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ABSTRACT

This paper presents an application of the recent advances in

the field of Spherically Invariant Random Vectors modelling.

We propose the use of the Fixed Point (FP) estimator for de-

riving normalized polarimetric coherency matrices in com-

pound Gaussian clutter. The main advantages of the FP es-

timator are that it does not require any ”a priori” information

about the probability density function of the texture and it

can be directly applied on adaptive neighborhoods. Interest-

ing results are obtained when coupling this FP estimator with

an adaptive spatial support driven on the scalar span infor-

mation. The proposed method is tested with both simulated

POLSAR data and high resolution POLSAR data acquired

over the French Alps.

Index Terms— polarimetry, SAR, coherence, estimation,

SIRV, glaciers

1. INTRODUCTION

A Synthetic Aperture Radar (SAR) measures both amplitude

and phase of the backscattered signal, producing one com-

plex image for each recording. The sensors being able to

emit and receive two orthogonal polarizations, fully POLari-

metric Synthetic Aperture Radar (POLSAR) systems describe

the interactions between the electromagnetic wave and the

target area by means of the Sinclair model. In a particular

frequency band, the wave-media interactions over distributed

areas are generally studied using the polarimetric covariance

matrix (called also coherency when vectorizing in the Pauli

basis).

The recently launched POLSAR systems are now capa-

ble of producing high quality images of the Earth’s surface

with meter resolution. The decrease of the resolution cell

offers the opportunity to observe much thinner spatial fea-

tures than the decametric resolution of the up-to-now avail-

able SAR images. However, higher scene heterogeneity leads

Thanks to Centre National d’Etudes Spatiales (CNES) for funding.

to non-Gaussian polarimetric clutter modelling as the POL-

SAR data can no more be considered locally Gaussian, espe-

cially for urban regions. One commonly used fully polarimet-

ric non-Gaussian clutter model is the product model [1]. For

this model, the speckle presents a dual nature depending on

the involved polarimetric descriptor:

• intensity: speckle can be considered as a nuisance pa-

rameter as the Gaussian kernel induces undesired spa-

tial variations over homogeneous textureless areas,

• covariance matrix: speckle represents the useful signal

as the covariance matrix is computed using the Gaus-

sian kernel (texture appears as nuisance).

The objective of this paper is to present a new normalized

coherency estimation technique based on the Spherically In-

variant Random Vectors model [2]. The remainder of this pa-

per is organized as follows. Sect. 2 is dedicated to the presen-

tation of the proposed estimation scheme. The heterogeneity

of polarimetric textured scenes is taken into account by cou-

pling the ML normalized coherency estimator with adaptive

neighborhoods driven on the scalar ML span estimators. In

Sect. 3, the results obtained using the proposed approach are

presented and compared to those given by the Gaussian ML

estimator computed within boxcar neighborhoods. The use

of the normalized coherency and the span as two separate de-

scriptors of POLSAR data sets is also discussed.

2. HETEROGENEOUS MODEL FOR

POLARIMETRIC TEXTURED SCENES

For POLSAR data, the Spherically Invariant Random Vec-

tors (SIRV) model is a class of non-homogeneous Gaussian

processes with random power: its randomness is induced by

variations in the radar backscattering over different polariza-

tion channels.
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2.1. Clutter modelling by SIRV processes

In this paper, the polarimetric descriptors used are the tar-

get vectors in the Pauli basis
−→
k = [k1, k2, k3]

T (monostatic

acquisition). Consequently, the complex three dimensional

measurement
−→
k is defined as the product between the in-

dependent complex Gaussian vector −→z (speckle), with zero

mean and covariance matrix [M ] = E{−→z −→z †}, and the

square root of the positive random variable τ (texture):

−→
k =

√
τ−→z , (1)

where † denotes the conjugate transpose operator and E{...}
the mathematical expectation.

When using the product model, an identification problem

can be observed: the SIRV model is uniquely defined with re-

spect to the covariance matrix parameter up to a multiplicative

constant. For solving this identification problem, the covari-

ance matrix has to be normalized. In the following the co-

variance matrix [M ] is normalized such that Tr{[M ]} = m,

where Tr{[M ]} denotes the trace of the matrix [M ] and m

is the dimension of the target vector (m = 3 for monostatic

POLSAR acquisitions).

In Eq. 1, the normalized covariance matrix is an unknown

parameter which can be estimated from Maximum Likelihood

(ML) theory. In [3], Gini et al. derived the ML estimate [M̂ ]
of the normalized covariance matrix for deterministic texture:

[M̂ ] = f([M̂ ]) =
m

N

N∑

i=1

−→
k i

−→
k

†
i−→

k
†
i
[M̂ ]−1

−→
k i

, (2)

where N is the number of available observations of the target

vector. This approach has been used in [4] by Conte et al.

to derive a recursive algorithm for estimating the matrix [M ].
This algorithm consists of computing the Fixed Point of f us-

ing the sequence ([M ]i)i≥0 defined by [M ]i+1 = f([M ]i). It

has been shown in [3] and [4] that the estimation scheme from

Eq. 2, developed under the deterministic texture case, yields

also an approximate ML estimator under stochastic texture

hypothesis. This study has been completed by the work of

Pascal et al. [2], which recently established the existence and

the uniqueness of the Fixed Point estimator of the normalized

covariance matrix, as well as the convergence of the recursive

algorithm whatever the initialization.

We propose to apply these results in estimating normal-

ized coherence matrices for high resolution POLSAR data.

The main advantage of this approach is that the local scene

heterogeneity can be taken into account without any ”a pri-

ori” hypothesis regarding the texture random variable τ (Eq. 2

does not depend on τ ). The obtained Fixed Point is the ap-

proximate ML estimate under the stochastic τ assumption and

the exact ML under deterministic τ assumptions. Moreover,

the normalized polarimetric coherency matrix estimated us-

ing the Fixed Point method is unbiased [2].

One important consequence of the imposed normaliza-

tion condition is that the resulting normalized polarimetric

coherency matrix (NC) does not fully describe the POLSAR

data set any more. The NC descriptor reveals information

concerning the polarimetric diversity only, the power infor-

mation being lost. Nevertheless, the complete description of

the original data set can be achieved by coupling NC with the

span (or total power) descriptor P . By estimating the nor-

malized coherency as the Fixed Point solution of Eq. 2, the

derived NC is independent of the total power and it contains

polarimetric information only. Using this matrix, it is pos-

sible to compute the SIRV span ML estimator for unknown

deterministic τ as:

P̂PWF =
−→
k †[M̂ ]−1

−→
k . (3)

When compared to the conventional span estimator, the main

advantage of the Polarimetric Whitening Filter (PWF) is that

it takes into account the correlation between the different po-

larization channels in the whitening process [5].

Note also that the PWF span estimator from Eq. 3 can

be extended, under iid and Gaussian hypotheses, yielding the

Multilook Polarimetric Whitening Filter (MPWF):

P̂MPWF =
1

N

N∑

i=1

−→
ki

†[M̂i]
−1

−→
ki . (4)

When the covariance matrix is estimated using the Sample

Covariance matrix Normalized (SCN) estimator, the MPWF

span from Eq. 4 is also the ML estimator of the texture for the

Gaussian case and it is unbiased [5].

2.2. Spatial support

In the estimation process a certain number of samples must be

gathered for deriving the observation vector. In this purpose,

the boxcar sliding neighborhood (BN) is usually employed.

The main inconvenient of BN non-adaptive neighborhood is

that the available number of samples is directly proportional

with the loss of spatial resolution. Experiments on real data

sets have shown that the Intensity Driven Adaptive Neigh-

borhood (IDAN) represents, on the whole, a good trade-off

between preserving signal characteristics and gathering sig-

nificant number of samples for parameter estimation [6].

However, recent studies have revealed that the original

IDAN algorithm tends to introduce bias with respect to the

radiometry information [7]. The main reasons consist in the

use of a symmetric confidence interval around the mean for

the Gamma distributed intensity and the estimation of the ini-

tial seed by the median computed within a 3×3 neighborhood.

We propose to deal with this specific problems by operating

several modifications on the original IDAN method. The re-

sulting SDAN procedure (Span Driven Adaptive Neighbor-

hood) is presented in Algorithm 1 and allows to use heteroge-

neous scene models, such as SIRV, in the estimation step.
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Another physical parameter which needs to be estimated

is the total power. For the SIRV model, the PWF span estima-

tor is the ML estimator, hence it should be applied for textured

areas. However, on Gaussian textureless areas, a stronger

speckle reduction can be obtain using the MPWF estimator.

In practical applications, the PWF and the MPWF estimators

should be applied as follows: on ”Gaussian stationary” re-

gions the best span estimator is the MPWF, while on ”SIRV

homogeneous” areas only, the PWF should be applied. We

propose to deal with this trade-off by applying the LLMMSE

criterion for the span estimation [8].

3. RESULTS AND DISCUSSION

As, for real data, it is hard to find reference regions with

known coherency matrix, the effectiveness of the estimation

schemes is demonstrated using simulated POLSAR data. The

present paper proposes the analysis of two such estimation

techniques: the Sample Covariance matrix Normalized cou-

pled with the 7× 7 Boxcar Neighborhood (BN-SCN) and the

Fixed Point estimator coupled with the SDAN adaptive neigh-

borhood (SDAN-FP). In all cases, the corresponding span im-

age is estimated using the LLMMSE estimator.

The first POLSAR data set proposes four adjacent non-

Gaussian regions as presented in Fig. 1. Each of the four

quadrants has associated a K-distributed texture value [Fig. 1-

(a)] and a known theoretical covariance matrix. The texture

coefficient of variation (CV) used for simulation equals 3,

which corresponds to a highly non-Gaussian clutter (urban

areas). Fig. 1-(b) shows the corresponding amplitude color

composition of the three target vector components.

The effectiveness of the Fixed Point estimator in com-

pound Gaussian clutter can be observed in Fig. 1-(c),(d).

While the BN-SCN normalized coherency [Fig. 1-(c)] presents

a ”patchy” appearance, the SDAN-FP estimation [Fig. 1-(d)]

provides better visual homogeneity within each quadrant.

To illustrate the improvements in the conventional POL-

SAR processing chain, results obtained with high-resolution

airborne data are reported. The POLSAR data set [Fig. 2-(a)]

was acquired in October 2006 by the E-SAR system over the

upper part of the Tacul glacier from the ”Chamonix - Mont

Blanc” test site, France. It represents a fully polarimetric

(monostatic mode) L-band acquisition with a spatial resolu-

tion of approximately 1.5 m in range and azimuth. Visual as-

sessment is carried out also with normalized coherency [M ]
estimates. Color compositions, constructed from the diagonal

elements of [M ] are computed for the two estimation tech-

niques [Fig. 3-(b),(c)].

One key issue to be discussed is whether the normalized

coherency matrix (NC) and the span should be aggregated in

the final estimation step or not [Fig. 2-(d)]. Due to the SIRV

model identification problem discussed in Sect. 2, the com-

plete description of the POLSAR data set is achieved by es-

timating the span [Fig. 2-(b)] and the normalized coherency

Algorithm 1 : Span-Driven-Adaptive-Neighborhood

1. Minimal neighborhood AN
(I)

(i,j): in each pixel (i, j) the min-

imal AN
(I)

(i,j) is defined as the 3 × 3 BN.

(a) Seed normalized coherency matrix ML estimation using

the Fixed Point estimator: [M
(I)
FP ](i, j).

(b) Seed span MPWF estimation: p(I)(i, j).

2. Region growing AN
(II)

(i,j): the eight direct neighbors (i′, j′)

of the seed are accepted inside the AN
(II)

(i,j) provided that:

1 − CV ≤

−→
k †(i′, j′) · [M

(I)
FP

]−1(i, j) ·
−→
k (i′, j′)

p(I)(i, j)
≤ 1 + CV.

The same procedure is applied for all the neighbors of the

newly included pixels and so on. The region growing is iter-

ated until either the number of pixels already included in the

AN
(II)

(i,j) exceeds a predefined upper limit Nmax or none of

the new neighbors fulfills the test condition. The pixels which

have already been tested but not accepted inside the AN
(II)

(i,j)

are stored in a separate list (background pixels).

(a) Refined estimation of the seed normalized coherency

matrix: a more reliable estimate of the normalized co-

herency [M
(II)
FP ](i, j) is obtained using the pixels in-

cluded in AN
(II)

(i,j).

3. Reinspection of the background pixels AN(i,j): the back-

ground pixels (i′′, j′′) of the list created in step 2 are tested
again and aggregated in the AN(i,j) provided that:

1 − Tlow · CV ≤

−→
k †(i′′, j′′) · [M

(II)
FP

]−1(i, j) ·
−→
k (i′′, j′′)

p(I)(i, j)

−→
k †(i′′, j′′) · [M

(II)
FP

]−1(i, j) ·
−→
k (i′′, j′′)

p(I)(i, j)
≤ 1 + Thigh · CV

where the constants Tlow and Thigh are set in order to retain

over per = 99% of the Gamma pdf.

Example: for Leq = 3, with Tlow = 1.66 and Thigh = 5, the

AN retains per = 99.9% of the Gamma pdf.

[Fig. 2-(c)] independently. The NC describes the polarimetric

diversity, while the span indicates the total received power.

Moreover, the Fixed Point estimation of the normalized co-

herence does not depend on the span information. Given these

facts, the joint analysis of the span and the normalized co-

herency presents several advantages with respect to the co-

herency matrix descriptor: separation between the total re-

ceived power and the polarimetric information and estimation

of the NC independently of the span. However, the span-NC

description of POLSAR images raises new problems which

still remain under investigation such as the use of span for

testing the ”matrix stationarity” condition for the normalized

coherency estimation, or different clustering strategies better

suited to capture the spatial distribution of different polari-

metric signatures.
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(a) (b)

(c) (d)

Fig. 1. Simulated POLSAR data, SIRV case (200 × 200 pixels):

(a) texture image and (b) amplitude color composition of the tar-

get vector elements k1-k3-k2. Color composition of the normalized

coherency diagonal elements [M ]11-[M ]33-[M ]22 estimated by: (c)

BN-SCN and (d) SDAN-FP.

(a) (d)

(b) (c)

Fig. 2. E-SAR data (400 × 400 pixels): (a) target vector elements

k1-k3-k2, (b) LLMMSE span estimated by SDAN-FP, (c) SDAN-FP

normalized coherency diagonal elements [M ]11-[M ]33-[M ]22, (d)

SDAN-FP coherency diagonal elements [T ]11-[T ]33-[T ]22 obtained

as the product [M ] · P · m−1.

(a) (b) (c)

Fig. 3. E-SAR data (zoom 4x): (a) target vector elements k1-k3-k2.

Color composition of the normalized coherency diagonal elements

[M ]11-[M ]33-[M ]22 estimated by: (b) BN-SCN and (c) SDAN-FP.

4. CONCLUSION

This paper presented a new estimation scheme for deriving

normalized coherency matrices with high resolution POL-

SAR images. The proposed approach couples nonlinear ML

estimators with span driven adaptive neighborhoods for tak-

ing the local scene heterogeneity into account.
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[6] G. Vasile, E. Trouvé, J. S. Lee, and V. Buzuloiu, “Intensity-Driven-

Adaptive-Neighborhood technique for polarimetric and interferometric

SAR parameters estimation,” IEEE Transactions on Geoscience and

Remote Sensing, vol. 44, no. 5, pp. 1609–1621, 2006.
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