation of (28)
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• By direct computation, the second term is

This is nonzero only for , so that this equals

• Similarly for the third term, which equals

• The fourth and fifth term equal the second and third due to
the trace property, so that the sum of the contributions of
the second to fifth terms are , which matches
the second term in the second equation of (28).

Thus, contributions on the right-hand side (RHS) of (31) add up
to the RHS of the second equation in (28), proving the case for
the second moment.

For the third moment, write

(32)

where the terms in all have expectation zero, and

(i.e., the terms in have the terms adjacent to
each other). We see that

• the first and fourth terms in (32) match the first and fifth
terms on the RHS of the third equation in (28) [due to (9)].

• Three of the terms in are seen to contribute with

and the remaining three terms are seen to contribute

Addition gives .
• All terms in are seen to contribute

so that the total contribution is .
• Using the second formula in (9), three terms in are seen

to contribute

and the remaining three terms contribute

Addition gives .
• All terms in are seen to contribute

where the factor 2 comes in since for a com-
plex standard Gaussian random variable. Simplifying we
get , so that the total contribution is

Thus, contributions on the RHS of (32) add up to the RHS of
the third equation in (28), proving the case for the third moment
also.

Now for the fourth equation in (28). The details in this are
similar to the calculations for the third moment, but much more
tedious. The first term for the fourth moment formula in (28) is
trivial, as is the last term which comes from the fourth formula in
(9). The second and third terms are calculated using exactly the
same strategy as for the third moment. The remaining fourth,
fifth, and sixth terms require much attention. We address just
some of these.

Computing gives the sixth term, where
the terms in are similar to those for (i.e., the terms
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, are adjacent to each other), i.e., four terms have the
same trace as

while four terms have the same trace as

It is clear that equals

and that equals

so that . Similarly, for
(where the terms are not adjacent to each other),

we need to address four terms which all have the same trace as

and four terms which have the same trace as

By counting terms carefully, we see that these eight terms to-
gether contribute with (during
this count of terms, we need the fact that when
is complex, standard, and Gaussian). All in all we have that

which is the sixth term in the fourth equation of (28).
The details for the fourth and fifth terms are dropped.
As can be seen, the requirement that is deterministic

is not strictly necessary in the Proof of Lemma 1, so that we
could replace it with any random matrix independent from ,
the moment with , and with

.
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