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Performance Analysis of Covariance Matrix

Estimates in Impulsive Noise
Frédéric Pascal, Philippe Forster , Jean-Philippe Ovarlez and Pascal Larzabal

Abstract

This paper deals with covariance matrix estimates in impulsive noise environments. Physical models

based on compound noise modeling (SIRV, Compound Gaussian Processes) allow to correctly describe

reality (e.g., range power variations or clutter transitions areas in radar problems). However, these

models depend on several unknown parameters (covariance matrix, statistical distribution of the texture,

disturbance parameters) which have to be estimated. Based on these noise models, this paper presents

a complete analysis of the main covariance matrix estimates used in the literature: four estimates are

studied, the well-known Sample Covariance Matrix M̂SCM and a normalized version M̂N , the Fixed

Point (FP) estimate M̂FP , and a theoretical benchmark M̂TFP . Among these estimates, the only one

of practical interest in impulsive noise is the FP. The three others, which could be used in a Gaussian

context, are, in this paper, only of academic interest, i.e., for comparison with the FP. A statistical study

of these estimates is performed through bias analysis, consistency, and asymptotic distribution. This study

allows to compare the performance of the estimates and to establish simple relationships between them.

Finally, theoretical results are emphasized by several simulations corresponding to real situations.

Index Terms

SIRV, covariance matrix estimates, statistical performance analysis, bias, consistency, asymptotic

distribution, non-Gaussian noise.
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I. INTRODUCTION

It is often assumed that signals, interferences or noises are Gaussian stochastic processes. Indeed,

this assumption makes sense in many applications. Among them, we can cite: sources localization in

passive sonar where signals and noises are generally assumed to be Gaussian, radar detection where

thermal noise and clutter are often modeled as Gaussian processes and digital communications where the

Gaussian hypothesis is widely used for interferences and noises.

In these contexts, Gaussian models have been thoroughly investigated in the framework of Statistical

Estimation and Detection Theory [1], [2], [3]. They have led to attractive algorithms. For instance, we

can cite the stochastic Maximum Likelihood method for sources localization in array processing [4], [5],

and the matched filter in radar detection [6], [7] and in digital communications [8].

However, such widespread techniques are sub-optimal when the noise process is a non-Gaussian

stochastic process [9]. Therefore, non-Gaussian noise modeling has gained many interest in the last

decades and currently leads to active researches in the literature. High order moment methods [10] have

initiated this research activity and particle filtering methods [11] are now intensively investigated. In radar

applications, experimental clutter measurements, performed by MIT [12], showed that these data are not

correctly described by Gaussian statistical models. More generally, numerous non-Gaussian models have

been developed in several engineering fields. For example, we can cite the K-distribution already used

in the area of radar detection [13], [14]. Moreover, let us note that the Weibull distribution is a widely

spread model in biostatistics and in radar detection [15].

One of the most general and elegant impulsive noise model is provided by the so-called Spherically

Invariant Random Vectors (SIRV). Indeed, these processes encompass a large number of non-Gaussian

distributions, included, of course, Gaussian processes and also, the aforementioned distributions. SIRV

and their variants have been used in various problems such as: bandlimited speech signals [16], radar

clutter echoes [17], [18], and wireless radio fading propagation problems [19], [20]. Moreover, SIRVs

are also connected to other interesting processes such as the ”heavy-tailed” processes, which have been

used to model impulse radio noises as well as processes used in financial engineering models [21].

A SIRV is a compound process. It is the product of a Gaussian random process with the square root

of a non-negative random scalar variable (called the texture in the radar context). Thus, the SIRV is fully
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characterized by the texture (representing an unknown power) and the unknown covariance matrix of the

zero-mean Gaussian vector. One of the major challenging difficulties in SIRV modeling, is to estimate

these two unknown quantities [22], [23], [24]. These problems have been investigated in [25] for the

texture estimation while [26] and [27] have proposed different estimates for the covariance matrix. The

knowledge of the estimates statistical properties is essential to use them in different contexts.

This paper deals with three covariance matrix estimates: the well-known Sample Covariance Matrix

(SCM) [28], the Theoretical Fixed Point (TFP), both studied for academic purposes, and the Fixed Point

(FP) which may easily be implemented in practice [29]. These three estimates arise as the solutions of

Maximum Likelihood (ML) or Approximate Maximum Likelihood (AML) problems. The main contribu-

tion of this paper is to derive and to compare their statistical properties: bias, consistency, second order

moment and asymptotical distribution.

The paper is organized as follows. In Section II, a background on the SIRV covariance matrix estimates

is given. Sections III, IV and V present the main results of this paper,i.e., performance analysis of the

estimates in terms of bias, consistency, covariance matrices, and asymptotic distribution. For clarity, long

proofs are reported in Appendices. Finally, Section VI gives some simulation results confirming the

theoretical analysis.

II. PROBLEM FORMULATION

In this section, we introduce the SIRV noise model under study and the associated covariance matrix

estimates. In the following, H denotes the conjugate transpose operator, � denotes the transpose operator,

E stands for the statistical mean of a random variable, and Tr(M) is the trace of the matrix M.

A. Statistical Framework

Let us recap some SIRV theory results. A SIRV is a complex compound Gaussian process with random

power. More precisely, a SIRV c [30], [31] is the product between the square root of a positive random

variable τ and a m-dimensional independent zero-mean complex Gaussian vector x

c =
√

τ x .

For identifiability considerations, the covariance matrix M = E
[
xxH

]
is normalized according to Tr(M) =

m (see [26]) and called, in the sequel, normalization #1.
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The SIRV Probability Density Function (PDF) expression is

p(c) =
1

πm |M|
∫ +∞

0

1

τm
exp

(
−cH M−1 c

τ

)
q(τ) dτ ,

where q is the texture PDF.

Notice that, when τ is Dirac distributed, i.e., q(τ) = δ(τ − τ0), the resulting SIRV is a zero-mean

Gaussian vector with covariance matrix τ0 M while when τ is Gamma distributed, the resulting SIRV is

the well known K-distribution. However, the closed-form expression of the texture PDF q is not always

available (e.g., Weibull SIRV). Thus, in problems where M is unknown and has to be estimated from

SIRV realizations, it would be of interest to have a covariance matrix structure estimate independent of

the texture.

B. Covariance Matrix Structure Estimation

The covariance matrix has to be normalized to identify the SIRV noise model. Consequently, it is

reasonable to think that the same normalization has to be applied to its estimate. However, as it will

be shown later, the appropriate normalization for performance analysis is Tr(M−1M̂) = m and will be

called normalization #2 for any estimate M̂ of M: Normalization #1: Tr(M) = m ,

Normalization #2: Tr(M−1M̂) = m or, equivalently, Tr(M−1/2M̂M−1/2) = m .
(1)

When M is unknown, it could be objected that normalization #2 is only of theoretical interest while

only normalization #1 can be applied in practice. In most applications, however, M̂ is exploited in such

a way that any scale factor on M̂ has no influence on the final result. (e.g., in radar detection, the detector

could be a likelihood ratio, homogeneous in terms of M̂ [26]). This would also be the case in general

estimation problems where estimated parameters only depend on the structure of the covariance matrix.

Hence, the normalization, chosen for any studied case, is of little importance.

In this framework, the three estimates will be built from N independent realizations of c denoted

c1 =
√

τ1 x1, . . . , cN =
√

τN xN and called secondary data.

First, if we had access to the N independent realizations x1, . . . , xN of the underlying Gaussian vector

x, the ML estimate would lead to the Sample Covariance Matrix (SCM) which is Wishart distributed
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[33] and defined by

M̂SCM =
1

N

N∑
k=1

xkxH
k . (2)

But, in practice, we only have access to the N independent realizations of a SIRV, c 1, . . . , cN and it is

impossible to isolate the Gaussian process x. However, it is used as a benchmark for comparison with the

other estimates. Moreover, M̂SCM performance analysis will lead to an interpretation of the theoretical

expressions obtained for the other estimates.

To fulfill normalization #2, M̂N will be defined by

M̂N =
m

Tr(M−1M̂SCM)
M̂SCM , (3)

Eq. (3) can also be written

M̂N =
m

N∑
i=1

xH
i M−1xi

N∑
k=1

xkxH
k . (4)

Estimates (2) and (3) have only a theoretical interest since the xk’s are not available. Practical estimates

are functions of the ck’s and ”good” ones should not depend on the τk’s.

A first candidate is the Normalized Sample Covariance Matrix (NSCM) [34] given by

M̂NSCM =
m

N

N∑
k=1

ckcH
k

cH
k ck

,

which can be rewritten only in terms of xk’s

M̂NSCM =
m

N

N∑
k=1

xkxH
k

xH
k xk

,

As the statistical performance of this estimate have been extensively studied in [35], only its statistical

analysis results will be presented in order to compare all available estimates. Moreover, although this

”heuristic” estimate respects normalization #1, it exhibits several severe drawbacks.

A second candidate, provided by the ML theory [26], [27], is the FP estimate M̂FP of M, defined as

a fixed point of function fN,M

fN,M :


D −→ D

A −→
m

N

N∑
k=1

ckcH
k

cH
k A−1ck

(5)
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where D = {A ∈ Mm(C)|AH = A , A positive definite} with Mm(C) = { m×m matrices with elements

in C} .

The notation fN,M stresses the dependency on N and on the covariance matrix M involved in the c k’s.

As shown in [36], equation M̂ = fN,M(M̂) has a solution of the form α M, where α is an arbitrary

scaling factor. In this paper, the only solution M̂FP satisfying normalization #2 is called the Fixed Point

estimate. In other words, M̂FP is the unique solution of

M̂FP = fN,M(M̂FP ) =
m

N

N∑
k=1

ck cH
k

cH
k M̂

−1

FP ck

=
m

N

N∑
k=1

xk xH
k

xH
k M̂

−1

FP xk

, (6)

such that M̂FP respects normalization #2.

Notice that M̂FP , as M̂NSCM , does not depend on the texture τ as emphasized in Eq. (6).

Remark II.1

The FP is the ML estimate when the texture τ is assumed to be an unknown deterministic parameter, and

is an Approximate Maximum Likelihood (AML) when τ is assumed to be a positive random variable [26],

[27].

Finally, an analysis of another texture-independent estimate M̂TFP of M is performed, where

M̂TFP =
m

N

N∑
k=1

ck cH
k

cH
k M−1 ck

=
m

N

N∑
k=1

xk xH
k

xH
k M−1 xk

. (7)

In this paper, it is called the Theoretical Fixed Point (TFP) estimate. This estimate is only of theoretical

interest since it depends on the unknown covariance matrix M. It is closely related to the FP estimate (6)

and it will be shown that its statistical performance have strong connections with those of M̂FP . Notice

that M̂TFP satisfies normalization #2: Tr(M−1M̂TFP ) = m . So, the TFP estimate will be considered

as the benchmark for M̂FP .

In this context of covariance matrix estimation in impulsive noise, the statistical properties of the

three proposed estimates, M̂N , M̂TFP and M̂FP will be established in this paper, while existing results

concerning M̂SCM and M̂NSCM will be reminded.
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III. BIAS ANALYSIS

This section provides an analysis of the bias B denoted by

B(M̂) = E
[
M̂

]
− M ,

for each estimate M̂ introduced previously.

The SCM M̂SCM has been studied in literature and is unbiased. Now, M̂N bias will be analysed next.

Its unbiasedness is presented in the following theorem

Theorem III.1 (Unbiasedness of M̂N )

M̂N is an unbiased estimate of M .

Proof: To prove that E
[
M̂N

]
= M, the focus is put on

E
[
M̂N

]
= m

N∑
k=1

E


xkxH

k

N∑
i=1

xH
i M−1xi

 . (8)

For this purpose, let us whiten the xk’s in Eq. (8), according to yk = M−1/2 xk

E
[
M̂N

]
= m M1/2


N∑

k=1

E


ykyH

k

N∑
i=1

yH
i yi



M1/2 . (9)

For k = 1, . . . , N , Ak are given by

Ak =
ykyH

k

N∑
i=1

yH
i yi

. (10)

Since yk ∼ CN (0, I) for any k, the jth element of yk denoted by y
(j)
k can be written as

y
(j)
k =

√
(1/2) χ

2(j)
k exp(iθ(j)

k ) ,

where for 1 ≤ k ≤ N and 1 ≤ j ≤ m , χ
2(j)
k ∼ χ2(2) and θ

(j)
k ∼ U([0, 2π]) , where χ2(2) denotes the

Chi-squared distribution with 2 degrees of freedom and U([0, 2π]) , the uniform distribution on interval

[0, 2π] , and χ
2(j)
k and θ

(j)
k are independent.
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Thus, by replacing the yk’s in Eq. (10), element pq of matrix Ak is

A
(pq)
k =

√
χ

2(p)
k χ

2(q)
k

N∑
i=1

m∑
r=1

χ
2(r)
i

exp(i(θ(p)
k − θ

(q)
k )) .

Since E
[
exp(iθ(p)

k )
]

= 0 , for any (k, p), the non diagonal elements of E [Ak] are null. Then, diagonal

element pp is

E
[
A

(pp)
k

]
= E


χ

2(p)
k

N∑
i=1

m∑
r=1

χ
2(r)
i

 = E


χ

2(p)
k

χ
2(p)
k +

N∑
i=1
i�=k

m∑
r=1
r �=p

χ
2(r)
i

 ,

where
χ

2(p)
k

χ
2(p)
k +

N∑
i=1
i�=k

m∑
r=1
r �=p

χ
2(r)
i

is a Beta of the first kind distributed random variable with parameters 2

and 2Nm − 2. Moreover, the statistical mean of a β(2, 2Nm − 2) is
2

2 + 2Nm − 2
=

1

Nm
, thus

E
[
A

(pp)
k

]
=

1

Nm
for k = 1, . . . , N and for p = 1, . . . ,m and E [Ak] = (1/Nm) I . Using these results

in Eq. (9) leads to

E
[
M̂N

]
= m M1/2

(
N∑

k=1

(1/Nm) I

)
M1/2 ,

proving that M̂N is unbiased

E
[
M̂N

]
= M ,

The analysis of M̂NSCM bias is provided in two cases. In the most general case, theorem III.2 gives a

closed form expression of M̂NSCM bias. Then theorem III.3 proves the unbiasedness of M̂NSCM when

M = I , where I is the identity matrix.

Theorem III.2 (M̂NSCM bias when M has distinct eigenvalues)

Assuming that M has distinct eigenvalues, M̂NSCM bias is given by

B(M̂NSCM) = U (diag (E c)) UH − M ,

where
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• the operator diag reshapes a m-vector v = (vj)1≤j≤m into a m×m diagonal matrix V = (Vij)1≤i,j≤m

with elements Vii = vi,

• U is the orthogonal matrix of the m eigenvectors of M,

• E = (Eij)1≤i,j≤m with Eij =
log (λj/λi)

λj/λi − 1
−

λi

λj
if i �= j and Eij = 0 if i = j , where λi is the ith

eigenvalue of M,

• c = (cj)1≤j≤m with cj = m
∏
k �=j

1

1 − λk/λj
.

Proof: see [35].

Theorem III.3 (Unbiasedness of M̂NSCM when M = I)

M̂NSCM is an unbiased estimate of I

Proof: With the same reasoning as in theorem III.1’s proof, it is shown that E
[
M̂NSCM

]
is a

diagonal matrix with elements

A(kk) = mE

χ2(k)/

m∑
j=1

χ2(j)

 = mE

χ2(k)/

χ2(k) +
m∑

j=1
j �=k

χ2(j)


 ,

where χ2(k)/

χ2(k) +
m∑

j=1
j �=k

χ2(j)

 is a Beta of the first kind distributed random variable with parameters

2 and 2m − 2. Since the statistical mean of a β(2, 2m − 2) is
2

2 + 2m − 2
=

1

m
, A(kk) = 1, which

completes the proof.

Theorem III.4 (Unbiasedness of M̂FP )

M̂FP is an unbiased estimate of M

Proof: For clarity, in this section M̂FP will be denoted M̂. The first part of the proof is the whitening

of the data. By applying the following change of variable, yk = M−1/2 xk to Eq. (6), one has

M̂FP =
m

N

N∑
k=1

M1/2 yk yH
k M1/2

yH
k T̂

−1
yk

,

where

T̂ = M−1/2M̂FP M−1/2 .

Therefore,

T̂ =
m

N

N∑
k=1

yk yH
k

yH
k T̂

−1
yk

.
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T̂ is thus the unique FP estimate (up to a scaling factor) of the identity matrix. Its statistics are clearly

independent of M since the yk’s are N (0, I).

Moreover, for any unitary matrix U,

U T̂ UH =
m

N

N∑
k=1

zk zH
k

zH
k

(
U T̂ UH

)−1
zk

,

where zk = U yk are also i.i.d. N (0, I) . Therefore, U T̂ UH has the same distribution as T̂ , so

E
[
T̂
]

= UE
[
T̂
]

UH , for any unitary matrix U .

Since E
[
T̂
]

is different from 0, Lemma A.1, detailed in the Appendix, ensures that E
[
T̂
]

= αI.

Moreover, since T̂ = M−1/2M̂M−1/2 , thus E
[
M̂

]
= αM also since Tr(M−1M̂) = m, α = 1.

In conclusion: M̂ is an unbiased estimate of M, for any integer N .

Theorem III.5 (Unbiasedness of M̂TFP )

M̂TFP is an unbiased estimate of M

Proof: To prove Theorem III.5, changing variable x = M1/2 y, where y ∼ CN (0, I) , leads to

E
[
M̂TFP

]
= M1/2 E

m
y yH

yH y

 M1/2 ,

The equality

E

m
y yH

yH y

 = I ,

is proven by Theorem III.3.

Thus, E
[
M̂TFP

]
= M, i.e., M̂TFP is an unbiased estimate of M .

IV. CONSISTENCY

An estimate M̂ of M is consistent if

∀ε > 0, P r(‖M̂ − M‖ ≥ ε) −−−−−→
N→+∞

0 ,

where N is the number of secondary data ck’s used to estimate M and ‖.‖ stands for any matrix norm.

Remark IV.1

When M has distinct eigenvalues, Theorem III.2 shows that M̂NSCM is a biased estimate of M. Moreover,

this bias does not depend on the number N of xk’s. Thus, M̂NSCM is not a consistent estimate of M. In the

sequel, since M̂NSCM suffers from the previous drawbacks (bias and non consistent), thus from here on,
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this estimate will not be taken into account when M has distinct eigenvalues. On the other hand, the NSCM

estimate of I will be studied as a particular case of the TFP estimate.

Under Gaussian assumptions, the SCM estimate is consistent. This result was established in [28] pp.

80-81.

Theorem IV.1 (M̂N consistency)

M̂N is a consistent estimate of M .

Proof: By whitening the xk’s in Eq. 4:

M̂N = m M1/2


N∑

k=1

ykyH
k

N∑
i=1

yH
i yi

M1/2 ,

where yk ∼ CN (0, I) .

Then, the Weak Law of Large Numbers (WLLN) demonstrates that

1

N

N∑
k=1

ykyH
k

Pr−−−−−→
N→+∞

I ,

1

N

N∑
i=1

yH
i yi

P r−−−−−→
N→+∞

E
[
yHy

]
= m .

Finally, basic theorems on stochastic convergence show that

M̂N
Pr−−−−−→

N→+∞
M ,

which means that M̂N is a consistent estimate of M.

Theorem IV.2 (M̂FP consistency)

M̂FP is a consistent estimate of M .

Proof: See Appendix B.

Theorem IV.3 (M̂TFP consistency)

M̂TFP is a consistent estimate of M .

Proof: Theorem III.1 and the WLLN imply that M̂TFP is a consistent estimate of M.
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V. ASYMPTOTIC DISTRIBUTION

A. Notations

In this section, a perturbation analysis will be used to derive the asymptotic distribution of the three

estimates, all denoted M̂ for clarity. For this purpose, M̂ is rewritten as

M̂ = M + δM .

The essential quantities for the analysis are defined as follows:

• ∆ = M−1/2 (δM) M−1/2 = M−1/2 M̂ M−1/2 − I ,

• δ = vec(∆) where δ is the vector containing all the elements of ∆ and vec denotes the operator

which reshapes the m × n matrix elements into a mn column vector.

In the sequel, these quantities will be indexed according to the studied estimate: δ SCM , δN , δTFP and

δFP .

The asymptotic distribution of M̂ is obtained from the distribution of δ with the following Proposition:

Proposition V.1

vec(M̂) =
(

M1/2 ⊗ M�/2
)

δ + vec(M),

where ⊗ represents the Kronecker product.

Proof: M̂ = M1/2 ∆M1/2 + M . This is proven by the property, vec(EFG) =
(
E ⊗ G�) vec(F) for

any matrix E, F, G , (see [33] p.9).

The aim of this section is to derive the asymptotic distribution of δ, i.e., the asymptotic distribution of Re(δ)

Im(δ)

 , where Re(δ) denotes the real part of the complex vector δ and Im(δ) its imaginary part.

It will be shown later that this distribution is Gaussian and therefore is fully characterized by its asymptotic

covariance matrix. This matrix may be derived from the two quantities E
[
δδ�] and E

[
δδH

]
. However,

in this specific case, δ is the vec of an Hermitian matrix so E
[
δδ�] can be obtained from E

[
δδH

]
.
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B. Results

The following original results use the notations C1 and C2, defined by

C1 =
m

m + 1

P −
1

m
vec(I)vec(I)�

 , (11)

C2 =
m

m + 1

I −
1

m
vec(I)vec(I)�

 , (12)

where P is defined by, for 1 ≤ p, p′ ≤ m ,
Pkl = 1 for k = l = p + m(p − 1) ,

Pkl = 1 for k = p + m(p′ − 1) and l = p′ + m(p − 1) ,

Pkl = 0 else .

(13)

The covariance matrix of vec(M̂SCM) has been established in [28] and is reminded here below.

Theorem V.1 (vec(M̂SCM ) Asymptotic Distribution)

1)
√

N

 Re(δSCM)

Im(δSCM)

 dist.−−−−−→
N→+∞

N (0 , CSCM) , where dist.−−−→ stands for the convergence in distribu-

tion and CSCM denotes the covariance matrix of

 Re(δSCM)

Im(δSCM)

 which can be straightforwardly

obtained from:

2) N E
[
δSCMδ�

SCM

] −−−−−→
N→+∞

P where P is defined above ;

3) N E
[
δSCMδH

SCM

] −−−−−→
N→+∞

I .

Proof: See [33].

Theorem V.2 (vec(M̂N ) Asymptotic Distribution)

1)
√

N

 Re(δN )

Im(δN )

 dist.−−−−−→
N→+∞

N (0 , CN ) , where CN denotes the covariance matrix and can be straight-

forwardly obtained from:

2) N E
[
δNδ�

N

] −−−−−→
N→+∞

m + 1

m

C1 ;
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3) N E
[
δNδH

N

] −−−−−→
N→+∞

m + 1

m

C2 .

The two matrices C1 and C2 are defined by Eqs. (11) and (12).

Proof: See Appendix C.

Theorem V.3 (vec(M̂TFP ) Asymptotic Distribution)

1)
√

N

 Re(δTFP )

Im(δTFP )

 dist.−−−−−→
N→+∞

N (0 , CTFP ) , where CTFP denotes the covariance matrix and can

be straightforwardly obtained from:

2) N E
[
δTFP δ�

TFP

] −−−−−→
N→+∞

C1 ;

3) N E
[
δTFP δH

TFP

] −−−−−→
N→+∞

C2 .

Proof: See Appendix D.

In [37], the following original results on M̂FP with the above notations has been partially established.

Theorem V.4 (vec(M̂FP ) Asymptotic Distribution)

1)
√

N

 Re(δFP )

Im(δFP )

 dist.−−−−−→
N→+∞

N (0 , CFP ) , where CFP denotes the covariance matrix and can be

straightforwardly obtained from:

2) N E
[
δFP δ�

FP

] −−−−−→
N→+∞

m + 1

m

2

C1 ;

3) N E
[
δFP δH

FP

] −−−−−→
N→+∞

m + 1

m

2

C2 .

Proof: Proof of theorem V.4 is fully given in Appendix E.

C. Synthesis

All the results on the asymptotic second order moment of M̂ are recapped in table I:

• The three estimates M̂FP , M̂TFP and M̂N , share the same asymptotic covariance matrix up to

scaling factors.
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TABLE I

ASYMPTOTIC SECOND ORDER MOMENT

bMF P
bMTF P

bMSCM
bMN

Limit of NE
ˆ
δδ�˜ `

m+1
m

´2 C1 C1 P m+1
m

C1

Limit of NE
ˆ
δδH

˜ `
m+1

m

´2 C2 C2 I m+1
m

C2

• More precisely,

√(
m

m+1

)2
N δFP ,

√
m

m+1 N δN and
√

N δTFP have the same asymptotic distri-

bution. Therefore M̂FP , with N secondary data, has the same asymptotic behavior as M̂N , with

m
m+1 N secondary data. Since M̂N is the SCM up to a scale factor, we may conclude that, in problems

invariant with respect to a scale factor on the covariance matrix, the FP estimate is asymptotically

equivalent to the SCM with a little less secondary data: m+1
m N data.

VI. SIMULATIONS

In order to enlighten results provided in sections III, IV and V, some simulation results are presented.

Since M̂FP and M̂TFP are texture independent and M̂SCM and M̂N are only valid under Gaussian

assumption, simulations are performed with Gaussian noise.

Operator A is defined as the empirical mean of the quantities A(i) obtained from I Monte Carlo runs.

For each iteration i, a new set of N secondary data x1, . . . , xN is generated to compute A(i).

Thus, for example, M̂ is defined by

M̂ =
1

I

I∑
i=1

M̂(i) .

A. Bias analysis

The results presented in this section are obtained for complex Gaussian zero-mean data with covariance

matrix M defined by

Mij = ρ|i−j| , for 1 ≤ i, j ≤ m .
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Figure 1 shows the bias of each estimate for different values of ρ: ρ = 0.1 , 0.5 and 0.9 . The length

of each vector xk is m = 3.

For that purpose, a plot of C(M̂, N) =
∥∥∥M̂ − M

∥∥∥ versus the number N of xk’s and for any matrix

norm ‖.‖ is presented for each estimate.

It can be noticed that, as enlightened by theoretical analysis, the bias of M̂N , M̂TFP and M̂FP is very

close to 0 for each value of N , while the bias of M̂NSCM (when the covariance matrix M is different

from I) does not tend to zero with the number N of xk’s. Moreover, this simulation underlines the fact

that M̂NSCM bias does not depend on N , it is constant for all number N of xk’s.

Furthermore, the correlation coefficient ρ has of course no influence on the unbiased estimates. On

the other hand, for each value of ρ, the bias of the NSCM estimate is different and it tends to 0 when ρ

tends to 0 (case M tends to I).

B. Consistency analysis

Figure 2 presents results of estimates consistency. For that purpose, a plot of D(M̂, N) =
∥∥∥M̂ − M

∥∥∥
versus the number N of xk’s is presented for each estimate.

It can be noticed that the above criterion D(M̂, N) tends to 0 when N tends to +∞, for each estimate

and each value of ρ. However, there are more fluctuations when data are strongly correlated (i.e., ρ  1).

C. Second order moment analysis

Simulations relating to second order moment have been represented on two different graphics: one on

transpose operator � results and the other for the transpose conjugate operator H results.

In figure 3, the quantity S1(M̂, N)

S1(M̂, N) =
∥∥∥N δδ� − Q

∥∥∥ ,

is plotted for the four studied estimates versus the number N of xk’s, where δ is defined in the notations

used in section V and the matrix Q represents the closed form expression of N E
[
δδ�] for the different

estimates.

Let us recall these results:
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• for M̂FP , Q =

m + 1

m

2

C1 ,

• for M̂NSCM , Q = C1 ,

• for M̂SCM , Q = P ,

• for M̂N , Q =

m + 1

m

C1 ,

where C1 is defined by (11) and P by (13).

Figure 3.a validates results on second order moment estimates obtained in section V because the

quantity S1(M̂, N) tends to zero when N tends to infinity for all estimates.

From Figure 3.b, the same conclusion as Figure 3.a is drawn but with the transpose conjugate operator

H , i.e.,

S2(M̂, N) =
∥∥∥N δδH − R

∥∥∥ ,

where the matrix R represents the closed form expression of N E
[
δδH

]
for the different estimates.

VII. CONCLUSION

In this paper, the problem of covariance matrix estimation in impulsive noise modeled by Spherically

Invariant Random Vectors was considered. Four estimates, M̂SCM , M̂N , M̂FP and M̂TFP have been

studied through a theoretical statistical analysis : bias, consistency, asymptotic distribution and second

order moments. All original results have been illustrated by simulations.

In this impulsive noise context, the Sample Covariance Matrix cannot be used in practice since this

estimate of the Gaussian kernel is based on unavailable data. The same remark holds for the theoretical

fixed point estimate as it depends on the unknown covariance matrix that needs to be estimated. Finally

the well known Normalized Sample Covariance Matrix is biased and not consistent. Therefore the only

appropriate estimate is the so called Fixed Point estimate, which is unbiased, consistent and has, up to

a scale factor, the same second order moments as the sample covariance matrix of the Gaussian kernel.

Finally, this statistical study will allow a performance analysis of signal processing algorithms based

on these estimates. For instance performance of radar detection algorithms using the Fixed Point estimate

will be investigated in future work.
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APPENDIX A

LEMMA A.1
Lemma A.1

Let A denote a Hermitian matrix and let U stand for any unitary matrix, then

A = UAUH , ∀U ⇔ A = αI, α ∈ R

Proof:

• If A = αI then A = UAUH .

• Now, assume that for a diagonalizable matrix A and for any unitary matrix U, A = UAUH . Let

V be the matrix of the eigenvectors of A and Λ the diagonal matrix of the eigenvalues of A, then

A = V Λ VH .

If U = VH , one has VDVH = D . This implies that A is a diagonal matrix. By taking for U the

permutation matrix which reshapes elements the ith element of A , Aii into the (i + 1)th elements

Ai+1,i+1 , this leads to the conclusion.

APPENDIX B

PROOF OF THEOREM IV.2 (CONSISTENCY OF M̂FP )

To show the consistency of M̂FP , denoted M̂(N) in the sequel and to show the dependence between

M̂FP and the number N of x′
ks, several properties of the function fN,M defined by (5) will be used.

First, a new function gN is defined by

gN :

 D −→ D
A −→ gN = A − fN,M(A)

where D = {A ∈ Mm(C)|AH = A , A positive definite} with Mm(C) = { m×m matrices with elements

in C} , and C, the set of complex scalar.

As M̂(N) is a fixed point of function fN,M, it is the unique zero, up to a scaling factor, of the random

function gN . To show the consistency of M̂(N), Theorem 5.9 pp. 46 of [38] will be used. Let us verify

hypothesis of this theorem.

First, the Strong Law of Large Numbers (SLLN) gives

∀A ∈ D , gN (A) a.s.−−−−−→
N→+∞

g(A) ,
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where
a.s.−−−−−→

N→+∞
stands for the convergence almost surely and

∀A ∈ D , g(A) = A − m E

 xxH

xHA−1x

 ,

for x ∼ CN (0, M) .

Then g defined by Eq.(??) is rewritten by applying an appropriate change of variable on x. Let y =

A−1/2 x , where y ∼ CN (0, A−1/2MA−1/2) and thus

∀A ∈ D , g(A) = A1/2

I − m E

yyH

yHy

A1/2 .

By using the same change of variable, gN is rewritten

∀A ∈ D , gN (A) = A1/2

I −
m

N

N∑
k=1

ykyH
k

yH
k yi

A1/2 .

Now, it must be shown that for every ε > 0 ,

(H1) : sup
A∈D

{‖gN (A) − g(A)‖} Pr−−−−−→
N→+∞

0 ,

(H2) : inf
A:‖A−M‖≥ε

{‖g(A)‖} > 0 = g(M) .

Now, for every A ∈ D

‖gN (A) − g(A)‖ = m ‖A‖
∥∥∥∥∥∥

1

N

N∑
k=1

ykyH
k

yH
k yk

− E

yyH

yHy

∥∥∥∥∥∥ ,

and thus, the SLLN, applied to the N i.i.d variables Yk =
ykyH

k

yH
k yk

, with same first order moment, ensures

(H1).

Now, to show (H2), it suffices to use the bias of M̂NSCM shown by Theorem III.2. Indeed, for every

A ∈ D , with A �= M,

‖g(A)‖ > 0 . (14)

Eq.(14) is explained by

‖g(A)‖ = ‖B(N̂
NSCM,A−1/2MA−1/2)‖ ,

where N̂
NSCM,A−1/2MA−1/2 is the NSCM estimate of A−1/2MA−1/2 and B(N̂

NSCM,A−1/2MA−1/2) the

bias of N̂
NSCM,A−1/2MA−1/2 defined by Theorem III.2.

Finally, Theorem 5.9 pp. 46 of [38] concludes the proof and M̂FP
Pr−−−−−→

N→+∞
M , which is the definition

of the consistency of M̂FP .
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APPENDIX C

PROOF OF THEOREM V.2 (VEC(M̂N ) ASYMPTOTIC DISTRIBUTION)

∆N = M−1/2 M̂N M−1/2 − I .

By using the definition of M̂N , Eq. (3), one obtains

∆N =
m

Tr(∆SCM + I)
(∆SCM + I) − I =

1

1 +
Tr(∆SCM )

m

(∆SCM + I) − I .

It is supposed that N is large enough to ensure the validity of the first order expressions, with respect

to ∆SCM , and thus

∆N 
1 −

Tr(∆SCM )

m

 (∆SCM + I) − I ,

and by omitting the second order term, i.e., ∆SCM

Tr(∆SCM )

m
, previous equation becomes

∆N  ∆SCM −
Tr(∆SCM )

m
I .

Now, with the notations presented at the beginning of section V, it comes

δN  δSCM −
Tr(∆SCM )

m
vec(I) ,

Moreover, from the expression of C2 in Eq. (12) and by noting that Tr(A) = vec(I)�vec(A) for any

matrix A, one has

δN 
m + 1

m
C2 δSCM . (15)

Since
√

N δSCM is asymptotically Gaussian, Eq. (15) ensures that the same result holds for
√

N δN .

It just remains to derive the asymptotic behavior of the two quantities NE
[
δNδ�

N

]
and NE

[
δNδH

N

]
.

These limits follow from the results concerning δSCM stated in table I:
N E

[
δNδ�

N

] −−−−−→
N→+∞

(
m+1

m

)
C1 ,

N E
[
δNδH

N

] −−−−−→
N→+∞

(
m+1

m

)
C2 ,

where matrices C1 and C2 are defined by Eqs. (11-12).
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APPENDIX D

PROOF OF THEOREM V.3 (VEC(M̂TFP ) ASYMPTOTIC DISTRIBUTION)

After the whitening of the xk’s, M̂TFP defined by Eq. (7) becomes

M̂TFP = M1/2

m

N

N∑
k=1

yk yH
k

yH
k yk

M1/2 .

where yk ∼ CN (0, I) . Now, in terms of δTFP , it comes

δTFP = vec
(

M−1/2 M̂TFP M−1/2 − I
)

= vec

m

N

N∑
k=1

ykyH
k

yH
k yk

− I

 . (16)

The Central Limit Theorem (CLT) ensures the first point of Theorem V.3

√
N

 Re(δTFP )

Im(δTFP )

 dist.−−−−−→
N→+∞

N (0 , CTFP ) ,

where CTFP is the covariance matrix of

 Re(δTFP )

Im(δTFP )

 .

Now, it just remains to derive the two quantities E
[
δTFP δ�

TFP

]
and E

[
δTFP δH

TFP

]
.

One has, for a large N ,

E
[
δTFP δ�

TFP

]
=

m2

N
E

vec

yyH

yHy

 vec

yyH

yHy

�− vec (I) vec (I)� , (17)

where y =
(
y(1), . . . , y(m)

)� ∼ CN (0, I) .

Then, focusing on the following variable

B = E

vec

yyH

yHy

 vec

yyH

yHy

� .

and rewriting the y(j)’s as y(j) =
√

χ2 (j)/2 exp(iθ(j)) where for j = 1, . . . ,m , χ2 (j) and θ(j) are

independent variables, with χ2 (j) ∼ χ2(2) and θ(j) ∼ U([0, 2π]) , each element of matrix B becomes

Bkl = E


√

χ2 (p) χ2 (q) χ2 (p′) χ2 (q′)(∑m
j=1 χ2 (j)

)2

 E
[
exp(i(θ(p) − θ(q) + θ(q′) − θ(p′)))

]
.

Now, it comes that Bkl = 0 , except for the following indexes

1) k = l = p + m(p − 1) ,

2) k = p + m(p − 1) , l = p′ + m(p′ − 1) and p �= p′ ,
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3) k = p + m(p′ − 1) , l = p′ + m(p − 1) and p �= p′ ,

and in these cases, one has

1) Bp+m(p−1),p+m(p−1) =
2

m(m + 1)
,

2) Bp+m(p−1),p′+m(p′−1) =
1

m(m + 1)
,

3) Bp+m(p′−1),p′+m(p−1) =
1

m(m + 1)
.

By replacing these results in Eq. (17), the following result is found

N E
[
δTFP δ�

TFP

]
−−−−−→
N→+∞

C1 .

In the same way,

N E
[
δTFP δH

TFP

] −−−−−→
N→+∞

C2 .

APPENDIX E

PROOF OF THEOREM V.4 (VEC(M̂FP ) ASYMPTOTIC DISTRIBUTION)

First, M̂ is written as M̂ = M + δM where M̂ = M̂FP in this subsection. For large N , δM  0

because of the M̂ consistency and N is assumed to be large enough to ensure the validity of the first

order expressions, thus

M̂
−1  (

M−1 − M−1(δM)M−1
)

.

For N large enough, this implies that

M̂ 
m

N

N∑
k=1

xkxH
k

xH
k

(
M−1 − M−1(δM)M−1

)
xk

,

and thus

δM 
m

N

N∑
k=1

 xkxH
k

xH
k

(
M−1 − M−1(δM)M−1

)
xk

− M .

Let yk = M−1/2xk , then

M−1/2(δM)M−1/2 
m

N

N∑
k=1

ykyH
k

yH
k

(
I − M−1/2(δM)M−1/2

)
yk

− I ,
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or equivalently, by using expression ∆ = M−1/2(δM)M−1/2 ,

∆ 
m

N

N∑
k=1

ykyH
k

yH
k yk

1 −
yH

k ∆yk

yH
k yk


− I .

At the first order, for large N and consequently small ∆, it results in

∆ 
m

N

N∑
k=1

ykyH
k

yH
k yk

1 +
yH

k ∆yk

yH
k yk

− I .

To find the explicit expression of ∆ in terms of data, the above expression can be reorganized as

∆−
m

N

N∑
k=1

ykyH
k

yH
k yk

yH
k ∆yk

yH
k yk

 
m

N

N∑
i=1

ykyH
k

yH
k yk

− I .

To solve this m2-system, above equation is rewritten as

B δFP  vec

m

N

N∑
i=1

ykyH
k

yH
k yk

− I

 , (18)

where

• δFP = vec(∆) ,

• Dk is the m2×m2 matrix defined by Dk = (dln)(k)
1≤l,n≤m2 with dln = yp yq yp′

yq′
for l = p+m(q−1)

and n = p′ + m(q′ − 1), and

B = I −
m

N

N∑
i=1

Dk

(yH
k yk)2

. (19)

From Eq. (16), the right-hand side member of Eq. (18) is seen to be equal to δTFP . Therefore,

B δFP  δTFP . (20)

Now, normalization #2 for M̂ ( Tr(M−1M̂) = m) ensures that Tr(∆) = 0 which is equivalent to

vec(I)�δFP = 0.

Thus, Eq. (20) may be rewritten asB +
1

m + 1
vec(I)vec(I)�

 δFP  δTFP ,

and thus

δFP  G−1 δTFP , (21)
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where

G = B +
1

m + 1
vec(I)vec(I)� , . (22)

From the SLLN, B defined by Eq. (19) satisfies

B a.s.−−−−−→
N→+∞

C2 = I − m E

 D

(yHy)2

 , (23)

where y ∼ N (0, I) and D = (dln)1≤l,n≤m2 , with dln = yp yq yp′
yq′

.

Thus, from standard probability convergence considerations, the first point of Theorem V.4 is obtained.

Now, from (23), one has

C2 = I − m E , where E = E

 D

(yHy)2

 .

In the same way as in the proof of theorem V.2, the non-zero elements of the matrix E are

1) Ep+m(p−1),p+m(p−1) =
2

m(m + 1)
,

2) Ep+m(p−1),p′+m(p′−1) =
1

m(m + 1)
,

3) Ep+m(q−1),p+m(q−1) =
1

m(m + 1)
,

and thus

C2 =
m

m + 1

I −
1

m
vec(I)vec(I)�

 .

Therefore, G in Eq. (22) satisfies

G a.s.−−−−−→
N→+∞

m

m + 1
I

And, it follows from Eq. (21) that
√

N δFP has the same asymptotic distribution as
m + 1

m

√
N δTFP .
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(c) ρ = 0.9

Fig. 1. Estimates Bias for different values of ρ.
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Fig. 2. Estimates Consistency for different values of ρ. m = 3.
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Fig. 3. Estimates second order moment
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