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Exact Maximum Likelihood Estimates for SIRV
Covariance Matrix: Existence and Algorithm

Analysis
Yacine Chitour, Frédéric Pascal

Abstract—In this paper, we investigate the existence and the
algorithm analysis of an adaptive scheme [1], [2] which has
been introduced for covariance structure matrix estimation in the
context of adaptive radar detection under non-Gaussian noise.
This latter has been modeled by Spherically Invariant Random
Vector (SIRV), which is the product c of the square root of
a positive unknown random variable τ and an independent
Gaussian vector x, c =

√
τ x. A similar line of work was

undertaken in the context of compound Gaussian noise [3],
[4] and the present paper extends the previous results in the
case of SIRV modeled noise. More precisely, the Fixed Point
estimate to be studied verifies a non-linear algebraic equation
(E) x = f(x). The aim of this paper is twofold. First, we prove
that (E) admits a unique solution x̄ and secondly, we show that
the corresponding iterative algorithm xn+1 = f(xn) converges
to x̄ for every admissible initial condition.

Index Terms—Maximum Likelihood estimate, SIRV model,
Fixed Point estimate, iterative algorithm convergence, adaptive
detection.

I. INTRODUCTION

THE basic problem of detecting a complex signal
embedded in an additive Gaussian noise has been

extensively studied these last decades. In these contexts,
adaptive detection schemes required an estimate of the noise
covariance matrix generally obtained from signal-free data
traditionally called secondary data or reference data. The
resulting adaptive detectors, as those proposed by [5] and
[6], are all based on the Gaussian assumption for which the
Maximum Likelihood (ML) estimate of the covariance matrix
is given by the sample covariance matrix. However, these
detectors may exhibit poor performance when the additive
noise is non-Gaussian [7].

When this additive noise is non-Gaussian, one of the
most general and elegant non-Gaussian noise model is
provided by the so-called Spherically Invariant Random
Vectors (SIRV). These processes encompass a large number
of non-Gaussian distributions thanks to the random variable τ
which has an unknown Probability Density Function (PDF).
Detectors resulting of such a model require an estimate of the
covariance matrix of the Gaussian component. In this context,
ML estimates based on secondary data have been introduced
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in [8], [9], together with a numerical procedure supposed to
obtain them. However, as noticed in [9] p.1852, ”existence of
the ML estimate and convergence of iteration [...] is still an
open problem”.

To the best of our knowledge, the proofs of existence,
uniqueness of the ML estimate and convergence of the
algorithm proposed in [1] have not yet been established. The
main purpose of this paper is to fill these gaps.

A first work [3] began to answer this problem but only,
in the case where the texture τ has been assumed to be
deterministic. The present paper provides results on the exact
ML estimate in the general SIRV case, i.e., when the random
variable τ has an unknown PDF. Therefore, the present paper
is indeed a continuation of [3], as regards the issues which
are addressed. Even though the present work uses some of
the results from [3], one must stress that the two papers are
technically disjoint, in the sense that every detailed argument
provided here does not appear in [3]. We however postpone
to Remark IV.1 below the description of the differences
between the two papers because it requires several definitions
introduced later on.

The main results of this paper is to provide the existence
and the uniqueness of a ML estimate, because in the case
of SIRV data, the estimate is defined as the solution of
an implicit equation. Several estimation procedures lead to
similar problems of solving implicit equations. This is the
case for the expectation-maximisation (EM) algorithm useful
for ML estimation with missing data [10], developed in [11].
This can be explained by the fact that missing data leads to
Likelihood function conditioned to the parameter of interest.
Moreover, elliptically contoured distributions [12] are very
closed to symmetrically distributions which encompass SIRV
distributions. Finally, this work is also tightly related to the
M-estimates [13], [14], due to the particular expression of
SIRV distribution.

The paper is organized as follows. In Section II, we provide
the statistical framework. Section III presents the main results
of the paper in the complex case and in the (more specific)
real case. Section IV gives proofs outline for results in the
real case and we gather in Section V complete arguments.

Acknowlegdments. The authors would like to thank F. Gini
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for useful clarifications and S. Gaubert for bringing to our
attention the reference [15].

II. PROBLEM FORMULATION

A SIRV c [16], [17] is defined as the product

c =
√
τ x , (1)

where the positive random variable τ is called the texture, hav-
ing unknown Probability Density Function (PDF) pτ (τ), and x
is an m-dimensional zero-mean complex Gaussian vector with
covariance matrix M = E[xxH ] usually normalized according
to Tr(M) = m, cf. [9]. Such a normalization is referred to
as the M-normalization. The symbol H denotes the conjugate
transpose operator, E[.] stands for the expectation of a random
variable and Tr(.) stands for the trace operator.

Here, in this general model, we follow the well-known
SIRV modeling where the texture is considered to be a
random variable with unknown PDF (see [1], [2], [18],
[19]). Generally, the covariance matrix M is not known and
an estimate M̂ is required for the Likelihood Ratio (LR)
computation. Classically, such an estimate is obtained from
Maximum Likelihood (ML) theory, well-known for its good
statistical properties. In this problem, estimation of M has to
respect the M-normalization, Tr(M̂) = m. This estimate M̂
will be built using K independent realizations of c denoted
ck =

√
τk xk for k = 1, . . . ,K.

1) Notations: In this paragraph, we introduce the main
notations of the paper for the real case. Notations already
defined in the complex case are translated in the real one.
Moreover, real results will be valid for every positive integer
m. We use C (respectively R, R+ and R∗+) to denote the set
of complex (resp. real, non negative real and positive real)
numbers, while for any integer m, Cm (resp. Rm) represents
the set of m-vectors with complex (resp. real) elements.
For vectors of Rm, the norm used is the Euclidean one.
Throughout the paper, we will use several basic results on
square matrices, especially regarding spectral properties of real
symmetric and orthogonal matrices. We refer to [20] and/or
[21] for such standard results.

We use Mm(R) to denote the set of m×m real matrices,
SO(m) to denote the set of m×m orthogonal matrices and
M>, the transpose of M. We denote the identity matrix of
Mm(R) by Im.

We next define and list the several sets of matrices used in
the sequel:
∗ D, the subset of Mm(R) defined by the symmetric

positive definite matrices;
∗ D, the closure of D in Mm(R), i.e., the subset of
Mm(R) defined by the symmetric non negative matrices.

For M ∈ D, we use LM to denote the open-half line
spanned by M in the cone D, i.e., the set of points λM, with
λ > 0. Let us recall that the order associated with the cone
structure of D is called the Loewner order for symmetric
matrices of Mm(R) and is defined as follows. Let A,B be

two symmetric m × m real matrices. Then A ≤ B (resp.
A < B) means that the quadratic form defined by B − A is
non negative (resp. positive definite), i.e., for every non zero
x ∈ Rm, x> (A − B) x ≤ 0, (resp. < 0). Using that order,
one has M ∈ D (resp. ∈ D) if and and only if M > 0 (resp.
M ≥ 0).

For M ∈ D, we define D(M) as the subset of D given by

D(M) = {P ∈ D| P ≤M} . (2)

In the sequel, if f : D → D, we use fn, n ≥ 1, to denote
the nth iterate of f i.e., fn := f ◦ ...◦f , where f is repeated n
times. We also adopt the standard convention that f0 := IdD.

We also need some basic notations. The integer m is
always positive and the integer K is always larger than
m. Let G be the set of m × m Hermitian positive definite
matrices. For any m×m matrix M, its determinant is denoted
by |M|. Given a mapping f : G → G, the iterative algorithm
associated to f is the procedure which associates to any M ∈ G
the sequence (Mn)n≥0, where M0 = M and Mn+1 = f(Mn).

J1,KK denotes the set of the K first integers {1, . . .K}.
A K-tuple C = (c1, . . . , cK) made of vectors of Cm verifies
Hypothesis (H1) if

(H1) :


For any m two by two distinct indices
k(1) < ... < k(m) chosen in J1,KK, the vectors
ck(1), . . . , ck(m) are linearly independent.

(3)
Given a C1 PDF pτ (i.e., a continuously derivable Probabil-

ity Density Function), let us consider the function P defined on

R∗+ by P (τ) = τ
p′τ (τ)
pτ (τ)

. Then, the PDF pτ verifies Hypothesis

(P1) if

(P1) P is a strictly decreasing function. (4)

Notice that Hypothesis (P1) is verified for every texture PDF
having closed-form expression.

Let us recall that the SIRV PDF expression [16], [17] is

p(c) =
1

πm |M|

∫ +∞

0

1
τm

exp
(
−cH M−1 c

τ

)
pτ (τ) dτ .

To obtain the ML estimate of M, with no proofs of existence
and uniqueness, Gini et al. derived in [9] an Approximate
Maximum Likelihood (AML) estimate M̂ as follows.

Let us first consider the Likelihood function given by

pC(c1, . . . , cK ; M) =
K∏
k=1

∫ +∞

0

1
(π τk)m |M|

×

exp
(
−cHk M−1 ck

τk

)
pτ (τk) dτk . (5)

As a preliminary step, let us mention that, in the deterministic
case, Conte and Ricci (cf. [22]) showed that pC was finitely
upper bounded over G. However, it was not proved if that
upper bound was reached or not. Anyhow, in order to
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maximize the above function, one needs to look for critical
points of pC, i.e., points M ∈ D which annihilate the gradient
of pC.

After some computations, Gini et al. obtained initially the
following equation for MMV

MMV =
m

K

K∑
k=1

cm(cHk M−1
MV ck)ck cHk , (6)

where the real-valued function cm is defined on R∗+ by

cm(q) :=
hm+1(q)
hm(q)

, (7)

and the real-valued function hm is defined on R∗+ by

hm(q) :=
∫ +∞

0

τ−m exp(−q/τ)pτ (τ)dτ. (8)

Let us define the matrix-valued function fC(M) as the right-
hand side of Eq. (6), i.e., for M symmetric positive definite

fC(M) :=
1
K

K∑
k=1

cm(cHk M−1 ck)ck cHk . (9)

Unfortunately, the fixed points of fC(M) (if it exists) do
not naturally verify the M-normalization in general. This is a
fatal drawback for the fixed point of fC(M) to be an estimate
of M since it results a biased estimate. This is why Gini et al.
chose finally MMV as a fixed point of the following mapping

gC(M) :=
m

Tr(fC(M))
fC(M), (10)

i.e., the MMV solution of M = gC(M). Numerically, that
estimate was shown to exist as the limit of the iterative scheme.

To derive the exact ML estimate of the covariance matrix,
in the case of SIRV modeling, we assume that the PDF pτ
verifies Hypothesis (P1). We then prove that, for every K-
tuple C verifying Hypothesis (H1), the mapping gC admits a
unique fixed point denoted Mg(C) and the iterative algorithm
associated to gC converges to Mg(C) for every initial condi-
tion. In the course of the argument, we will need to establish
first that these results hold for the mapping fC.

III. STATEMENT OF THE MAIN RESULTS

A. The complex case
We first provide additional notations. Let m and K be

positive integers such that m < K. We useMm(C) to denote
the set of m × m complex matrices. For M ∈ Mm(C) the
Frobenius norm of M is defined as Tr

(
MHM

)1/2
and we use

||M|| to denote it. Moreover, from the statistical independence
hypothesis of the K complex m-vectors xk, it is natural to
assume the following Hypothesis (H1′).
Let us set xk = x(1)

k + jx(2)
k ,

(H1′) :


Any 2m distinct vectors taken in{(

x(1)
1

x(2)
1

)
, . . . ,

(
x(1)
K

x(2)
K

)
,

(
−x(2)

1

x(1)
1

)
, . . . ,

(
−x(2)

K

x(1)
K

)}
are linearly independent.

(11)

Theorem III.1 (Existence and algorithm analysis)
Let C be a K-tuple verifying Hypothesis (H1).
(i) The mapping gC admits a unique fixed point Mg(C) ∈ G

with Tr(Mg(C)) = m;
(ii) Let (S)dis be the discrete dynamical system defined on G

by
(S)dis : Mn+1 = gC(Mn). (12)

Then, for every initial condition M0 ∈ G, the resulting
sequence (Mn)n≥0 converges to Mg(C).

The same problem and the same result can be formulated
with real numbers instead of complex numbers and symmetric
matrices instead of Hermitian matrices, while hypothesis (H1)
becomes hypothesis (H2) stated below (just before Remark
III.1). The proof of Theorem III.1 breaks up into several steps.
The way to derive Theorem III.1 from the corresponding real
results has been shown in [3]. Then, the rest of the paper is
devoted to the study of the real case.

B. The real case

1) Preliminaries: A K-tuple C = (c1, . . . , cK) of vectors
of Rm verifies Hypothesis (H2) if

(H2) :


For any m two by two distinct indices
k(1) < ... < k(m) chosen in J1,KK, the vectors
ck(1), . . . , ck(m) are linearly independent.

(13)
Let us already emphasize that hypothesis (H2) is the key

assumption for getting all our subsequent results. Hypothesis
(H2) has the following trivial but fundamental consequence
that we state as a remark.

Remark III.1
For every n vectors xk(1), . . . , xk(n) (resp. ck(1), . . . , ck(n))
with 1 ≤ n ≤ m, 1 ≤ k ≤ K, the vector space generated
by xk(1), . . . , xk(n) (resp. ck(1), . . . , ck(n)) has dimension n.

We also need the next definition.

Definition III.1
Let us consider a continuous mapping f : D → D. Then, f is
said to be
• strictly increasing if, for every M < Q in D, one has
f(M) < f(Q);

• eventually completely increasing of order p if, there
exists a positive integer p such that, for every M ≤ Q inD
with M 6= Q, one has fp(M) < fp(Q);

• subhomogeneous if, for every M inD and λ ∈ (0, 1), one
has f(λM) > λf(M).

Given a K-tuple C, define the map FC as

FC :


G −→ R∗+

M −→ FC(M) =
1
|M|K

K∏
k=1

hm(cHk M−1 ck).

(14)
Then, from (5) and (8), the two functions FC and fC are

related by the following relation, which is obtained after an
easy computation. For every M ∈ D, let ∇FC(M) be the
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gradient of FC at M ∈ D [21], i.e., the unique symmetric
matrix verifying, for every matrix M ∈ D,

∇FC(M) = K FC(M) M−1
(
fC(M)−M

)
M−1. (15)

Clearly M is a fixed point of fC if and only if M is a
critical point of the vector field defined by ∇FC on D.

2) Statements of the results in the real case:

Theorem III.2
Assume that the PDF pτ verifies Hypothesis (P1). Then, given
a K-tuple C verifying Hypothesis (H2),
(a) the mapping gC admits a unique fixed point Mg(C);
(b) Let (S)dis be the discrete dynamical system defined on D

by
(S)dis : Mn+1 = gC(Mn). (16)

Then, for every initial condition M0 ∈ D, the resulting
sequence (Mn)n≥0 converges to Mg(C).

In order to prove the above theorem, one has first to prove a
similar (and richer, cf. Item (d) below on gradient systems)
theorem when gC is replaced by fC. More precisely, we have
the following.

Theorem III.3
Assume that the PDF pτ verifies Hypothesis (P1). Then, given
a K-tuple C verifying Hypothesis (H2),
(a) the mapping fC admits a unique fixed point Mf (C);
(b) the map FC reaches its maximum only at Mf (C) and

Hess(Mf (C)), the Hessian of FC at Mf (C), is negative
definite;

(c) Let (S)dis be the discrete dynamical system defined on D
by

(S)dis : Mn+1 = fC(Mn). (17)

Then, for every initial condition M0 ∈ D, the resulting
sequence (Mn)n≥0 converges to Mf (C);

(d) Let (S)cont be the continuous dynamical system defined
on D by

(S)cont : Ṁ = ∇FC(M). (18)

Then, for every initial condition M(0) = M0 ∈ D, the
resulting trajectory M(t), t ≥ 0, converges, when t tends
to +∞, to Mf (C).

Both proofs are outlined in the next section. Proof of
Theorem III.2 is detailed in section V while the complete proof
of Theorem III.3 is postponed in Appendix A.

IV. PROOFS OUTLINE

First of all, we will rely on several results of [3] and more
precisely on properties established for the maps

BC :


D −→ R∗+

M −→
1
|M|K

K∏
k=1

1(
x>k M−1 xk

)m, (19)

and

bC :


D −→ D

M −→
m

K

K∑
k=1

xk x>k
x>k M−1 xk

,
(20)

where C is a K-tuple of vectors of Rm verifying Hypothesis
(H2). Similarly to Eq. 15, one has

∇BC(M) = KBC(M) M−1
(
bC(M)−M

)
M−1. (21)

Let us recall that, in [3], it was proved that BC is homoge-
neous of degree zero, uniformly bounded over D and it can
be continuously extended to D/{0} by zero on D/(D∪{0}).
Moreover, BC reaches its maximum over a unique half-line
LPB , with Tr(PB) = m. Finally, it was proved that bC is
eventually completely increasing of order m.

Remark IV.1
We can explain the differences between the present paper and
[3]. In term of problem formulation, [3] assumes that τ is
deterministic while in this paper, τ is a random variable with
unknown PDF. The main difference stems from the fact that gC
is not homogeneous of degree one (as bC is) and that creates
other difficulties with respect to [3]. The only way we were
able to find to overcome these obstacles consisted in relating
gC with a family of maps fC,µ (see below in (25)), which turn
out to be only sub-homogeneous. As explained later, one must
first study the fC,µ’s to deduce information for gC: each fC,µ
shares properties with fC,1 = fC and this is the reason why
we start with the study of fC. It takes all the present work to
follow the steps of the above described program and most of the
related arguments are new with respect to [3].

A. Proof outline of Theorem III.3

We start by proving some facts on the functions hm and
cm.

Proposition IV.1
With the notations above, we have, for every q > 0 and positive
integer m,
(i) h′m = −hm+1, which implies that hm is strictly decreas-

ing;
(ii) limq→0 q

mhm(q) = limq→∞ qmhm(q) = 0. As a con-
sequence, the function Hm(q) := qmhm(q) is uniformly
bounded over R∗+;

(iii) cm(q) < cm+1(q), which implies that cm is strictly
decreasing;

(iv) gm(q) := qcm(q) has a monotony inverse with respect to

that of P (q) = q
p′(q)
p(q)

. As a consequence, for all known

PDF’s, gm is strictly increasing. In that case, define

g− := gm(0), g+ := lim
q→∞

gm(q). (22)

Clearly, 0 ≤ g− and either g− < g+ or g+ =∞.

Taking into account the previous proposition, we show
item (a) of Theorem III.3 as the consequence of the next
proposition.
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Proposition IV.2
Let C be a K-tuple of vectors of Rm verifying Hypothesis
(H2). One has
(A) FC reaches its maximum at some point Mf (C) ∈ D;
(B) Assume that gm is strictly increasing and M ∈ D is a

critical point of FC (or equivalently a fixed point of fC).
Then, Hess(M), the Hessian of FC at M, is negative
definite, implying that M a strict local maximum of FC.

Then, we turn to an argument for item (c) of Theorem III.3.
It first requires to study the mapping fC.

Proposition IV.3
Let C be a K-tuple of vectors of Rm verifying Hypothesis
(H2). Then, fC verifies the following properties.
(i) fC is strictly increasing and eventually completely in-

creasing of order m;
(ii) If gm is strictly increasing, then, fC is subhomogeneous

(cf. [15]), i.e., for every λ ∈ (0, 1) and M ∈ D,

fC(λM) > λfC(M). (23)

As a consequence, for every λ > 1 and M ∈ D,

fC(λM) < λfC(M). (24)

Finally, we combine the above proposition with the uniqueness
of the fixed point to derive Item (c). Item (b) of Theorem III.3
follows at once, as well as item (d), since (S)cont, defined in
(18), is a gradient system (cf. [23] for references on gradient
systems).

It is important to notice that several statements of the
theorems could be derived by using the results of [15] but
it requires to study the linear map DfC(·) (defined as the
differential of fC), which leads to more involved computations
than those of the present paper. In addition, the convergence
results of Corollary 2.2 in [15] are weaker than those obtained
here but one can adapt the proof of Corollary 2.2 to the present
situation. We chose to provide a more direct argument in order
to be self-contained. As a last remark, it is not clear to us how
to obtain our results from those of [24] since we are not able
to check the following condition{

there exists 0 < γ < 1, such that f(tM) ≥ tγf(M),
for all 0 < t < 1, M ∈ D

for fC.

B. Proof outline of Theorem III.2

Even though the statements of the theorems are similar,
dealing with gC presents new difficulties with respect to fC.
First of all, gC is not related to the gradient of a real-valued
function defined on D, and thus it is difficult to relate the
existence of a fixed point of gC to that of a critical point
of some real-valued function. More importantly, gC does not
have useful properties shared by fC such as monotonicity or
subhomogeneity. As a consequence, the study of gC requires
other ingredients.

The starting point of the analysis consists of the next
remark. A fixed point Mg of gC (if any) verifies the equation

fC(Mg) = µ̄Mg for some µ̄ > 0 i.e., Mg is the fixed point
of the mapping

fC,µ :=
fC
µ
, (25)

with µ = µ̄. This suggests to consider the whole family of
mappings fC,µ, for an arbitrary µ > 0, as defined in (25).
Indeed, these mappings retain all the useful properties of fC:
if one considers the real-valued map FC,µ defined on D by

FC,µ(M) :=
1
|M|K

K∏
k=1

hm,µ(cHk M−1 ck), (26)

where hm,µ(q) := [hm(q)]1/µ, then

∇FC,µ(M) = N FC,µ(M) M−1
(
fC,µ(M)−M

)
M−1,

(27)
and, in particular, every fixed point of fC,µ is a critical point
of FC,µ (if any). Moreover, it is trivial to see that Item (B)
of Proposition IV.2 and Proposition IV.3 hold true when fC
is replaced by fC,µ. However, for a general pdf, FC,µ does
not admit critical points for every µ > 0 but we can show that
Item (A) of Proposition IV.2 holds true for µ ∈ Igm , where
Igm ⊂ R∗+ is an open (in R∗+) interval containing 1. As a
consequence, fC,µ admits a unique fixed point Mf (C, µ) for
µ ∈ Igm . More precisely, we show the following proposition.

Proposition IV.4
Let C be aK-tuple of vectors of Rm verifying Hypothesis (H2)
and assume that gm is strictly increasing. Then, Theorem III.3
holds true when fC and FC are respectively replaced by fC,µ

and FC,µ for and only for µ ∈ Igm , where Igm :=
(g−
m
,
g+

m

)
.

For µ ∈ Igm , we use Mf (C, µ) to denote the unique fixed point
(resp. global maximum) of fC,µ (resp. FC,µ). In addition, the
following mappings, defined on Igm ,

µ 7→Mf (C, µ), µ 7→ µMf (C, µ) are strictly decreasing,
(28)

and

lim
µ→ g−

m

‖Mf (C, µ)‖ =∞, lim
µ→ g+

m

Mf (C, µ) = 0. (29)

It follows that the real-valued function µ 7→ Tr(Mf (C, µ))
is a bijection from Igm to R∗+. Since gC takes values in the
matrices of D with trace equal to m, we easily deduce that
gC admits a unique fixed point Mg(C) ∈ D. As regards the
convergence of the iterative scheme, it can be directly deduced
from Corollary 2.5 of [15] since the second point of the orbit
starting at any M ∈ D is already normalized.

V. PROOF OF THEOREM III.2

Before starting the argument let us add the notation

cm,µ(q) := cm(q)/µ, gm,µ(q) := qcm,µ(q),

for q > 0 and µ > 0. In the next proposition, we gather facts
on FC,µ, fC,µ, hm,µ and cm,µ.
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Proposition V.1
With the notations above, we have, for every q > 0, µ > 0 and
M ∈ D,

(a1) cm,µ(q) = −
h′m,µ(q)
hm,µ(q)

; cm,µ is strictly decreasing and gm,µ
is strictly increasing;

(a2)
∇FC,µ(M)

NFC,µ(M)
= M−1

(
fC,µ(M)−M

)
M−1. In particu-

lar, M is a critical point of FC,µ if and only if M is a fixed
point of fC,µ;

(a3) fC,µ is strictly increasing and eventually completely in-
creasing of order m.

(a4) If fC,µ admits a fixed point, then it is unique (denoted
Mf (C, µ)) and the iterative scheme associated to fC,µ
converges to Mf (C, µ) for every initial condition. More-
over, Mf (C, µ) is a strict maximum for fC,µ with negative
definite Hessian at Mf (C, µ).

One can derive the above proposition by easily adapting the
arguments provided for Theorem III.3, i.e., for the case µ = 1.

We next establish a technical lemma, which is crucial for
the rest of the paper.

Lemma V.1
Assume that fC,µ̄ admits a fixed point Mf (C, µ̄) for some µ̄ >
0. Then, there exists a open neighborhood V of µ̄ in R∗+ such
that, for every µ ∈ V , fC,µ admits a fixed point Mf (C, µ).

Proof of Lemma V.1: This is a consequence of the implicit
function theorem applied to the mapping

Φ(µ,M) = fC(M)− µM,

defined on R∗+ × D. We only have to show that, at a point
(µ,M) where Φ(µ,M) = 0, the differential of Φ with respect
to M is invertible as an endomorphism of the vector space of
the symmetric matrices, i.e.,

Q 7→ DMΦ(µ,M).Q

is invertible. For every symmetric matrix Q, a simple compu-
tation gives

DMΦ(µ,M).Q = −
1
K

K∑
k=1

c′m(cTk M−1ck)

× (cTk M−1QM−1ck)ckcTk − µQ.

We now proceed as in the proof of Item (B) of Proposi-
tion IV.2. Set R := M−1/2QM−1/2 and dk := M−1/2ck for
k = 1, · · · ,K. Using the fact that Φ(µ,M) = 0, one has

µTr(R2) =
1
K

K∑
k=1

cm(‖dk‖2)‖Rdk‖2.

Then,

〈R,M−1/2DMΦ(µ,M).QM−1/2〉 ≤

−
1
K

∑
k∈IR

‖Rdk‖2rkg′m(‖dk‖2), (30)

where IR is the set of indices k for which Rdk 6= 0 and rk =( dTk Rdk
‖dk‖‖Rdk‖

)2

. The last inequality shows that DMΦ(µ,M)

is clearly injective and the lemma is proved.
We next study the subset I ∈ R+ defined as the set of

µ′s such that fC,µ admits a fixed point. By Item (a4) of
Proposition V.1, if µ ∈ I , then fC,µ admits a unique fixed
point Mf (C, µ). Since 1 ∈ I , the latter is non empty and,
thanks to the lemma, it is open (in R+).

We now prove that I is an interval of R∗+.

Lemma V.2
With the notations above, the C1 maps defined on I φ1 : µ 7→
Mf (C, µ) and φ2 : µ 7→ µMf (C, µ) are decreasing and then I
is convex, which implies that I is an interval of R∗+.

Proof of Lemma V.2: Consider µ1 < µ2 in I . Then

fC,µ1
(Mf (C, µ2)) =

µ2

µ1
Mf (C, µ2) > Mf (C, µ2).

Then the orbit of Mf (C, µ2) associated to fC,µ1
defines

a strictly increasing sequence in D, which converges to
Mf (C, µ1), according to Item (a4) of Proposition V.1.
We deduce that Mf (C, µ2) < Mf (C, µ1). Moreover,
fC,µ1

(Mf (C, µ2)) is also strictly smaller than Mf (C, µ1)
since it is also a point of the orbit. We deduce at once that φ1

and φ2 are strictly decreasing.
Let us pick µ ∈ (µ1, µ2) and show that µ ∈ I , that

Mf (C, µ) ∈ D is well-defined. For that, consider the orbit
((Mn)n≥0) of Mf (C, µ2) associated to fC,µ. By a simple
inductive argument, one shows that Mn < Mf (C, µ1) and

M0 := Mf (C, µ2) <
µ2

µ
Mf (C, µ2) = M1.

Therefore, ((Mn)n≥0) defines an upper-bounded increasing
sequence, which implies that it is converging to a fixed point
of fC,µ.

It immediately follows that I is an interval (µ−, µ+) with
µ− ≥ 0 and µ+ possibly infinite.

Lemma V.3
With the notations above, µ− =

gm(0)
m

and

lim
µ→µ+

−

‖Mf (C, µ)‖ =∞. (31)

Proof of Lemma V.3: We first prove the last part of the lemma.
Reasoning by contradiction, we would have a finite limit, as
µ tends to µ−, for Mf (C, µ) since φ1 is monotone. We could
therefore extend by continuity φ1 at µ = µ−, i.e., define
Mf (C, µ−) ∈ D. Note, in that case, that µ− > 0. Applying
Lemma V.1 at µ− allows one to extend I on the left of µ−
(recall that, if fC,µ admits a fixed point, it is unique) and then
we would contradict the definition of µ− as the infimum of
the µ’s for which Mf (C, µ) is well defined in D.

Next we prove that µ− ≥ gm(0)/m. From the definition of
Mf (C, µ), one deduces that

µIm =
1
K

K∑
k=1

cm(‖dk‖2)dkdTk =
1
K

K∑
k=1

gm(‖dk‖2)
dkdTk
‖dk‖2

,

(32)
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where
dk(µ) := Mf (C, µ)−1/2ck. (33)

Taking the trace yields

µm =
1
K

K∑
k=1

gm(‖dk(µ)‖2). (34)

Since gm is strictly increasing, it implies the required inequal-
ity.

To prove equality, we first assume that cm(0) is finite. Then
gm(0) = 0 and g′m(0) = cm(0) = 0 . By looking carefully
at the argument of Lemma V.1, one can see from (30) that if
µ− > 0, then the differential DMΦ(µ,Mf (C, µ)) is uniformly
invertible in an open neighborhood of µ−. Then Mf (C, ·) can
be extended at µ = µ−. Since it is not possible, we conclude
that µ− = 0.

Assume now that limq→0 cm(q) =∞. We first establish the
following lemma.

Lemma V.4
For every k = 1, · · · ,K,

lim
µ→µ−

‖dk(µ)‖ = 0, (35)

Proof of Lemma V.4: We may assume that µ− > 0, otherwise
the conclusion follows. Finally, notice that Lemma V.3 follows
readily from Lemma V.3 by letting µ tend to µ− in (34).

The argument goes by contradiction. Since µ →
Mf (C, µ)−1 is increasing, we can assume that there exists
δ > 0 such that, for every µ ∈ I , ‖d1(µ)‖ ≥ δ. Let
J := {1, · · · , l}, 1 ≤ l ≤ K of all indices k such that
limµ→µ− ‖dk‖ > 0, i.e., there exists δ > 0 such that for every
k ∈ J ,

‖dk(µ)‖ ≥ δ. (36)

We use JK to denote the set of the others indices l+1 ≤ t ≤ K
for which limµ→µ− ‖dt‖ = 0.

Up to a subsequence of µ′s, we may assume that dk(µ)
converges to a non zero vector dk, for k ∈ J . For k ∈ J and
µ ∈ I , one has

µ‖ck‖2 = µdk(µ)TMf (C, µ)dk(µ) =

1
K

K∑
s=1

cm(‖ds‖2)(dk(µ)T cs)2. (37)

Since limq→0 cm(q) = ∞, one deduces, by letting µ tend to
µ− > 0, that dTk ct = 0 for k ∈ J and t ∈ JK . It implies that
the vector space generated by the ct’s, t ∈ JK , is of dimension
at most m− l. Thanks to Remark III.1, the cardinality of Jk
must be lower than m−l, and thus K−l ≤ m−l i.e., K ≤ m,
which is a contradiction.

It remains to study the behavior of φ1 as µ tends to µ+. It
is described in the next lemma.

Lemma V.5
With the notations above, one has µ+ =

g+

m
and

lim
µ→µ−+

Mf (C, µ) = 0. (38)

Proof of Lemma V.5: Assume first that limq→∞ gm(q) =∞
and that µ+ is finite. Then, according to (34), ‖dk‖ is
uniformly bounded above over k = 1, · · · ,K and as µ tends
to µ+. Applying Hadamard’s inequality (cf. [20]), one deduces
that

∣∣Mf (C, µ)−1
∣∣ is also uniformly bounded above as µ tends

to µ+ and then that |Mf (C, µ)| is uniformly bounded from
below, as µ tends to µ+. Since φ1 is decreasing, we get
that Mf (C, µ+) is invertible and belongs to D. We would
be therefore able to extend φ1 on the right of µ+ and reach
a contradiction. Therefore, µ+ = ∞. Since φ2 is decreasing,
one has µMf (C, µ) ≤ Mf (C, 1) if µ ≥ 1. By letting µ tend
to ∞, we have (38).

Assume now that limq→∞ gm(q) = l. Since l > 0 and
according to Item (ii) of Proposition IV.1, we necessarily have
l > m. Coming back to the definition of gm, one gets that there
exists a positive constant Cmax such that

qlhm(q) ∼q→∞ Cmax.

For q > 0, define

H l(q) := qlhm(q).

We have (H l)′(q) = ql−1hm(q)(l− gm(q)) > 0. Then, H l is
strictly increasing and bounded over R+.

Let us first prove that µ+ ≥
l

m
. Use M(1) to denote

Mf (C, 1). For 1 < µ <
l

m
, let us majorize FC,µ(M) for

M ∈ D(M(1)). One has

FC,µ(M) = BC(M)

(
K∏
k=1

H l(cTk M−1ck)

) 1
µ

×
K∏
k=1

(
1

cTk M−1ck

)( lµ−m)

. (39)

The right-hand side of the above inequality is the product of
three terms. The first one, BC(M), is bounded over D. The
second one is also bounded over D. For the third term, notice
that, for M ∈ D(M(1)) and k = 1, · · · ,K,

1
cTk M−1ck

≤
cTk Mck
‖ck‖4

≤
cTk M(1)ck
‖ck‖4

.

We immediately deduce that FC,µ is bounded over D(M(1)).
Since BC(M) tends to zero as M gets close to the set of non
invertible matrices, we deduce that FC,µ reaches its maximum
at some point M∗ ∈ D such that M∗ ≤M(1). We will prove,
by contradiction, that M∗ < M(1). Otherwise, there exists
x̄ ∈ Rm, of unit norm such that

M∗x̄ = M(1)x̄. (40)

Let us evaluate the gradient of FC,µ at M∗ in the direction
Q := −xxT for x ∈ Rm to be fixed later. One has

∇FC,µ(M∗)(−xxT ) = −FC,µ(M∗)N

× Tr(M−1
∗ (fC,µ(M∗)−M∗)M−1

∗ xxT ).

Choose x = M∗x̄. Then,

∇FC,µ(M∗)(−xxT ) = −FC,µ(M∗)N x̄T
(
fC,µ(M∗)−M∗

)
x̄.
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Using the fact that M∗ ≤M(1) and (40), we get

∇FC,µ(M∗)(−xxT ) ≥ −FC,µ(M∗)N(
1
µ
− 1)x̄TM(1)x̄ > 0.

Proceeding as above in every direction x verifying (40), we
can prove that FC,µ takes larger values than FC,µ(M∗) in the
interior of D(M(1)), contradicting the fact that FC,µ reaches
its maximum at M∗.

Since M∗ belongs to the interior of D(M(1)), we get that

M∗ = Mf (C, µ). Then µ+ ≥
l

m
. Moreover, applying the

previous reasoning to AM(1), A > 1, instead of M(1) shows
that FC,µ reaches its maximum over D(AM(1)) at Mf (C, µ)
and then, by letting A tend to ∞, we obtain that FC,µ admits
a unique maximum over D at Mf (C, µ).

We finally show that

lim
µ→l/m−

Mf (C, µ) = 0,

which will imply Item (ii) of the Lemma and (38) in that
case. We reason by contradiction and assume that µ+ > l/m.

Recall that PB is the unique fixed point of BC of trace equal
to m. For µ ∈ (l/m, µ+), we will estimate FC,µ(Mf (C, µ))
in two different ways. First, we evaluate FC,µ(ρP) as ρ tends
to zero. Applying (39) and taking into account the fact that
BC is homogeneous of degree zero, we get

FC,µ(ρP) = BC(P)ρl/µ−mA1(µ)A2(ρ, µ),

with

A1(ρ) :=
( K∏
k=1

H l(cTk P−1ck/ρ)
)1/µ

,

A2(ρ, µ) :=
K∏
k=1

( 1
cTk P−1ck

)(l/µ−m)

.

Clearly, A1(ρ) tends to CK/µmax as ρ tends to zero and A2(ρ, µ)
tends to one as (µ, ρ) tends to (l/m+, 0). Let us now choose
ρ as

ρa(µ) := exp(
a

l/µ−m
),

where a > 0 is arbitrary. Let µ tends to l/m+. Then ρa(µ)
tends to zero and we have

lim
µ→(l/m)+

FC,µ(ρa(µ)P) = BC(P) exp(a)CKm/lmax .

Since FC,µ admits a global maximum over D, we have

lim sup
µ→(l/m)+

FC,µ(Mf (C, µ)) ≥ BC(P) exp(a)CKm/lmax ,

and, since a > 0 is arbitrary, we finally get

lim sup
µ→l/m

FC,µ(Mf (C, µ)) ≥ BC(P)CKm/lmax . (41)

On the other hand, a direct evaluation of FC,µ(Mf (C, µ))
using (39) yields

FC,µ(Mf (C, µ)) = BC(Mf (C, µ))(
K∏
k=1

H l(cTk Mf (C, µ)−1ck)

) 1
µ K∏
k=1

(
cTk Mf (C, µ)ck

)( lµ−m)
.

(42)

For l/m =< µ+, Mf (C, l/m) ∈ D and we would have, by
gathering (41) and (42) evaluated at µ = l/m,

CKm/lmax BC(P)

≤ BC(Mf (C, l/m))
( K∏
k=1

H l(cTk Mf (C, l/m)−1ck)
)m/l

≤CKm/lmax BC(Mf (C, l/m)).

This implies that we have equalities in all the inequalities and
in particular that

H l(cTk Mf (C, l/m)−1ck) = Cmax,

for all k = 1, · · · ,K. Since H l is strictly increasing, we
reached a contradiction. Therefore, µ+ = l/m and thus
Mf (C, l/m) /∈ D.

It remains to prove (38). Notice that all the terms in (42)
except BC(Mf (C, l/m)) remain clearly bounded as µ tends
to µ+ from below. If Mf (C, l/m) 6= 0, then BC(Mf (C, µ))
tends to zero as µ tends to µ+ since BC can be continuously
extended by zero on the boundary of D minus 0. From
(41), it would result BC(P) = 0, which is impossible. That
contradiction ends the proof of Lemma V.5.

We now have enough material to provide an argument for
Theorem III.2. Thanks to the previous results, it turns out that
the map µ 7→ Tr

(
(Mf (C, µ))

)
, defined on I , is is bijection

between I and R∗+. Therefore, there exists a unique µm ∈
I such that Tr

(
(Mf (C, µm))

)
= m. A simple computation

yields that Mf (C, µm) is a fixed point of GC. Let us prove
that it is the only one.

Indeed, let M be a fixed point of GC. Then,

fC(M) = ξM,

with ξ :=
Tr(fC(M))

m
, i.e., M is the fixed point of fC,ξ. Then

M = Mf (C, ξ) and Tr(M) = m. We deduce that ξ = µm
hence M = Mf (C, µm).

Remark V.1
Following [15], one could derive similar results by replacing
the normalization Tr(M) = 1 by another increasing and
homogeneous of degree one real-valued function over D such
as |M|1/m.

VI. CONCLUSION

In this paper, the problem of covariance matrix estimation
in impulsive noise modeled by Spherically Invariant Random
Vectors was considered. The exact maximum likelihood esti-
mate, defined as the solution of a fixed point equation and
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denoted M̂f (C) has been studied; we first demonstrate its
existence and its uniqueness for the chosen normalization
on the real covariance matrix, Tr(M) = m, i.e., M̂f (C) is
the unique solution of the corresponding fixed point equation
which verifies Tr(M̂f (C)) = m. The second main result
consists in showing that the associated algorithm, which has
been proposed in [9], is indeed convergent for any initial
condition in G .
The next step of the estimation analysis regards the statistical
performance of M̂f (C): bias, consistency and asymptotic
distribution. This will be the object of a future work.

APPENDIX A
PROOF OF THEOREM III.3

We provide additional notation. If T ∈Mm(R) is invertible
and C is a K-tuple of vectors of Rm, then T · C denotes the
K-tuple of vectors of Rm given by

T · C := (Tc1, · · · ,TcK). (43)

Moreover, one has, for every M ∈ D,
BC(M) =

1
|T|K

BT·C(T−1MT),

FC(M) =
1
|T|K

FT·C(T−1MT).
(44)

A. Proof of Proposition IV.1

Item (i) follows from a trivial computation. For q > 0, write
Hm(q) = qmhm(q) as

Hm(q) =
∫ ∞

0

sm(τ/q)p(τ)dτ,

where sm(t) := t−m exp(−1/t). Set tm := 1/m. After some
computations, one has

lim
t→0

sm(t) = lim
t→∞

sm(t) = 0,

and sm is increasing on (0, tm), decreasing on (tm,∞) with
unique maximum at tm.

Let P(X) :=
∫X

0
p(τ)dτ for X > 0 and let A > 1 be a

parameter to be fixed later. Then, by cutting R+ in the three
intervals [0, tm/A], [tm/A,Atm] and [Atm,∞), one has

Hm(q) ≤ sm(tm/A)P(qtm/A) + sm(Atm)(1−P(qAtm))
+ sm(tm)(P(qAtm)− P(qtm/A)).

One immediately deduces that

lim sup
q→0

Hm(q) ≤ sm(Atm),

and the conclusion by letting A tend to ∞. Similarly,

lim sup
q→∞

Hm(q) ≤ sm(tm/A),

and the conclusion by letting A tend to ∞. As for Item (iii),
an easy computation yields

c′m(q) = −cm(q)(cm+1(q)− cm(q)),

and

cm+1(q)− cm(q) =
hm+2(q)hm(q)− h2

m+1(q)
hm(q)2

.

Writing the numerator as a double integral leads to

hm+2(q)hm(q)− h2
m+1(q) =

∫∫
(R+)2

p(τ)p(µ)

exp(−q( 1
τ

+
1
µ

))(τµ)−m(
1
τ2
− 1
τµ

)dτdµ.

By exchanging τ and µ in the above integral and taking the
arithmetic mean, we get

hm+2(q)hm(q)− h2
m+1(q) =

1
2

∫∫
(R+)2

p(τ)p(µ)

exp(−q( 1
τ

+
1
µ

))(τµ)−m(
1
τ
− 1
µ

)2dτdµ > 0.

We proceed similarly for Item (iv). We start from

gm(q) =
Hm+1(q)
Hm(q)

,

and get g′m(q) =
H ′m+1(q)Hm(q)−Hm+1(q)H ′m(q)

H2
m(q)

. In all

the integrals, we make the change of variable τ → τ/q and we
write the numerator H of the last fraction as a double integral,

H =
∫∫

(R+)2
(τµ)−m exp(−q( 1

τ
+

1
µ

))

(
p′(qτ)p(qµ)−

µ

τ
p(qτ)p′(qµ)

)
dτdµ.

Finally, one has

p′(qτ)p(qµ)−
µ

τ
p(qτ)p′(qµ) =

p(qτ)p(qµ)
qτ

(P (qτ)−P (qµ)),

where P (τ) = τ
p′(τ)
p(τ)

. By exchanging τ and µ in the above

integral and taking the arithmetic mean, we get

H = −
1
2q

∫∫
(R+)2

(τµ)−(m+1) exp(−q( 1
τ

+
1
µ

))p(qτ)p(qµ)

× (τ − µ)2P (qτ)− P (qµ)
qτ − qµ

dτdµ.

Therefore, if the sign of the derivative of P is constant, so is
the sign of the derivative of gm and the two signs are opposite.
A simple computation on known PDF’s shows that gm is thus
strictly increasing.

B. Proof of Proposition IV.2

For M ∈ D, write

FC(M) = BC(M)
K∏
k=1

Hm(cTk M−1ck).

In [3], it was proved that BC is homogeneous of degree
zero, uniformly bounded over D and it can be continuously
extended to the boundary of D minus the zero matrix by zero.
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Moreover, BC reaches its maximum over a unique half-line,
supported by a well-defined matrix PB of trace m.

Combined with Item (ii) of Proposition IV.1, we deduce
from the above that FC is uniformly bounded over D. Set

max(F ) = sup
M∈D

FC(M), max(B) = sup
M∈D

BC(M),

and define

K := {M ∈ D | FC(M) ≥ max(F )/2}.

Proving Item (A) amounts to show that K is a compact set of
D, i.e., there exists two positive real numbers k1, k2 so that,
for every M ∈ K,

k1Im ≤M−1 ≤ k2Im.

We argue by contradiction. Then, there exists a sequence of
unit norm vectors xn, n ≥ 0, and a sequence of matrices Mn

in D so that

either lim
n→∞

xTnM−1
n xn = 0 or lim

n→∞
xTnM−1

n xn =∞. (45)

Note that, if U ∈ SO(m), Eq. (44) reduces to

BU·C(U−1MU) = BC(M), FU·C(U−1MU) = FC(M).

In particular, max(FU·C) and max(BU·C) only depend on
C and not on U ∈ SO(m). Consequently, if (Un)n≥0 is a
sequence of orthogonal matrices so that Unc1 = ‖c1‖xn, then

max(FC)/2 ≤ FC(Mn) = FUn·C(U−1
n MnUn)

≤ max(BC)sm(tm)N−1Hm(‖c1‖2xTnM−1
n xn),

and the last term tends to zero as n tends to ∞, according
to (45). Since max(FC) > 0, we reached a contradiction and
Item (A) is proved.

Let M be a critical point of FC or equivalently a fixed
point of fC. A simple computation of the Hessian of FC at
M yields

Hess FC(M)(Q,Q) = K( Tr(M−1QM−1Q)+

1
K

K∑
k=1

c′m(cTk M−1ck)(cTk M−1QM−1ck)2),

where Q is an arbitrary symmetric m×m matrix. Set dk :=
M−1/2ck and R := M−1/2QM−1/2. Then, one has

Hess FC(M)(Q,Q) =

−K

[
Tr(R2) +

1
K

K∑
k=1

c′m(‖dk‖2)(dTk Rdk)2

]
. (46)

Since M is a fixed point of fC, one has,

Im =
1
K

K∑
k=1

cm(‖dk‖2)dkdTk .

Multiplying the previous equation on the left and on the right
by R, then taking the trace and inserting the result in (46), we
get

Hess FC(M)(Q,Q) =

−
∑
k∈IR

‖Rdk‖2[cm(‖dk‖2) + rk‖dk‖2c′m(‖dk‖2)],

where IR is the set of indices k such that Rdk 6= 0 and

rk :=
(

dTk Rdk
‖dk‖‖Rdk‖

)2

∈ [0, 1].

Then clearly,

Hess FC(M)(Q,Q) ≤ −
∑
k∈IR

rk‖Rdk‖2g′m(‖dk‖2),

which is strictly negative if Q 6= 0.

C. Proof of Proposition IV.3

Items (i) is proved exactly as Item (P1) of Proposition V.2
and Proposition V.3 of [3]. For Item (ii), consider λ ∈ (0, 1)
and M ∈ D. Write fC(λM) as

fC(λM) =
λ

K

K∑
k=1

gm(cTk M−1ck/λ)
ckcTk

cTk M−1ck
.

Since gm is increasing, one has

fC(λM) >
λ

K

K∑
k=1

gm(cTk M−1ck)
ckcTk

cTk M−1ck
= λfC(M).

Suppose now that λ > 1. Apply the previous result to λM and
1/λ respectively instead of M and λ.

D. Proof of Item (c) of Theorem III.3

Let M ∈ D and (Mn)n≥0 be the orbit of M by the
iterative scheme associated to fC. Then M0 = M and
Mn+1 = fC(Mn) for n ≥ 0. There exists two positive real
numbers λ1 < 1 and λ2 > 1 such that

λ1Mf (C) < M < λ2Mf (C).

Define KM as the compact subset of D given by

KM := {Q ∈ D | λ1Mf (C) ≤ Q ≤ λ2Mf (C)}.

By a trivial inductive argument which uses the subhomogene-
ity of fC, we show that the orbit of M remains in KM. We
will prove a more precise statement. For that purpose, define,
for ε > 0 small enough,

M(ε) := min
gm(cTk Q−1ck/λ)

gm(cTk Q−1ck)
,

over all λ ∈ [λ1, 1− ε], k ∈ {1, · · · ,K} and Q ∈ KM and

m(ε) := max
gm(cTk Q−1ck/λ)

gm(cTk Q−1ck)
,

over all λ ∈ [1 + ε, λ2], k ∈ {1, · · · ,K} and Q ∈ KM. It is
easy to see that M(ε) > 1 and m(ε) < 1. Then, one clearly
has
(i1) If Q ∈ KM and λ ∈ [λ1, 1 − ε], then fC(λQ) ≥

M(ε)λfC(Q);
(i2) if Q ∈ KM and λ ∈ [1 + ε, λ2], then fC(λQ) ≤

m(ε)λfC(Q).
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Assume now that ε is very small. Define the integers m1, m2

and nε as follows that

m1 :=

[
ln((1− ε)/λ1)

ln(M(ε))

]
, m2 :=

[
ln((1 + ε)/λ2)

ln(m(ε))

]
,

nε = max(m1,m2),

where [·] denotes the integer part. We first claim that

λ1M(ε)m1Mf (C) ≤Mnε ≤ λ2m(ε)m2Mf (C). (47)

Indeed, if for some integers n and l ≤ nε − 1, one
has λ1M(ε)lMf (C) ≤ Mn, then, by Item (i1), we have
λ1M(ε)l+1Mf (C) ≤ Mn+1, and that goes on as long as
λ1M(ε)l < 1. The argument is identical for the other in-
equality of (47).

With an easy inductive argument using the subhomogeneity
of fC, we show that, for every n ≥ nε,

λ1M(ε)m1Mf (C) ≤Mn ≤ λ2m(ε)m2Mf (C).

This clearly implies that, for every n ≥ nε,

1− ε
M(ε)

Mf (C) ≤Mn ≤
1 + ε

m(ε)
Mf (C).

Since both M(ε) and m(ε) tend to one as ε tends to zero, we
deduce that Mn tends to Mf (C) as n tends to ∞.
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where he is a member of the Laboratoire des Signaux
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