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Dual-Polarized Wireless Communications:
From Propagation Models to

System Performance Evaluation
Claude Oestges, Bruno Clerckx, Maxime Guillaud, and Mérouane Debbah

Abstract—In this paper, we address the potential benefits of
dual-polarized arrays in multi-antenna wireless systems. After an
extensive literature overview of experimental data, we present a
new and simple analytical framework to model dual-polarized
Rayleigh and Ricean fading channels for arbitrary array sizes.
The model relies on a limited number of physical parameters,
such as the channel spatial correlations, the channel co-polar and
the cross-polar ratios and the antenna cross-polar discrimination.
Then, we investigate the multiplexing advantage of dual-polarized
transmissions through the evaluation of the ergodic mutual
information, for both TITO and MIMO systems. Finally, the
performance of two space-time coding schemes (Alamouti O-
STBC and uncoded Spatial Multiplexing) is evaluated via a
detailed analysis of the pairwise error probability.

Index Terms—MIMO, polarization, propagation, mutual in-
formation.

I. INTRODUCTION

IN RECENT years, increasing attention has been paid to
Multiple-Input Multiple-Output (MIMO) broadband wire-

less communication systems. However, antenna spacings of
at least half a wavelength at the subscriber unit and ten
wavelengths at the base station are usually required for achiev-
ing significant multiplexing and/or diversity gains. Hence,
the use of possibly co-located orthogonally-polarized anten-
nas appears as a space- and cost-effective alternative [1].
Indeed, orthogonal polarizations ideally offer a much better
separation between channels, through a large decorrelation at
both transmit (Tx) and receive (Rx) sides. In this paper, we
consider both Two-Input Two-Output (TITO) and MIMO dual-
polarized systems, and we use as a reference the corresponding
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TITO or MIMO uni-polarized system. In the TITO case, both
the transmit and receive arrays are made of two spatially
separated antennas with orthogonal polarizations, in order to
combine both spatial and polarization diversity/multiplexing.
The reference scenario is then a TITO configuration with simi-
larly separated uni-polarized antennas. MIMO nr×nt schemes
(for even values of nt and nr) are modeled by considering
that the transmit (resp. receive) array is made of nt/2 (resp.
nr/2) dual-polarized sub-arrays, extending over a given length
Lt (resp. Lr). The reference scenario is then a nr × nt uni-
polarized scheme based on antenna arrays extending over the
same lengths. As can be noticed, we carry out comparisons
by keeping constant the dimensions of the MIMO matrix.
Indeed, these dimensions equal the number of required RF
chains, which are the most expensive components in a system.
Note that using two co-located antennas with orthogonal
polarizations at both ends of the link already constitute a
2 × 2 system. Another definition, motivated by the spatial
extension of the antenna arrays, consists in considering the
above scenario as a Single-Input Single-Output (SISO) system
with dual-polarized antennas. This last definition, which has
often been used in the literature, however leads to unfairly
comparing a uni-polarized 2×2 system with a so-called 2×2×
two-polarization system, although the latter is actually a 4×4
scheme, which needs to be compared with a uni-polarized 4×4
system if we want to keep the number of RF chains equal.

Despite a number of recent studies focusing on spatial chan-
nel models, only a limited number of papers have addressed
the polarization issue [1]–[9], theoretically or experimentally,
mainly because the (de-)coupling effect between orthogonal
polarizations is a complex mechanism. On the one hand, a
number of geometry-based models are available for simulating
dual-polarized transmissions, the most recent model being
used by the 3GPP group [6]. Although these models are
very useful in simulating signal processing techniques, they
do not allow for analytical manipulations (e.g. in expresions
of the mutual information or the error probability). One
the other hand, analytical formalisms are needed to design
space-time coding and precoding schemes. One can make a
comparison with single-polarized schemes: whereas geometry-
based models (e.g. the one-ring model of [10]) have been
heavily used in simulations, analytical approaches such as
the Kronecker [11] or eigenbeam [12] models have proved
very useful in code design. Hence, there is an obvious appeal
to develop an analytical formalism to model dual-polarized
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multi-antenna channels. The first goal of this paper is precisely
to provide a sufficiently general analytical framework using
a reduced number of physically sound parameters. Based on
this model, it is then possible to clearly identify the benefits
of multiple polarizations from a performance point of view.
This constitutes the second objective of this paper.

In Section II, we carry out a thorough literature overview
of experimental or electromagnetic results regarding dual-
polarized channels. These results are then used in Section III
to build an analytical model combining the effects of space
and polarization separations. In Section IV, we investigate
whether dual-polarized systems may possibly increase the
system throughput. Finally, in Section V, we analyze the
performance of Orthogonal Space-Time Block Coding (O-
STBC) and Spatial Multiplexing from an error probability
viewpoint.

In this paper, E{x} = x̄ represents the expectation of
random variable x, ∗ stands for element-wise conjugation, H ,
for conjugate transpose, x → a indicates that x tends toward
a, vec(A) is the operator that forms a vector from successive
columns of matrix A, |x| is the absolute value of x, ‖A‖F

is the Frobenius norm of A, det {A} is the determinant of
matrix A, Tr {A} is the trace of matrix A, � is the Hadamard
product, ⊗ is the Kronecker product, In stands for the n× n
identity matrix, and 1n×m denotes a n×m matrix with unit
entries.

II. CHANNEL CHARACTERIZATION OF DUAL-POLARIZED

SYSTEMS

A. Mechanisms and Parameters

Ideally, the cross-polar transmissions (e.g. from a vertically-
polarized Tx antenna to a horizontally-polarized Rx antenna)
should be equal to zero. This is actually not the case owing to
two depolarization mechanisms: the use of imperfect antenna
cross-polar isolation (XPI) and the existence of a cross-polar
ratio (XPR) in the propagation channel. Both effects combine
to yield a global cross-polar discrimination (XPD).

The first mechanism is well-known in antenna theory and
is easily accounted for by means of the cross-polar antenna
pattern. Analytically, this can be approximated by a coupling
matrix at transmit or receive sides

Mt =
[

1 √
χa,t√

χa,t 1

]
and Mr =

[
1 √

χa,r√
χa,r 1

]
,

where the scalar antenna XPI is defined as χ−1
a,t and χ−1

a,r

at Tx and Rx respectively. Note that antenna XPI is the
only mechanism affecting line-of-sight (LOS) components.
Scattered components (either coherent or non coherent) are
affected by both XPI and XPR, although these are well
separated effects if the antenna cross-coupling is represented
by Mt and Mr.

Throughout this paper, channel matrices are denoted differ-
ently, depending on the scenario and the antenna quality, as
detailed below:

1) H× designates the dual-polarized channel matrix com-
bining spatial separation, dual-polarized arrays using
antennas with infinite XPI;

2) H×,a = MrH×Mt designates the dual-polarized chan-
nel matrix combining spatial separation, dual-polarized
arrays and finite antenna cross-polar isolation (the sub-
script a means that antenna XPIs are accounted for);

3) H designates the uni-polarized channel matrix (all an-
tennas are identically polarized) accounting only for
spatial correlations at both ends,

4) G is the 2 × 2 matrix representing the dual-polarized
TITO channel for orthogonally-polarized co-located an-
tennas (there are no spatial correlation effects) with
infinite XPI, whereas Ga = MrGMt is the equivalent
matrix, but for antennas with finite XPI.

Furthermore, for Ricean fading channels, the above matrices
can be decomposed into a coherent part (we then write H̄×,
H̄, Ḡ, etc. in agreement with our notation) and a non-coherent
Rayleigh-fading part, proportional to H̃×, H̃, G̃, etc.

Quite arbitrarily, we decided to model the downlink channel
(from the base station to the user terminal). Naturally, the up-
link channel matrix (from the user terminal to the base station)
is simply obtained by transposition of the downlink channel
matrix. For dual-polarized arrays with co-located vertically
and horizontally-polarized (abbreviated as VH) antennas, we
write the downlink channel matrix as

G =
[
gvv gvh

ghv ghh

]
. (1)

Denoting by pij = |gij |2 the instantaneous gain on channel
ij, we may define various cross-polar ratios [1] (XPDs could
be similarly defined based on Ga rather than G):

1) uplink cross-polar ratios (uplink XPR)

XPRUv = pvv/pvh (2)

XPRUh = phh/phv (3)

2) downlink cross-polar ratios (downlink XPR),

XPRDv = pvv/phv (4)

XPRDh = phh/pvh. (5)

We may also define a unique co-polar ratio as

CPR = pvv/phh. (6)

Clearly, all these parameters are not independent. In particular,
the following relationships hold true:

CPR =
XPRUv

XPRDh

=
XPRDv

XPRUh

. (7)

The above definitions only concern channel gains. To de-
fine the phase relationships, G can be characterized by its
correlation matrix, given by E

{
vec

(
GH

)
vec

(
GH

)H
}

. The
diagonal elements of this 4×4 matrix are the various average
gains E{pij}, while the off-diagonal elements express the
different co-, cross- and anti-polar correlations. The cross-
polar correlations (XPC) correspond to the classical transmit
and receive correlations, the correlation between gvv and ghh

is defined here as the co-polar correlation (CPC), and the
correlation between gvh and ghv, as the anti-polar correlation
(APC).
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B. Overview of Experimental Results

Most experimental results provide a partial characterization
of Ga, or even of H×,a, providing values of the global XPD
on the up- or downlink, and rarely of the CPR.1 Hence,
it is sometimes difficult to isolate the various contributions
(antenna XPI, channel XPR and spatial correlations). However,
in most cases, one may expect that experimental arrays are
made of co-located antennas with a large XPI, and that only
significant results (i.e. with XPD lower than the XPI) are
reported in these papers. Hence, this implies that for these
values, XPD ≈ XPR, and it should be possible to characterize
G, at least partially, from the results summarized below. This
is the reason why we use XPR denominations in the following,
but it should be reminded that these are formally XPD values.

1) Outdoor Scenarios: As far as uplink single-input
multiple-output (SIMO) results are concerned, these usually
consider a vertically polarized transmitter and a base sta-
tion using an orthogonally-polarized array with vertical and
horizontal polarizations (VH) or 45-degree tilted polarization
(slant scheme). For a VH reception, the measured parameters
are therefore XPRUv and the receive cross-polar correlation:

• the experimental uplink XPR in [13] reaches values of
6 dB and 7.4 dB respectively in macro- and microcells
(at 900 MHz), with mean envelope cross-polar (receive)
correlation coefficients around 0.1;

• in [14], the uplink XPR is about 12 dB in suburban areas
and 7 dB in urban areas at 463 MHz, while the power
receive correlation is quasi zero;

• in [15], at 1800 MHz, the power receive correlations are
below 0.3 and the uplink XPR values are around 7 to 9
dB in various urban and suburban non-LOS scenarios.

In [16], experimental data recorded at 1800 MHz in urban and
suburban microcells with handheld terminals highlight that

• the uplink XPR levels approximately equal 7 dB in urban
areas and vary from 8 to 16 dB in suburban areas for
vertical Tx polarization, whereas XPRUh varies from -4
to -1 dB in urban areas and from 2 to -6 dB in suburban
areas,

• the estimated corresponding CPR levels vary between 5.5
and 4 dB in urban areas and from 3 to 11 dB in suburban
areas,

• the estimated downlink XPR values are independent from
the Tx polarization, and equal approximately 1.5 dB and
5 dB respectively in urban and suburban areas.

For ±45 degree reception scheme, it is found [14] that the
XPR is reduced to 0 dB, but at the expense of a larger receive
power correlation (≈ 0.44).

Other experiments have dealt with handheld terminals [17]
and have yielded XPR values as low as 2 dB, with mean
correlation levels below 0.1 for a VH reception scheme, and
around 0.15 for a slant reception scheme. The low measured
XPR is explained in the paper by interaction between the
antenna and the human head.

Let us now consider dual-polarized (MIMO) results. In [1],
non-LOS picocell scenarios have been investigated at 1900

1Many denominations also exist: some papers define XPD/XPR values as
horizontal-to-vertical ratios, etc. In all cases, we translated the denominations
used in these papers into our own denominations.

MHz. However, the use of directional antenna patterns has
resulted in different results depending on the array orientation
(the orthogonal arrays were placed along a vertical or a
horizontal baseline). For the former case, we have that

XPRUv ≈ XPRDh >> XPRDv ≈ XPRUh , (8)

implying that the CPR is close to 0 dB via (7), and that, on the
average, pvh << phv. For the horizontal baseline, the situation
is as follows:

XPRUv ≈ XPRDv >> XPRUh ≈ XPRDh , (9)

implying a large CPR and pvh ≈ phv on the average.
In [18], downlink measurement results are presented for a

VH-to-VH array scheme at 5.3 GHz in various non-line-of-
sight urban environments (corresponding to Rayleigh fading
situations). Values of XPRUv range from 7.6 (macrocells) to
8 dB (microcells) while the values of XPRUh range from
2.3 (macrocells) to 6.9 dB (microcells). Meanwhile, corre-
sponding CPR values range from 1.6 (macrocells) to 0.4 dB
(microcells). Surprisingly, that translates approximately into
downlink XPR values quasi-independent of the Tx polariza-
tion, especially in microcells (the agreement in microcells is
almost perfect). Estimated values of XPRDv = XPRDh range
from 4 to 6 dB in macrocells and equal 7.5 dB in microcells.
Transmit and receive cross-polar correlations are almost all
equal to 0.3, but no indication is given about the co- and anti-
polar correlations.

Results in [19] concern rural areas at 2.5 GHz. The XPR
averaged over XPRDv and XPRDh (in dB scale) varies from
2 to 19 dB, with a median of 8.5 dB.

In [9], macrocell propagation data at 1.9 GHz suggest that
the ratio between the mean values of pvv and phh (averaged
over the small scale fading) is close to 0 dB, with a standard
deviation of 3 dB. Note that this ratio is different from the
average ratio between the instantaneous values of pvv and
phh. As an example, it is observed that the instantaneous
CPR can be as significant as ±15 dB, due to spatial fading
decorrelation. The downlink XPR varies from 5 to 15 dB,
with an average value of 9 dB, and decreases with the path-
loss, reflecting higher XPR in LOS than in NLOS scenarios.
The co-, anti-, and cross-polar correlations are very low, but
one must mention that co- and anti-polar correlations include a
spatial decorrelation effect, as antennas are not all co- located.

2) Indoor Scenarios: In [1], in non-LOS picocells at 1800
MHz, downlink XPR values are about 6.5 dB, irrespective
of the Rx polarization, and CPR levels range from -4 to 4
dB. That implies that uplink XPR levels clearly depend on
the Tx polarization. In [20], XPR values as low as 3 dB are
measured in an office environment at 2.4 GHz. In [21], cross-
polar correlations are found to be very small in a typical indoor
environment.

In [22], uplink XPR values at 5.2 GHz vary between 7
and 15.7 dB (for XPRUv ) and 8.6 to 14.4 (for XPRUh ). Fur-
thermore, the difference XPRUv − XPRUh is not necessarily
positive, but may vary from -3 to +3 dB.

In [7], [8], measurements have been carried out at 5.1
GHz using a VH scheme at both link ends. The CPR
varies from 2 to 6 dB, and the vertical XPR levels are
higher than the horizontal XPR values, although the difference
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[XPRUv − XPRUh ], which can be as high as 8 dB, is sensibly
higher than [XPRDv − XPRDh ], which varies between 1 and
4 dB. All correlation coefficients are on average below 0.6,
but show a large standard deviation. Finally, indoor results of
[9] are very similar to their outdoor results reported above,
but with average downlink XPR around 7 dB.

3) Summary: Table I, which summarizes the most complete
results, reveals that there is a clear lack of data for dual-
polarized channels. Hence, it is somehow not straightforward
to infer general conclusions from the above analysis. Yet, some
results ( [7], [8], [15], [16], [18], [20], [21] and [1]-indoor)
share, at least approximately, the following properties:

• the average CPR usually varies between 0 and 6 dB in
outdoor environments (with maximum values of 11 dB in
suburban areas), and between -4 and 6 dB indoors; this
non-zero value can be easily explained by the polarization
selectivity of the reflection and diffraction processes [4],
[20],

• there is a clear difference between the vertical and
horizontal uplink XPR levels, which are given according
to (7) once the downlink XPR and CPR are known,

• from the data, the downlink XPR levels XPRDv and
XPRDh are often equal (or at least close), with measured
values of 4 to 8 dB in NLOS outdoor cases, up to 15 to
19 dB in LOS urban and rural areas; 3 to 8 dB in NLOS
indoor cases, and up to 15 dB in LOS indoor scenarios
(note that when the downlink XPR values have not been
measured, we have estimated them based on (7)),

• the cross-polar correlations (XPC) are usually small,
• the co- and anti-polar correlations (CPC/APC) seem to

be small (but the results are really scarce).

C. Output from Theoretical Models

Electromagnetic models yield some precious insight into
dual-polarized propagation. As an example, a ray-tracing tool
[23] has been applied in a macrocellular urban environment at
2.4 GHz, with the receiver moving along a street perpendicular
to the link axis. The ray-tracing tool accounts for reflections up
to the third order, as well as wedge and corner diffraction. It is
found that the narrowband channel for a 2× 2 dual-polarized
VH-to-VH transmission has the following properties:

• the CPR is lognormally distributed with an average value
of 4 to 7 dB,

• the downlink XPRs are identical for both v and h polar-
izations, being lognormally distributed with an average
value of 12 dB,

• the transmit and receive cross-polar correlations are
small,

• the co-polar and anti-polar correlations vary between 0.8
and 0.9.

Naturally, ray-tracing cannot account for smaller and non-
specular obstacles, which are expected to provide lower CPR
and XPR levels. Other papers have reached similar conclu-
sions, using rough scattering models [24]. Note that the first
three properties are in line with the experimental campaigns,
while the last one is not (but there are only a few available
data to compare with).

III. CHANNEL MODELS FOR DUAL-POLARIZED SYSTEMS

A. Dual-Polarized TITO Rayleigh Fading Channels

In Rayleigh fading, it has been observed [25, p. 109] that
the spatial correlation properties (modeled by H̃ and R )
are independent of the polarization, especially in macro- and
microcells, provided that the direction spectra are similar
for all antennas. This namely implies that, if antennas are
directional, they should be similarly oriented. In other words,
the CPR (resp. XPR) measured on H̃× should be equal to
the CPR (resp. XPR) measured on G̃. If this assumption
holds true, the dual-polarized Rayleigh channel matrix with
spatially-separated antennas may be rewritten as

H̃× = H̃� X̃. (10)

In (10), H̃ is modeled as a uni-polarized correlated Rayleigh
channel, while X̃ models both the correlation and power im-
balance impacts of the channel depolarization. It is important
to note that it would be incorrect to write H̃× = H̃ � G̃.
Indeed, this expression contains twice a fading term, in both
H̃ and G̃. Hence, we have introduced a new matrix X̃, whose
goal is to model only the power imbalance and the phase-shifts
between the four channels. The relationship between X̃ and
G̃ is however very simple, as G̃ = g X̃, where g is a scalar
complex Gaussian term representing fading.

In (10), multipath fading is entirely modeled by H̃, using
the classical expression [26]

vec(H̃H) = R1/2 vec(H̃H
w ), (11)

where H̃w is the classical i.i.d. complex Gaussian matrix and
R = E{vec(H̃H)vec(H̃H)H} is a 4 × 4 spatial correlation
matrix,

R =

⎡
⎢⎢⎣

1 t∗ r∗ s∗1
t 1 s∗2 r∗

r s2 1 t∗

s1 r t 1

⎤
⎥⎥⎦ (12)

with t and r being the transmit and receive antenna
correlations, and s1 = E

{
H̃(1, 1)H̃∗(2, 2)

}
and s2 =

E
{
H̃(1, 2)H̃∗(2, 1)

}
being the cross-channel correlations

[27].
To model X̃ for VH-to-VH downlink transmissions, we

resort to the results of Section II. Hence, a fairly general model
accounting for the generally observed trends summarized
above and satisfying (7) is given by

vec
(
X̃H

)
=⎡

⎢⎢⎣
1

√
μχϑ∗

√
χσ∗ √

μδ∗1√
μχϑ μχ

√
μχδ∗2 μ

√
χσ∗

√
χσ

√
μχδ2 χ

√
μχϑ∗√

μδ1 μ
√
χσ

√
μχϑ μ

⎤
⎥⎥⎦

1/2

vec
(
X̃H

w

)
,

(13)

where

• μ and χ represent the inverse of, respectively, the co-polar
and the downlink cross-polar ratios (CPR and XPRDv =
XPRDh) and are assumed to be constant in this paper,

• σ and ϑ are the receive and transmit correlation co-
efficients for co-located antennas (i.e. the correlation
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TABLE I
OVERVIEW OF EXPERIMENTAL RESULTS (XPR AND CPR VALUES ARE EXPRESSED IN DECIBELS)

Scenario Freq. [GHz] XPRUv XPRUh CPR XPRD XPC CPC/APC
Suburban [14] 0.46 12 - - - ≈ 0 -
Urban [14] 0.46 7 - - - ≈ 0 -

Macrocell [13] 0.9 6 - - - 0.1 -
Microcell [13] 0.9 7.4 - - - 0.1 -

Suburban/urban NLOS [15] 1.8 7 to 9 - - - ≤ 0.3 -
Urban microcell [16] 1.8 7 -4 to -1 4 to 5.5 1.5 - -

Suburban microcell [16] 1.8 8 to 16 -6 to -2 3 to 11 5 - -
Urban NLOS microcell [18] 5.3 8 2.3 1.6 7.5 ≈ 0.3 -
Urban NLOS macrocell [18] 5.3 7.6 6.9 0.4 4 to 6 ≈ 0.3 -

Urban macrocell [9] 1.9 9 9 0 9 ≈ 0 ≈ 0
Indoor [9] 1.9 7 7 0 7 ≈ 0 ≈ 0

Indoor NLOS picocell [1] 1.8 2.5 to 10.5 - -4 to 4 6.5 - -
Indoor picocell [22] 5.2 7 to 15.7 8.6 to 14.4 - - - -

Indoor corridor/hall [7], [8] 5.1 7 to 9.5 1.5 to 6.7 2.5 to 6 8 to 11 (v) ≤ 0.6 ≤ 0.6
2 to 6 (h)

coefficients between vv and hv, hh and hv, vv and vh
or hh and vh),

• δ1 and δ2 are the co- and anti-polar correlation coeffi-
cients,

• X̃w is a 2×2 matrix whose four elements are independent
circularly symmetric complex exponentials of unit ampli-
tude, ejφk , k = 1, . . . , 4, the angles φk being uniformly
distributed over [0, 2π).

Note that this model does not make any simplification on
the polarization-induced correlations, but only assumes that
the downlink XPD levels are independent from the transmit
polarization. Values of μ and χ naturally depend on the
considered environment, as outlined in Section II.

In the performance analysis, we consider (only for sim-
plicity) that the cross-polar correlation coefficients σ and ϑ
are equal to zero, as often observed experimentally. As far as
δ1 and δ2 are concerned, our overview does not allow us to
assign definite values. Hence, we will consider only two cases
in this paper, which seem both reasonable assumptions from
the literature overview: |δ1| = 1, |δ2| = 1, as found by the
ray-tracing simulations [23], or δ1 = δ2 = 0, as suggested by
a few results as well as some recent studies [28] (note that the
system performance is usually not very sensitive to correlation
for correlations lower than 0.6).

Since X̃ is a random matrix, the two eigenvalues of X̃X̃H ,
denoted as η1 and η2 are also random, and can be explicitly
written as a function of the deterministic parameters μ, χ,
δ1 and δ2 on the one hand, and of the random phase shifts
φ1 to φ4 on the other hand. As an example, if μ = 1, these
eigenvalues read as

η1,2 = A±
√
A2 +B, (14)

where

A = 1 + χ+ χ|δ2|
√

1 − |δ2|2 cos
(
φ2 − φ3 + arg{δ2}

)
+ |δ1|

√
1 − |δ1|2 cos

(
φ1 − φ4 + arg{δ1}

)
, (15)

and

B = 2χ|δ2||δ1| cos
(
2φ1 − 2φ2 + arg{δ1} − arg{δ2}

)
+ χ2|δ1|

√
1 − |δ2|2 cos

(
2φ1 − φ2 − φ3 + arg{δ1}

)
+ 2χ|δ2|

√
1 − |δ1|2 cos

(
φ1 − 2φ2 + φ4 − arg{δ2}

)
+ 2χ2

√
1 − |δ2|2

√
1 − |δ1|2 cos

(
φ1 − φ2 − φ3 + φ4

)
− 2|δ1|

√
1 − |δ1|2 cos

(
φ1 − φ4 + arg{δ1}

)− 1 − χ2

− 2χ2|δ2|
√

1 − |δ2| cos
(
φ2 − φ3 + arg{δ2}

)
. (16)

Note that if δ1 = δ2 = 0, the eigenvalues further simplify into

η1,2 = 1 + χ±
√

2χ(1 + cosψ), (17)

where ψ = φ1 − φ2 − φ3 + φ4 is defined as a random angle
uniformly distributed over [0, 2π).

Interestingly, the model of (10) differs from the model used
in [29], where H̃× is decomposed by extracting the impact of
depolarization on the channel gains, yielding

H̃× = Ĥ � ∣∣X̃∣∣, (18)

where
∣∣X̃∣∣ depends on the polarization scheme. What is

important to notice is that Ĥ still includes two correlation
mechanisms (space and polarization). Hence, it is generally
not equal to an equivalent uni-polarized transmission matrix
H̃ (i.e. with the same antenna spacings, all polarizations being
then identical). As a result, Ĥ is some hybrid matrix, modeling
the correlation aspects of both spacing and polarization. In
that sense, it is impossible to use this model to compare uni-
and dual-polarized schemes. By contrast, our model operates
the decomposition into two matrices based on the physical
mechanisms (space versus polarization) rather than on their
impact (gain versus correlation).

B. Dual-Polarized TITO Ricean Fading Channels

Defining the Ricean K-factor on the vv reference trans-
mission as K , and assuming the LOS is the only coherent
contribution (typically, in mobile scenarios), the global Ricean
fading channel matrix, also accounting for antenna XPIs, is
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given by

H×,a = MrH̄×Mt︸ ︷︷ ︸
H̄×,a

+

√
1

1 +K
MrH̃×Mt︸ ︷︷ ︸

H̃×,a

(19)

where H̄× reads, for a system having the same VH polariza-
tion scheme at both Tx and Rx, as

H̄× � X̄ =

√
K

1 +K

[
ejςvv 0

0 ejςhh

]
, (20)

with ςvv and ςhh related to the baseline array orientation
(e.g. ςvv = ςhh = 0 for broadside arrays at both ends, so

X̄ =
√

K
1+K I2 in such cases). Note that (19) does not

result in equal K-factors for all channels, as the powers of
the individual Rayleigh channels are not equal via (13).

C. Dual-Polarized MIMO Fading Channels

As already mentioned, we analyze particular nr × nt

schemes (for even values of nt and nr) for which the Tx
and Rx array are made of nt/2 and nr/2 dual-polarized
sub-arrays (each sub-array is identical and is made of two
co-located antennas with orthogonal polarizations). If we
further assume that all sub-arrays are identically oriented, the
Rayleigh channel matrix is easily written as

H̃×,nr×nt = H̃nr/2×nt/2 ⊗ X̃, (21)

where the covariance of H̃nr/2×nt/2 is the spatial covariance
related to the spacing between the sub-arrays, and X̃ is the
2 × 2 dual-polarized matrix modeled by (13). Again, X̃ only
models the differential attenuation and the correlated phase-
shifts between the four dual-polarized channels. Note that
(21) is valid if and only if the joint transmit-receive direction
spectrum is identical for all sub-arrays (they “see” the same
scattering environment). This implies e.g. that the channel as
seen by PIFA-like designs [30] cannot be modeled by (21).

The Ricean contribution is represented (for a LOS compo-
nent and broadside linear arrays) by

H̄×,nr×nt = 1nr/2×nt/2 ⊗ X̄. (22)

Eventually, antenna XPIs are included in the above model as
follows

H×,a,nr×nt = 1nr/2×nt/2 ⊗ MrX̄Mt

+

√
1

1 +K
H̃nr/2×nt/2 ⊗ MrX̃Mt.(23)

Finally, a few words about power normalization [28]. The
above channel models consider that the channel energy on
the vv link is one, so that the receive SNR does not depend
on the amount of depolarization. If we use a fixed transmit
power constraint, we define the so-called transmit SNR on the
vv reference link as ρ0, so that the receive SNR is equal to

ρ = ρ0
1

1 + χa,r

K + 1
K + χ+ 1

1
1 + χa,t

, (24)

which expresses that if the transmit power is fixed, the receive
SNR will decrease for smaller XPI and/or XPR. Naturally,
this normalization issue only appears when comparing dual-
polarized transmissions with different XPI and/or XPR.

IV. MUTUAL INFORMATION OF DUAL-POLARIZED

CHANNELS

A. TITO Channels

For very high K-factors, the channel matrix only depends on
the Ricean component. Assuming that the Tx antennas have a
perfect cross-polar isolation (χa,t = 0), we have that

H×,a ≈ MrH̄× =
[

1 √
χa,r√

χa,r 1

]
. (25)

Let us consider two particular cases, i.e. χa,r = 0 (infinite
XPI) and χa,r = 1 (no isolation). The mutual information
with equal power allocation and fixed transmit power is then
given by

I×(χa,r = 0) = 2 log2

(
1 +

ρ0

2

)
(26)

I(χa,r = 0) = log2(1 + 2ρ0) (27)

I×(χa,r = 1) = I(χa,r = 1) = log2(1 + ρ0), (28)

where I× refers to dual-polarized schemes, and I, to uni-
polarized schemes. It is clear that, for both uni- and dual-
polarized schemes, the mutual information increases with
antenna XPI, as a small XPI means a constant channel energy
but a lower rank for dual-polarized schemes, a and a constant
rank (of one) but a lower channel energy for uni-polarized
schemes. This also implies that for large XPI (i.e. χa,r → 0),
the mutual information is larger for dual-polarized schemes
than for uni-polarized schemes when the SNR is larger than
a given threshold [26].

We assume now a finite K-factor, and use the model of
(13) to highlight the impact of co- and cross-polar ratios on
a mutual information upper bound. For convenience, we take
χa,t = χa,r = 0 and consider two scenarios:

• spatially correlated antennas and δ1 = 1, |δ2| = 1,

H̄× =
√

K
K+1 I2

H̃× =
[

1
√
μχ ej(φ+arg{δ2})√

χ ejφ √
μ

]
� H̃

(29)

where H̃ is given by (11) and φ is a random angle
uniformly distributed over [0, 2π),

• well separated (uncorrelated) antennas,

H̄× =
√

K
K+1 I2

H̃× =
[

1
√
μχ√

χ
√
μ

]
� H̃w

(30)

which is valid irrespective of δ1 and δ2.

Two alternative scenarios (i.e. δ1 = δ2 = 0 with close or well
separated antennas) do not need being considered, as they are
indeed both covered by the second scenario (all three scenarios
cause elements of H̃× to become fully uncorrelated). For both
analyzed scenarios, we resort to an upper bound [27] of the
ergodic mutual information with equal power allocation Ī,
outlined by

Ī ≤ log2(κ̄) = log2

(
E
{

det

[
I2 +

ρ

2
H×HH

×

]})
, (31)

where the receive SNR is given by ρ = ρ0(K+1)/(K+χ+1).
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Fig. 1. Mutual information of uni- and dual-polarized 2 × 2 channels for
different K-factors, correlations and cross-polar ratios

In the considered cases, the upper bounds become

log2(κ̄) = log2

{
1 +

ρ

2

[
2K + (1 + μ)(1 + χ)

K + 1

]

+
(
ρ

2

)2 1
(K + 1)2

[
K
(
K + 2	[s1δ1]

√
μ+ μ+ 1

)

+ μ
(
1 + |s1δ1|2 + χ2(1 + |s2δ2|2)

)]}
. (32)

We first observe that if K → ∞, (32) approaches the result
of (26) in both considered cases. Then we also note that the
mutual information is higher in the first scenario (i.e. |δ1| =
1, |δ2| = 1). Indeed, in the latter, the channel matrix behaves
as a diagonal channel (for μ = χ = 1 and K = 0, H× = H̃×
is exactly a 2 × 2 diagonal channel [31]). Note however that
the difference between achieved mutual informations in both
scenarios remains limited. Finally, for a fixed transmit SNR ρ0,
the ergodic mutual information of Rayleigh channels decreases
in (32) as μ and χ increase, as illustrated in Figure 1 as far as
χ is concerned (taking μ = 0.5 and close antennas with |δ1| =
|δ2| = 1). This is caused by the fixed transmit power constraint
(the opposite result is found when keeping the receive SNR
constant). We also observe that dual-polarized transmissions
only offer a larger mutual information for Ricean or highly
correlated Rayleigh fading channels.

B. MIMO Channels

When considering an arbitrary array size, the number of
parameters of the spatial correlation matrix rapidly increases.
To obtain meaningful results, we therefore make the following
simplifications:

• we use the same number of antennas on both sides (nt =
nr = n),

• we restrict our analysis to uniform linear arrays of lengths
Lt and Lr (respectively for the transmit and receive
arrays), with antenna correlations being exponential func-
tions of the spacings (dt and dr) [32], i.e. they are

proportional to e−dt/Δt at the Tx side, and e−dr/Δr

at the Rx side (Δt and Δr are characteristic distances
proportional to the spatial coherence distance at each
side),

• we take K = 0,
• we finally assume that the spatial correlation matrix R is

separable (i.e. the well-known Kronecker model may be
used to represent R).

As a consequence of the above assumptions, the Tx and Rx
correlation matrices are respectively expressed as

Θt =⎡
⎢⎢⎢⎣

1 e−dt/Δt . . . e−(n−1)dt/Δt

e−dt/Δt 1 . . . e−(n−2)dt/Δt

...
. . .

e−(n−1)dt/Δt e−(n−2)dt/Δt . . . 1

⎤
⎥⎥⎥⎦
(33)

Θr =⎡
⎢⎢⎢⎣

1 e−dr/Δr . . . e−(n−1)dr/Δr

e−dr/Δr 1 . . . e−(n−2)dr/Δr

...
. . .

e−(n−1)dr/Δr e−(n−2)dr/Δr . . . 1

⎤
⎥⎥⎥⎦ ,
(34)

while the full correlation matrix simply reads as R = Θr⊗Θt.
It can also be shown that the determinant of, say, Θt reads as

detΘt =
(

1− e−2dt/Δt

)n−1

=
(

1− e−
2Lt

(n−1)Δt

)n−1

, (35)

where dt = Lt/(n− 1) is the element spacing for n antennas
over a length Lt.

Since our goal is to compare uni-polarized with dual-
polarized systems, we consider two systems: the reference
system is made of uni-polarized arrays with n equi-spaced
antennas whereas the second system is made of n/2 dual-
polarized equi-spaced sub-arrays. The channel matrices there-
fore read as

• for the first system,

H̃ = Θ1/2
r H̃wΘ1/2

t , (36)

• for the second system,

H̃× = Θ′1/2
r H̃′

wΘ′1/2
t︸ ︷︷ ︸

H̃′

⊗X̃, (37)

Note that Θr, H̃w and Θt are n × n matrices, while Θ′
r,

H̃′
w and Θ′

t are n/2×n/2. It is also interesting to note that

H̃×H̃H
× = H̃′H̃′H ⊗ X̃X̃H (38)

Finally, we may arbitrarily use a fixed receive or transmit
power constraint, as our goal is to compare uni- and dual-
polarized schemes with given χ and μ.

1) High SNR Analysis: The mutual information of channel
H using an identity transmit covariance is well approximated
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at high SNR [26] by

I ≈ log2det

[
ρ

n
HHH

]
. (39)

For uni-polarized systems, (39) can be developed as follows:

I ≈ log2

{(
ρ

n

)n

det

[
H̃H̃H

]}
, (40)

= n log2

(
ρ

n

)
+ log2 detΘr + log2 detΘt

+ log2 det

[
H̃wH̃H

w

]
(41)

= n log2

(
ρ

n

)
+ (n− 1) log2

[
1 − e−

2Lt
(n−1)Δt

]
+ (n− 1) log2

[
1 − e−

2Lr
(n−1)Δr

]
+ log2 det

[
H̃wH̃H

w

]
. (42)

The ergodic mutual information is then given by

Ī = E{I} = n log2

(
ρ

n

)
+ (n− 1) log2

[(
1 − e−

2Lt
(n−1)Δt

)(
1 − e−

2Lr
(n−1)Δr

)]

+
1

log 2

( n∑
k=1

n−k∑
l=1

1
l
− nγ

)
, (43)

where γ ≈ 0.57721566 is Euler’s constant. For dual-polarized
systems in the high SNR regime, we have:

I× ≈ n log2

(
ρ

n

)
+
n

2
log2

(
η1η2

)
+ 2 log2 det

[
H̃′

w

(
H̃′

w

)H
]

+ 2
(
n

2
− 1

)
log2

[
1 − e−

4Lt
(n−2)Δt

]
+ 2

(
n

2
− 1

)
log2

[
1 − e−

4Lr
(n−2)Δr

]
, (44)

so that the ergodic mutual information becomes

Ī× = E{I×} = n log2

(
ρ

n

)
+
n

2
E
{

log2

(
η1η2

)}

+
2

log 2

( n/2∑
k=1

n/2−k∑
l=1

1
l
− n

2
γ

)

+ 2
(
n

2
− 1

)
log2

[
1 − e−

4Lt
(n−2)Δt

]
+ 2

(
n

2
− 1

)
log2

[
1 − e−

4Lr
(n−2)Δr

]
. (45)

We are now able to calculate the normalized difference
ΔĪ/n = (Ī× − Ī)/n assuming that n is large. To simplify
the notations, let us define ξt = nΔt/Lt and ξr = nΔr/Lr,
which can be thought of as normalized antenna densities at

Tx and Rx. This yields

ΔĪ/n ≈ 1 + log2

[
1 − e−4/ξt

1 − e−2/ξt

]
+ log2

[
1 − e−4/ξr

1 − e−2/ξr

]

+
1
2
E
{

log2

(
η1η2

)}
. (46)

Furthermore, if δ1 and δ2 are sufficiently small (typi-
cally, lower than 0.25), numerical evaluations show that
E
{

log2

(
η1η2

)} ≈ 0, irrespective of χ and μ. As an example,

if δ1 = δ2 = 0 and μ = 1, the term
∣∣∣0.5 E

{
log2

(
η1η2

)}∣∣∣ is

always lower2 than 7 · 10−3 for 0 ≤ χ < 1: it can therefore
be neglected with respect to the first term in (46), which is
always equal to 1. For low δ1 and δ2, (46) is therefore well
approximated by

ΔĪ/n ≈ 1 + log2

[
1 − e−4/ξt

1 − e−2/ξt

]
+ log2

[
1 − e−4/ξr

1 − e−2/ξr

]
(47)

2) Arbitrary SNR Analysis: At arbitrary SNR, the asymp-
totic mutual information of uni-polarized spatially correlated
channels is well-known, and can be calculated using the
Stieltjes transform [33]. Alternative methods can also be used
(see [32] as an example). We eventually obtain that the
asymptotic average mutual information per receive antenna
Ī/n is given by

Ī
n

=
1
n

log2 det(In+βtΘr)+
1
n

log2 det(In+βrΘt)− 1
ρ
βtβr,

(48)
where βt and βr are the solutions of⎧⎨

⎩ βt = ρ
nTr

[
ΛΘt

(
In + βrΛΘt

)−1
]

βr = ρ
nTr

[
ΛΘr

(
In + βtΛΘr

)−1
] (49)

and ΛΘt and ΛΘr are diagonal matrices containing the
eigenvalues of Θt and Θr. Both correlation matrices have
the form

Θ =

⎛
⎜⎜⎜⎝

1 � . . . �n−1

� 1 . . . �n−2

...
...

. . .
...

�n−1 �n−2 . . . 1

⎞
⎟⎟⎟⎠ , (50)

and it is known (see [34, p. 38]) that the eigenvalues of Θ
converge uniformly (as n→ ∞) to

λΘ(x) =
∞∑

k=0

�kejk2πx +
∞∑

k=1

�ke−jk2πx (51)

=
1

1 −�ej2πx
+

�e−j2πx

1 −�e−j2πx
(52)

for x ∈ [0, 1] and � = e−
dt
Δt or e−

dr
Δr . Therefore, the

asymptotic ergodic mutual information per antenna is given

2Using Jensen’s inequality to obtain an analytical upper-bound is not
adequate here, as the upper-bound is very loose.
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by limn→∞ Ī/n

=
∫ 1

0

log2

[
1 +

αt

1 − e−
dr
Δr ej2πx

+
e−

dr
Δr αte

−j2πx

1 − e−
dr
Δr e−j2πx

]
dx

+
∫ 1

0

log2

[
1 +

αr

1 − e−
dt
Δt ej2πx

+
e−

dt
Δt αre

−j2πx

1 − e−
dt
Δt e−j2πx

]
dx

− 1
ρ
αtαr, (53)

where αt and αr are solutions of

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

αt = ρ

∫ 1

0

1

1−e
− dt

Δt ej2πx

+ e
− dt

Δt e−j2πx

1−e
− dt

Δt e−j2πx

1 + αr

1−e
− dt

Δt ej2πx

+ αre
− dt

Δt e−j2πx

1−e
− dt

Δt e−j2πx

dx

αr = ρ

∫ 1

0

1

1−e
− dr

Δr ej2πx

+ e
− dr

Δr e−j2πx

1−e
− dr

Δr e−j2πx

1 + αt

1−e
− dr

Δr ej2πx

+ αte
− dr

Δr e−j2πx

1−e
− dr

Δr e−j2πx

dx.

(54)
For dual-polarized schemes, assume first that the eigen-

values of X̃X̃H are fixed. In this case, the n eigenvalues
of H̃×H̃H

× can be expressed as the product of the n/2
eigenvalues of H̃′H̃′H by η1 and η2 respectively. Hence, we
may decompose the conditional ergodic mutual information
per antenna as

Ī×
n

∣∣∣∣
η1,η2

=
1
2

∫
log2

[
1 + ρη1λ

]
pλ(λ) dλ

+
1
2

∫
log2

[
1 + ρη2λ

]
pλ(λ) dλ, (55)

where λ designates the eigenvalues of H̃′H̃′H/n and pλ(λ) is
the limit probability density of λ when n→ ∞. The latter can
be quite easily evaluated, e.g. as described in [32]. When η1
and η2 are random, the quantities ρη1 and ρη2 can be thought
of as randomly varying effective SNRs. The randomness is
represented by the four phase-shifts φk , k = 1, . . . , 4, which
are uniformly distributed over [0, 2π). The ergodic mutual
information per antenna is finally given by

Ī×
n

=
1

32π4

∫ 2π

0

. . .

∫ 2π

0
2∑

k=1

{∫
log2

[
1 + ρηkλ

]
pλ(λ) dλ

}
dφ1 . . . dφ4. (56)

Simulation results are illustrated in Figure 2, which assumes
that ξt = ξr = ξ and that δ1 = δ2 = 0. The minimum
normalized antenna density ξmin for which ΔĪ/n ≥ 0 is
plotted for various values of χ (ranging from 0 to 0.9). The
value of ξmin decreases as the SNR increases, and reaches
its asymptotic value of 2.27 at high SNR. Note that the
approximation of (47) is indeed well verified, in the sense that
ξmin is quasi-independent of χ at high SNR. The impact of
χ is also pretty intuitive: for small XPR values, uni-polarized
schemes remain attractive for larger densities, as the dual-
polarized transmissions are heavily penalized by the energy
loss, especially at low SNR levels. At low SNR, it is indeed
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Fig. 2. Normalized antenna density ξmin above which dual-polarization
should be favored as a function of the SNR (χ−1 is the channel XPR, χ ∈
{0, 0.1, 0.3, 0.5, 0.7, 0.9} and δ1 = δ2 = 0).

well known that the mutual information is essentially linked to
the channel energy [26]. Finally, note that the above discussion
would yield the same values if one had considered the transmit
SNR.

V. AVERAGE PAIRWISE ERROR PROBABILITY IN

DUAL-POLARIZED TITO CHANNELS

We are now interested in the average pairwise error prob-
ability (PEP) as a function of the SNR ρ, i.e. P (C,E) rep-
resents the probability that the receiver decodes the codeword
E = [e0 . . . eT−1] instead of codeword C = [c0 . . . cT−1] (T
is the duration of the space-time block code). In 2 × 2 dual-
polarized Rayleigh and LOS Ricean slow fading channels, the
expressions of the PEP [35] are given by

P (C,E) =
1
π

∫ π/2

0

r(CR×,a)∏
i=1

(
1 + Ξλi

(
CR×,a

))−1 exp
[
−ΞKvec

(
H̄H

×,a

)H

(
Inr ⊗ Ë

) (
Inrnt + ΞCR×,a

)−1
vec

(
H̄H

×,a

)]
dβ (57)

where Ξ = ρ/(4(1 + K) sin2 β), CR×,a = R×,a

(
Inr ⊗ Ë

)
,

R×,a is the correlation matrix of vec
(
H̃×,a

)
and Ë =

(C− E) (C − E)H . In this paper, we restrict our analysis to
two simple schemes:

• the Alamouti O-STBC (T = 2), which extends the
principle of transmit/receive diversity,

• the Spatial Multiplexing scheme, which consists in send-
ing different data streams over each antenna, thereby
increasing the system throughput.

In Rayleigh fading channels with vertical and horizontal an-
tennas at both ends, neglecting antenna XPI (χa,t = χa,r ≈ 0)
and using the same models as those used when estimating the
mutual information (see Section IV), we may write the dual-
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polarized correlation matrix as

R× =

⎡
⎢⎢⎣

1 0 0 s∗1δ
∗
1

√
μ

0 μχ s∗2δ∗2
√
μχ 0

0 s2δ2
√
μχ χ 0

s1δ1
√
μ 0 0 μ

⎤
⎥⎥⎦ .
(58)

A. Performance of Orthogonal Space-Time Block Coding

Restricting our analysis to the Alamouti scheme, the code-
word matrix is given by

C =
1√
2

[
c0 −c∗1
c1 c∗0

]
(59)

where c0 and c1 are two symbols of a given constellation,
and we denote the codeword errors as d0 = (c0−e0)/

√
2 and

d1 = (c1 − e1)/
√

2.
1) Rayleigh Fading Channels: In Rayleigh fading channels,

the matrix CR(×) is rewritten for O-STBC as

CR(×) = R(×)

[|d0|2 + |d1|2
]

(60)

where the notation R(×) means that the relationship is valid
for both R in (12) and R× in (58). Therefore, the impact
of the propagation channel on the error probability is directly
given by the four eigenvalues of the correlation matrix. To
minimize the average PEP, it is sufficient to maximize the
following Chernoff bound [35],

det
(
I4 +

ρ

4
CR(×)

)
= det

(
I4 + ρeR(×)

)
where we define for better legibility an effective SNR as ρe =
ρ
[|d0|2 + |d1|2

]
/4. Dual-polarization is then preferred when

det (Inrnt + ρeR×) > det (Inrnt + ρeR) . (61)

In the high SNR regime, the condition simply becomes

det (R×) > det (R) . (62)

Note however that the SNR level for which one reaches the
so-called high SNR regime depends on the eigenvalues of R×.
Hence, the high SNR regime assumption might not be realistic
when χ and/or μ are small, i.e. when some eigenvalues of
R× are small. The above conditions are easily expressed in
terms of the correlation coefficients, as well as μ and χ. As
an example, let us consider a Kronecker-structured channel
uncorrelated at the receiver (hence, r = s1 = s2 = 0). When
μ = 1 (i.e. when co-polarized waves are equally attenuated),
the above conditions are respectively rewritten as

(1 + ρe)2(1 + χρe)2 >

(1 + ρe)4 + ρ2
e|t|2

[
ρ2

e|t|2 − 2(1 + ρe)2
]

(63)

and
|t| >

√
1 − χ2. (64)

A similar condition on |r| would be found for Kronecker-
structured channels uncorrelated at the transmitter. This in-
dicates that dual-polarization can increase the performance
at high spatial transmit/receive correlation levels, despite the
reduction of the average energy of the channel caused by
χ. Naturally, the higher χ, the lower the transmit/receive

correlation for which dual-polarized schemes outperform uni-
polarized schemes. Note also that transmit and receive corre-
lations equally affect the performance of diversity schemes. It
might also seem sensible to use the effective diversity order
Ndiv as a natural metric to decide whether dual-polarized
systems should be preferred to uni-polarized systems [36].
Defining

Ndiv =

[
Tr
{
R
}

‖R‖F

]2

, (65)

the condition under which dual-polarized transmissions (with
same polarization scheme at both Tx and Rx) perform better
than uni-polarized transmissions is given

• if δ1 = 1 and |δ2| = 1 by

(1 + μ+ μχ+ χ)2

1 + μ2 + μ2χ2 + χ2 + 2μ(|s1|2 + χ2|s2|2) >
4

1 + |t|2 + |r|2 + |s1|2+|s2|2
2

, (66)

• if δ1 = δ2 = 0 by

(1 + μ+ μχ+ χ)2

1 + μ2 + μ2χ2 + χ2
>

4

1 + |t|2 + |r|2 + |s1|2+|s2|2
2

.

(67)

If we consider the same example as above (r = s1 = s2 = 0
and μ = 1), (66) and (67) are both rewritten as

|t| > 1 − χ

1 + χ
. (68)

This condition is actually looser than (64) with respect to
favoring dual-polarized transmissions, as it only implies that
the number of degrees of freedom offered by dual-polarized
channels be higher than that offered by uni-polarized channels.
It does not imply that the error probabililty is lower. When
1−χ
1+χ < |t| ≤ √

1 − χ2, dual-polarized schemes exhibit a
larger diversity order, but are still penalized by the energy
loss since Tr{R×} < Tr{R}.

2) Ricean Fading Channels: We analyze this case assuming
that the Ricean component is the LOS, that the K-factor is
high (so that the Rayleigh component can be neglected) and
that the transmit antenna XPI is large enough to be neglected.
The performance solely depends on the Frobenius norm of the
coherent component. Naturally, this norm is always smaller
for dual-polarized schemes (since χa,r ≤ 1). The same
conclusion is reached if we consider the effective diversity
order (neglecting the Rayleigh component): Ndiv = 2K for
uni-polarized transmissions, while Ndiv = (2 + χa,r)K/2 for
dual-polarized systems. Therefore, the use of dual-polarized
transmissions is not recommended for diversity schemes in
Ricean channels.

B. Performance of Spatial Multiplexing

For a simple uncoded spatial multiplexing scheme, we have

(C − E) (C− E)H =
[ |d2

0| d0d
∗
1

d∗0d1 |d1|2
]

(69)

1) Rayleigh Fading Channels: Given (69), the rank of both
CR and CR× is two, with their two non-zero eigenvalues λ1,2

Authorized licensed use limited to: University of Illinois. Downloaded on January 14, 2009 at 12:31 from IEEE Xplore.  Restrictions apply.



OESTGES et al.: DUAL-POLARIZED WIRELESS COMMUNICATIONS: FROM PROPAGATION MODELS TO SYSTEM PERFORMANCE EVALUATION 4029

0 0.2 0.4 0.6 0.8 1

10
−2

10
−1

χ = 0.1, μ = 0.5

Transmit or receive correlation

S
E

R
SNR = 15 dB

χ = 0.1, μ = 1

χ = 0.5, μ = 1

χ = 1, μ = 1

uni−pol, r = s
1
 = s

2
 = 0 uni−pol, t = s

1
 = s

2
 = 0

Fig. 3. Performance of QPSK Spatial Multiplexing for uni- (solid lines) and
dual-polarized (dashed lines) transmissions as a function of t or r.

reading as

λ1,2 =
a+ d±√

(a− d)2 + 4|b|2
2

(70)

with

• for uni-polarized schemes

a = |d0|2 + |d1|2 + 2	[td0d
∗
1] (71)

b = r(|d0|2 + |d1|2) + s1 d0d
∗
1 + s2 d

∗
0d1 (72)

d = a, (73)

• for dual-polarized schemes

a = |d0|2 + μχ|d1|2 (74)

b =
√
μ(s1δ1 d0d

∗
1 + s2δ2 χ d

∗
0d1) (75)

d = χ|d0|2 + μ|d1|2. (76)

An estimate of the average symbol error rate may be easily
obtained by weighting the average PEP over the different
possible symbols, using a union bound approximation. Various
simulation results are illustrated in Figure 3 for a QPSK modu-
lation, as a function of t (assuming that r = s1 = s2 = 0) or as
a function of r (assuming that t = s1 = s2 = 0), for a constant
receive SNR ρ = 15 dB. Note that the comparison between
various dual-polarized channels should be made with care, as
a fixed transmit power constraint would vary the receive SNR.
Yet, the comparison between each uni-polarized channel and
each dual-polarized channel does not depend on the power
constraint, as the channel depolarization is constant for each
comparison.

Considering first uni-polarized systems (solid lines), we
observe that transmit correlation is more harmful than receive
correlation, as already noticed in [37]. As for the use of
dual-polarized arrays (dashed lines), it is clear that these are
only beneficial with respect to uni-polarized schemes when
the transmit and/or receive correlations are higher than a
certain level. This level is directly related to the CPR and
XPR. The smaller μ and/or χ, the larger this correlation level.
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Fig. 4. Performance of QPSK Spatial Multiplexing in various Ricean
channels as a function of Rx antenna XPI for a transmit SNR ρ0 = 10 dB.

Naturally, when both μ and χ are equal to one, dual-polarized
systems always perform better than uni-polarized systems,
as the decorrelation effect is not hampered by a decrease
of power. For μ and/or χ smaller than one, the required
correlation increases rapidly. As a consequence, dual-polarized
spatial multiplexing schemes perform well in Rayleigh fading
channels when the uni-polarized spatial correlations are high
enough.

2) Ricean Fading Channels: In LOS Ricean fading chan-
nels, the error probability is obtained through (57). Simulation
results are displayed in Figure 4 for χ = 0.1, μ = 1,
δ1 = δ2 = 0 and ρ0 = 10 dB. The cases of uni-polarized
transmissions approximately correspond here to χa,r = 1 (the
higher the K-factor, the better the approximation). Clearly, the
use of dual-polarized antennas with large XPI significantly
increases the performance, even when considering a constant
transmit power.

VI. CONCLUSIONS

In this paper, we have presented a simple analytical model
of dual-polarized TITO and MIMO transmissions. The channel
model efficiently separates the spatial and polarization effects,
which makes it particularly easy to parametrize, thanks to a
thorough overview of the literature, whose conclusions are
summarized at the end of Section II.B.

As far as the benefits from dual-polarized arrays are con-
cerned, the derivations point out that large multiplexing (i.e.
capacity) gains are achievable in Ricean or highly correlated
Rayleigh fading channels, but that diversity gains are only
possible in highly correlated Rayleigh fading channels (and
not in Ricean channels). Furthermore, our derivations have
highlighted that there is a fundamental trade-off between the
array density and the capacity gain, i.e. for a given array
geometrical extension, there is a critical antenna density above
which dual-polarized arrays should be preferred. Finally, our
analysis identifies quantitatively for which channels (corre-
lations, K-factor), schemes (O-SBTC or Spatial Multiplexing)
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and SNR levels the use of multiple polarizations might become
beneficial.
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