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Abstract In many global optimization problems motivated by engineering applications, the number of
function evaluations is severely limited by time or cost. Toensure that each evaluation contributes to the
localization of good candidates for the role of global minimizer, a sequential choice of evaluation points
is usually carried out. In particular, when Kriging is used to interpolate past evaluations, the uncertainty
associated with the lack of information on the function can be expressed and used to compute a number
of criteria accounting for the interest of an additional evaluation at any given point. This paper introduces
minimizers entropy as a new Kriging-based criterion for thesequential choice of points at which the function
should be evaluated. Based onstepwise uncertainty reduction, it accounts for the informational gain on the
minimizer expected from a new evaluation. The criterion is approximated using conditional simulations
of the Gaussian process model behind Kriging, and then inserted into an algorithm similar in spirit to
the Efficient Global Optimization(EGO) algorithm. An empirical comparison is carried out between our
criterion andexpected improvement, one of the reference criteria in the literature. Experimental results
indicate major evaluation savings over EGO. Finally, the method, which we call IAGO (for Informational
Approach to Global Optimization), is extended to robust optimization problems, where both the factors to
be tuned and the function evaluations are corrupted by noise.

Keywords Gaussian process, global optimization, Kriging, robust optimization, stepwise uncertainty
reduction

1 Introduction

This paper is devoted to global optimization in a context of expensive function evaluation. The objective is to
find global minimizers inX (the factor space, a bounded subset ofRd) of an unknown functionf : X → R,
using a very limited number of function evaluations. Note that the global minimizer may not be unique
(any global minimizer will be denoted asx∗). Such a problem is frequently encountered in the industrial
world. For instance, in the automotive industry, optimal crash-related parameters are obtained using costly
real tests and time-consuming computer simulations (a single simulation of crash-related deformations may
take up to 24 hours on dedicated servers). It then becomes essential to favor optimization methods that use
the dramatically scarce information as efficiently as possible.

To make up for the lack of knowledge on the function, surrogate (also called meta or approximate)
models are used to obtain cheap approximations [13]. They turn out to be convenient tools for visualizing
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the function behavior or suggesting the location of an additional point at whichf should be evaluated in
the search forx∗. Surrogate models based on Gaussian processes have received particular attention. Known
in geostatistics under the name ofKriging since the early 1960s [15], Gaussian process models provide
a probabilistic framework to account for the uncertainty stemming from the lack of information on the
system. When dealing with an optimization problem, this framework allows the set of function evaluations
to be chosen efficiently [12–14].

In this context, several strategies have been proposed, with significant advantages over traditional opti-
mization methods when confronted to expensive-to-evaluate functions. Most of themimplicitly seek a likely
value forx∗, and then assume it to be a suitable location for a new evaluation of f . Yet, given existing eval-
uation results, the most likely location of a global minimizer is not necessarily a good evaluation point to
improve our knowledge onx∗. As we shall show, by making full use of Kriging, it is insteadpossible to
explicitlyestimate the probability distribution of the optimum location, which allows an information-based
search strategy.

Based on these observations, the present paper introduces minimizers entropy as a criterion for the
choice of new evaluation points. This criterion, directly inspired fromstepwise uncertainty reduction[9],
is then inserted in an algorithm similar to theEfficient Global Optimization(EGO) algorithm [14]. We call
the resulting algorithm IAGO, forInformational Approach to Global Optimization.

Section 2 recalls the principle of Kriging-based optimization, along with some general ideas on Gaus-
sian process modeling that are used in Section 3 to build an estimate of the distribution of the global mini-
mizers. Section 4 details the stepwise uncertainty reduction approach applied to global optimization, while
Section 5 describes the corresponding algorithm and its extensions to noisy problems. Section 6 illustrates
the behavior of the new algorithm on some simple benchmark problems, along with its performances com-
pared with those of the classical EGO algorithm, chosen for its good compromise between local and global
search [17]. Finally, after a conclusion section and to makethis paper self-contained, Section 8 recalls, as
an appendix, some more results on Gaussian process modelingand Kriging.

2 Kriging-based global optimization

When dealing with expensive-to-evaluate functions, optimization methods based on probabilistic surrogate
models (and Kriging in particular) have significant advantages over traditional optimization techniques,
as they require fewer function evaluations to provide an acceptable solution. Kriging provides not only
a cheap approximation of the function but also an estimate ofthe potential error in this approximation.
Numerous illustrations of this superiority can be found in the literature (see, for instance, [6]) and many
variations have been explored (for extensive surveys, see [13] and [17]). As explained in this section, these
methods deal with the cost of evaluation using an adaptive sampling strategy, replacing the optimization of
the expensive-to-evaluate functionf by a series of optimizations of a cheap criterion.

2.1 Gaussian process modeling and Kriging

This section briefly recalls the principle of Gaussian process (GP) modeling, and lays down the necessary
notation. A more detailed presentation is available in the appendix (Section 8).

When modeling with Gaussian processes, the functionf is assumed to be a sample path of a Gaussian
random processF , with mean functionm(x) and covariance functionk(·, ·) defined overX2. If we denote
(Ω,A,P) the underlying probability space, this amounts to assumingthat∃ω ∈ Ω, such thatF (ω, ·) =
f(·). Whenever possible, we shall omit the dependence ofF in ω to simplify notation.

In particular, given a set ofn evaluation pointsS = {x1, . . . , xn} (thedesign), ∀xi ∈ S the evaluation
resultf(xi) is viewed asa sample value of the random variableF (xi). Kriging computes an unbiased
linear predictor ofF (x) in the vector spaceHS = span{F (x1), . . . , F (xn)}, which can be written as

F̂ (x) = λ(x)TFS , (1)

with FS = [F (x1), . . . , F (xn)]T, andλ(x) the vector of Kriging coefficients for the prediction atx.
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Given the covariance function ofF , the Kriging coefficients can be computed along with the variance
of the prediction error

σ̂2(x) = var(F̂ (x) − F (x)). (2)

The covariance function ofF is chosen within a parametrized class (for instance, the Matèrn class), and its
parameters are either estimated from the data or chosen a priori (see Section 8.3.2 for details on the choice
of a covariance function).

Oncef has been evaluated at all evaluation points inS, the predicted value off atx is given by

f̂(x) = λ(x)TfS , (3)

with fS = [f(x1), . . . , f(xn)]T (fS is viewed as a sample value ofFS). The same results could be derived
in a Bayesian framework, whereF (x) is Gaussian conditionally to the evaluations carried out (FS = fS),
with meanf̂(x) and variancêσ2(x).

Note that the random processesF (x) andF̂ (x) satisfy

∀ xi ∈ S, F̂ (xi) = F (xi), (4)

and that the prediction atxi ∈ S is f(xi). Whenf is assumed to be evaluated exactly, Kriging is thus
an interpolation, with the considerable advantage over other interpolation methods that it also provides an
explicit characterization of the prediction error (zero-mean Gaussian with variancêσ2(x)).

2.2 Adaptive sampling strategies

The general principle of optimization using Kriging is iteratively to evaluatef at a point that optimizes a
criterion based on the model obtained using previous evaluation results. The simplest approach would be
to choose a minimizer of the prediction̂f as a new evaluation point. However, by doing so, too much
confidence would be put in the current prediction and search is likely to stall on a local optimum (as
illustrated by Figure 1). To compromise between local and global search, more emphasis has to be put
on the prediction error, which can indicate locations whereadditional evaluations are needed to improve
confidence in the model. This approach has led to a number of criteria to select additional evaluation points
based on both prediction and prediction error.

A standard example of such a criterion isexpected improvement(EI) [18]. As the name suggests, it in-
volves computing how much improvement in the optimum is expected, iff is evaluated at a given additional
point. Letfmin be the best function value obtained so far. The improvement expected from an additional
evaluation off atx givenfS, the results of past evaluations, can then be expressed as

EI(x) = E [max (fmin − F (x) , 0) |FS = fS] .

SinceF (x) is conditionally Gaussian with mean̂f(x) and variancêσ2(x),

EI(x) = σ̂(x)

[

uΦ(u) +
dΦ

du
(u)

]

, (5)

with

u =
fmin − f̂(x)

σ̂(x)

andΦ the normal cumulative distribution function. The new evaluation point is then chosen as a global
maximizer of EI(x). An example is given on Figure 2, where the problem that deceived the naive method
of Figure 1 is directly solved with the EI criterion. This method has been used for computer experiments in
[17], while modified criteria have been used in [11] and [25] to deal with noisy functions.

In [13] and [24], a fair number of alternative criteria are presented and compared. Although quite differ-
ent in their formulation, they generally aim to answer the same question: What is the most likely position
of x∗? Another, and probably more relevant, question is: Where should the evaluation be carried out opti-
mally to improve knowledge on the global minimizers?

In what follows, a criterion that addresses this question will be presented, along with its performances.
The reference for comparison will be EI, which is a reasonable compromise between local and global
search [17], and has been successfully used in many applications.
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Fig. 1 Naive approach to optimization using Kriging: (top) prediction f̂ (bold line) of the true functionf (dotted line, supposedly
unknown) obtained from an initial design materialized by squares; (bottom) prediction after seven iterations minimizinĝf .
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Fig. 2 EI approach to optimization using Kriging: (top) predictionf̂ (bold line), 95% confidence intervals computed usingσ̂ (dashed
line) and true functionf (dotted line); (bottom) expected improvement.
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3 Estimating the density ofx∗

Once a Kriging surrogate model̂f has been obtained, any global minimizer off̂ is a natural approximation
of x∗. However, it might be excessively daring to trust this approximation as it does not take in account
the uncertainty of the prediction. A more cautious approachto estimatingx∗ is to use the probabilistic
framework associated withF . Of course,x∗ is not necessarily unique, and we shall focus on describing the
set of all global minimizers off as efficiently as possible.

3.1 Probabilistic modeling of the global minimizers off

According to the GP model, a global minimizerx∗ of f corresponds to a global minimizer of this particular
sample path ofF . It seems therefore natural to use the GP model off to obtain a probabilistic model forx∗.
Consider therandomsetM∗

X
of the global minimizers ofF overX, i.e. the set of all global minimizers for

each sample path, which for anyω ∈ Ω can be written as

M∗
X(ω) = {x∗ ∈ X|F (ω, x∗) = min

u ∈ X

F (ω, u)}.

To ensure thatM∗
X
(ω) is not emptyfor all ω, we assume thatF has continuous sample paths with proba-

bility one. This continuity can be ensured through a proper choice of covariance function (see, e.g., [1]).
LetX∗ be a random vector uniformly distributed onM∗

X
(from now on, we omit the dependency ofM∗

X

in ω). The probability density function of this random vector conditional to past evaluation results, that we
shall thereafter call conditional density of the global minimizers and denotepX∗|fS

(x) , is of great interest,
as it allows one not only to estimate the global minimizers off (for example, through the maximization
of their conditional density), but also to characterize theuncertainty associated with this estimation. In
fact,pX∗|fS

(x) contains all of what has been assumed and learned about the system. However, no tractable
analytical expression forpX∗|fS

(x) is available [2, 19]. To overcome this difficulty, the approach taken here
is to consider a discrete version of the conditional distribution, and to approximate it using Monte Carlo
simulations.

Let G = {x1, . . . , xN} be a finite subset ofX,M∗
G

be the random set of global minimizers ofF overG,
andX∗

G
be a random vector uniformly distributed onM∗

G
. The conditional probability mass function of

X∗
G

givenfS (or simply minimizers distribution) is then∀x ∈ G

PX∗

G
|fS

(x) = P(X∗
G = x |FS = fS) .

It can be approximated using conditional simulations,i.e., simulations ofF that satisfyFS = fS. Assuming
that non-conditional simulations are available, several methods exist to make them conditional [4]. Condi-
tioning by Kriging seems the most promising of them in the present context and will be presented in the
next section.

To keep the presentation simple, we assume in what follows thatS ⊂ G.

3.2 Conditioning by Kriging

This method, due to G. Matheron, uses the unbiasedness of theKriging prediction to transform non-
conditional simulations into simulations interpolating the resultsfS of the evaluations.The idea is to sample
from the conditional distribution of the prediction errorF − F̂ rather than from the conditional distribution
of F , which is made easier by the fact that the statistical properties of the prediction error do not depend on
the result of the evaluations, nor on the meanm(x) of F (x).

To present this more formally, letZ be a zero-mean Gaussian process with covariance functionk (the
same as that ofF ) and Ẑ be its Kriging predictor based on the random variablesZ(xi), xi ∈ S, and
consider the random process

T (x) = f̂(x) +
[

Z(x) − Ẑ(x)
]

, (6)

wheref̂ is the mean of the Kriging predictor based on the design points inS. Since this Kriging predictor is
an interpolator, at evaluation points inS, we havef̂(xi) = f(xi). Equation (4) implies thatZ(xi) = Ẑ(xi),
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ẑ
),
f̂

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

0 0.2 0.4 0.6 0.8 1

9

13

-2

2

9

13

Fig. 3 Conditioning a simulation: (top) unknown real curvef (doted line), sample points (squares) and associated Kriging prediction
f̂ (bold line); (middle) non-conditional simulationz, sample points and associated Kriging predictionẑ (bold line); (bottom) the
simulation of the Kriging errorz − ẑ is picked up from the non-conditional simulation and added to the Kriging prediction to get the
conditional simulation (thin line).

which leads toT (xi) = f(xi), ∀xi ∈ S. In other words,T is such that all its sample paths interpolate
the known values off . It is then easy to check thatT has the same finite-dimension distributions asF
conditionally to past evaluation results [7],simply because the prediction errorZ − Ẑ, for Z, has the same
distribution as the prediction error forF , F − F̂ . Note that the same vectorλ(x) of Kriging coefficients is
used to interpolate the data and the simulations at design points. Using (3), one can rewrite (6) as

T (x) = Z(x) + λ(x)T [fS − ZS] , (7)

with ZS = [Z(x1), . . . , Z(xn)]T.
In summary, to simulateF overG conditionally to past evaluation resultsfS, we can simulate a zero-

mean Gaussian processZ overG, compute the prediction error for each simulation and shiftthe prediction
error around the desired mean̂f . This is achieved by the following procedure (illustrated on Figure 3):

– compute, for every point inG, the vector of Kriging coefficients based on the design points in S,
– compute the Kriging prediction̂f(x) based on past evaluation resultsfS for everyx in G,
– collect non-conditional sample paths ofZ overG (provided that a Gaussian sampler is available, set-

ting the proper covariance for the simulated vector can be achieved using, for example, the Cholesky
decomposition),

– apply (7) for each non conditional simulation and at every point in G. That is, to generatet(x), a
conditional simulation ofT (x) from a non-conditional simulationz(x) of Z(x), apply

t(x) = z(x) + λ(x)T[fS − zS], (8)

wherezS is the sampled valued ofZ overS, which is available sinceS ⊂ G.

With this sampling method, it becomes straightforward to estimatePX∗

G
|fS

. Letx∗
i be a global minimizer

of the i-th conditional simulation (i = 1, . . . , r) overG (if it is not unique, choose one randomly). Then,
for anyx in G, a classical estimator is

P̂X∗

G
|fS

(x) =
1

r

r
∑

i=1

δx∗

i
(x), (9)
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Fig. 4 Estimation of the distribution ofX∗
G

: (top) Kriging interpolation, 95% confidence intervals and sample points; (bottom) esti-
mated distribution ofX∗

G
using 10000 conditional simulations ofF and a regular grid forG.

with δ the Kronecker symbol. Figure 4 presents the approximationP̂X∗

G
|fS

for an example where locating
a global minimizer is not easy. Knowing the conditional distribution of X∗

G
gives valuable information on

the areas ofX where a global minimizer might be located, and that ought to be investigated. This idea will
be detailed in the next section.

4 The stepwise uncertainty reduction strategy

The knowledge about the global minimizers off is summarized bŷPX∗

G
|fS

. In order to evaluate the interest
of a new evaluation off at a given point, a measure of the expected information gain is required. An efficient
measure isconditional entropy, as used in sequential testing [9] in theStepwise Uncertainty Reduction
(SUR) strategy. This section extends the SUR strategy to global optimization.

4.1 Conditional entropy

The entropy of a discrete random variableU (expressed in bits) is defined as:

H(U) = −
∑

u

P(U = u) log2 P(U = u).

H(U) measures the spread of the distribution ofU . It decreases as this distribution gets more peaked. In
particular :

– P̂X∗

G
|fS

(x) = 1/N ∀x ∈ G ⇒ H(X∗
G
) = log2(N),

– P̂X∗

G
|fS

(x) =

{

0 if x 6= x0

1 if x = x0
⇒ H(X∗

G
) = 0

Similarly, for any eventB, the entropy ofU relative to the probability measureP(.|B) is

H(U |B) = −
∑

u

P(U = u|B) log2 P(U = u|B).
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The conditional entropy of U given another discrete random variableV is

H(U |V ) =
∑

v

P(V = v)H(U |V = v),

and the conditional entropy ofU givenB andV is

H(U |B, V ) =
∑

v

P(V = v|B)H(U |B, V = v). (10)

Note thatH(U |V ) and H(U |B, V ) are, despite the similarity of notation with conditional expectation,
deterministic quantities.More details on conditional entropy can be found in [5].

4.2 Conditional minimizers entropy

Let FQ(x) be a discrete version ofF (x), defined asFQ(x) = Q(F (x)) with Q a quantization operator.
Q is characterized by a finite set ofM real numbers{y1, . . . , yM}, and defined∀u ∈ R as

Q(u) = yk with k = min
i

|yi − u|. (11)

For optimization problems, the SUR strategy for the selection of the next value ofx ∈ X at whichf will
be evaluated will be based onH(X∗

G
|FS = fS, FQ(x)), the conditional entropy ofX∗

G
given the evaluation

results{FS = fS} andFQ(x) (we shall refer to it later on as conditional entropy of the minimizers, or
simply minimizers entropy).

Using (10) we can write

H(X∗
G|FS = fS, FQ(x)) =

M
∑

i=1

P(FQ(x) = yi|FS = fS)H(X∗
G|FS = fS, FQ(x) = yi) (12)

with
H(X∗

G|FS = fS, FQ(x) = yi) = −
∑

u∈G

PX∗

G
|fS,yi

(u) log2 PX∗

G
|fS,yi

(u) ,

and
PX∗

G
|fS,yi

(u) = P(X∗ = u|FS = fS, FQ(x) = yi).

H(X∗
G
|FS = fS, FQ(x)) is a measure of the anticipated uncertainty remaining inX∗

G
given the candi-

date evaluation pointx and the resultfS of the previous evaluations. Anticipation is introduced in(12) by
considering the entropy ofX∗

G
resulting from every possible sample value ofFQ(x). At each stage of the

iterative optimization, the SUR strategy retains for the next evaluation a point that minimizes the expected
entropy of the minimizers distribution after the evaluation, i.e., a point that maximizes the expected gain in
information aboutX∗

G
.

The conditional entropy of the minimizers thus takes in account the conditional statistical properties of
F and particularly the covariance function of the model. There lies the interest of the SUR strategy applied
to global optimization. It makes use of what has been previously assumed and learned aboutf to pick up
the most informative evaluation point. By contrast, the EI criterion (as most standard criteria) depends only
on the conditional mean and variance ofF at the design point being considered.

5 Implementing the SUR strategy

5.1 IAGO algorithm

Our algorithm is similar in spirit to the strategy for Kriging-based optimization known asEfficient Global
Optimization(EGO) [14]. EGO starts with a small initial design, estimates the parameters of the covariance
function ofF and computes the Kriging model. Based on this model, an additional point is selected in the
design space to be the location of the next evaluation off using the EI criterion. The parameters of the
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Algorithm
Input: SetS = {x1, . . . , xn} of evaluation points and corresponding valuesfS of the functionf

Output: Additional evaluation pointxnew

1. ChooseG, a discrete representation ofX

2. Set covariance parameters either a priori or by maximum-likelihood estimation based onfS

3. Computer non-conditional simulations overG
4. Computef̂(x) andσ̂(x) overG by Kriging fromfS

5. while the set of candidate points has not been entirely explored
6. do Take an untried pointxc in the set of candidate points
7. Compute the parameters{y1, . . . , yM} of the quantization operatorQ
8. Compute the Kriging coefficients at every point inG based on evaluation points inS andxc

9. for i← 1 to M

10. do Construct conditional simulations using (7) and assuming thatf(xc) = yi

11. Find a global minimizerx∗
k

of thek-th conditional simulation overG (k = 1, . . . , r)
12. EstimatePX∗

G
|fS,yi

overG using (9)

13. ComputeH(X∗
G
|FS = fS, FQ(xc) = yi)

14. Compute the minimizers entropy given an evaluation atxc using (12)
15. Outputxnew that minimizes the conditional entropy over the set of candidate points

Table 1 Selection of a new evaluation point forf .

covariance function are then re-estimated, the model re-computed, and the process of choosing new points
continues until the improvement expected from sampling additional points has become sufficiently small.
The IAGO algorithm uses the same idea of iterative incorporation of the obtained information to the prior
on the function, but with a different criterion.

To compute the minimizers entropy using (12), a different quantization operatorQx is used for each
value ofx to improve the precision with which the empirical mean of entropy reduction over possible
evaluation results is computed. We use the fact thatF (x) is conditionally Gaussian with mean̂f(x) and
variancêσ2(x) obtained by Kriging, to select a set of values{y1(x), . . . , yM (x)}, such that

P (FQx
(x) = yi|FS = fS) =

1

M
∀ i ∈ J1 : MK . (13)

Here we used a set of ten possible values (M = 10).
For each of these possible values (or hypothesesF (x) = yi), P̂X∗

G
|fS,yi

is computed using conditional
simulations. The minimizers entropy is then obtained using(12). These operations are carried out on a
discrete set of candidate evaluation points (see Section 5.2 for some details on the choice of this set), and a
new evaluation off is finally performed at a point that minimizes minimizers entropy. Next, as in the EGO
algorithm, the covariance parameters are re-estimated andthe model re-computed. The procedure for the
choice of an additional evaluation point is described in Table 1.

When the number of additional function evaluations is not specified beforehand, we propose to use as a
stopping criterion the conditional probability that the global minimum of the GP model be no further apart
of fmin = minxi∈S f(xi) (the best function value yet obtained) than a given tolerance thresholdδ. The
algorithm then stops when

P(F ∗ < fmin + δ|FS = fS) < PStop ,

with F ∗ = minx ∈ G F (x), andPStop ∈ [0, 1] a critical value to be chosen by the user. Proposed in [18],
this stopping criterion is well suited here, since evaluating the repartition function off(x∗) does not require
any additional computation.We can indeed use the conditional simulations that have beenperformed to
approximate the conditional distribution ofX∗

G
for this purpose, provided that we keep track, for each of

them, not only of a global minimizer, but also of the minimum.The histogram thus obtained can then easily
be transformed into a simple approximation of the conditional repartition function of the minimum.

5.2 Computational complexity

With the previous notation,n the number of evaluation points,r the number of conditional simulations,N
the number of points inG andM the number of discretized potential evaluation results foran evaluation,
the computational complexity for the approximation of the minimizers entropy (Steps 7 to 14 in Table 1) is
as follows:
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– computing Kriging coefficients at every point inG (Step 8):O(n2N ), as (20) (to be found in appendix)
has to be solvedN times while changing then + 1-st evaluation point each time. A large part of the
factorization of the covariance matrix can be reused, and Kriging at an untried point is then simply in
O(n2),

– constructing conditional simulations (Step 10):O(nrN) (M is not involved since the main part of the
conditioning procedure described by (8) can be carried out outside the loop on the discretized potential
evaluation results),

– locating the global minimizers for each simulation by exhaustive search (Step 11):O(rNM),

Since all other operations are inO(N) at most, evaluating minimizers entropy at any given point requires
O(N) operations.

To complete the description of an implementable algorithm,we must specify a choice forG and a
policy for the minimization of minimizers entropy. What follows is just an example of a possible strategy,
and many variants could be considered.

The simplest choice forG is a uniform grid onX. However, as the number of evaluations off increases,
the spread ofPX∗

G
|fS

diminishes along with the precision for the computation of the entropy. To keep a
satisfactory precision over time,G can be a random sample of points inX, re-sampled after every evaluation
of f with the distributionP̂X∗

G
|fS

. Re-sampling makes it possible to use a setG with a smaller cardinal and

to escape, at least partly, the curse of dimensionality (to resample usinĝPX∗

G
|fS

, any non-parametric density
estimator could be used along with a sampling method such as Metropolis-Hastings, see, e.g., [3]).

Ideally, to choose an additional evaluation point forf using IAGO, minimizers entropy should be mini-
mized overX. However, this of course is in itself a global optimization problem, with many local optima. It
would be possible to design an ad-hoc optimization method (as in [13]), but this perspective is not explored
here. Instead, we evaluate the criterion extensively over achosen set of candidate points. Note that only the
surrogate model is involved at this stage, which makes the approach practical. The idea is, exactly as for
the choice ofG, to use a space-filling sample coveringX and resampled after each new evaluation. The
current implementation of IAGO simply uses a Latin Hyper Cube (LHC) sample, however, it would be easy
to adapt this sample iteratively using the conditional distribution of the minimizersP̂X∗

G
|fS

as a prior. For
instance, areas of the design space where the distribution is sufficiently small could be ignored. After a few
evaluations, a large portion of the design space usually satisfies this property, and the computations saved
could be used to improve knowledge on the criterion by sampling whereP̂X∗

G
|fS

is high (using the same
approach as for the choice ofG).

As dimension increases, trying to cover the factor space while keeping the same accuracy leads to an
exponential increase in complexity. However, in a context of expensive function evaluation, the objective
is less to specify exactly all global minimizers (which would be too demanding in function evaluations
anyway), than to use available information efficiently to reduce the likely areas for the location of these
minimizers. This is exactly the driving concept behind IAGO. In practice, within a set of one thousand
candidate points, picking an additional evaluation point requires about five minutes with a standard personal
computer (and this figure is relatively independent of the dimension of factor space). Moreover, the result
obtained can be trusted to be a consistent choice within thisset of candidate points, in regard of what has
been assumed and learned aboutf .

5.3 Taking noise in account

Practical optimization problems often involve noise. Thissection discusses possible adaptations of the op-
timization algorithm that make it possible to deal with noisy situations, namely noise on the evaluation of
f and noise on the factors.

5.3.1 Noise on the evaluation off

When the results of the evaluations off are corrupted by noise, the algorithm must take this fact into
account. A useful tool to deal with such situations isnon-interpolative Kriging(see Section 8.2).

If the evaluation atxi ∈ S is assumed to be corrupted by an additive Gaussian noiseεi with known mean
and variance, the Kriging prediction should no longer be interpolative. The optimization algorithm remains
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Fig. 5 Example of prediction by Kriging (bold line) of noisy measurements represented by squares. Dashed lines represent 95%
confidence regions for the prediction and the thin solid lineis an example of conditional simulation obtained using the method
presented in Section 5.3.1.

nearly unchanged, except for the conditional simulations.Sample paths ofF , should be built conditionally
to evaluation results,i.e. realizations of the random variablesf(xi) + εi for xi ∈ S. Since the variance of
the prediction error is no longer zero at evaluation points (in other words, there is some uncertainty left on
the values off at evaluation points), we first have to sample, at each evaluation point, from the distribution
of F conditionally to noisy evaluation results. An interpolative simulation, based on these samples, is then
built using conditioning by Kriging. An example of such a simulation is presented on Figure 5 for a noise
variance of 0.01.

5.3.2 Noise on the factors

In many industrial design problems, the variability of the values of the factors in mass production has a sig-
nificant impact on performance. One might then want to designa system that optimizes some performance
measure while ensuring that performance uncertainty (stemming from noise on the factors) remains under
control. These so-calledrobust optimizationproblems can generally be written as

argmin
x ∈ D

J(x) , (14)

with J(x) a cost function reflecting some statistical property of the corrupted performance measuref(x +
ε), whereε is a random vector accounting for noise on the factors. Classical cost functions are:

– mean:J(x) = Eε[f(x + ε)],
– standard deviation:J(x) =

√

varε(f(x + ε)),
– linear combination of mean and standard deviation:J(x) = Eε[f(x + ε)] +

√

varε(f(x + ε)),
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– α-quantile:J(x) = Qα(x) with Qα(x) such thatP(f(x + ε) < Qα(x)) = α.

Using, for example, theα-quantile as a cost function, it is possible to adapt our optimization algorithm
to solve (14). Given a set of evaluation resultsfS at noise-free evaluation points, and if it is possible to
sample from the distributionpε of ε, a Monte Carlo approximation̂Qα(x) of Qα(x) is easily obtained by
computingf̂(x + ε) over a set sampled frompε. The global optimization algorithm can then be applied
to Qα(x) instead off , using pseudo-evaluationŝQα

S
= [Q̂α(x1), . . . , Q̂

α(xn)] (recomputed after each
evaluation off ) instead offS. This naive approach can certainly be improved, but is sufficient to show the
feasibility of a robust approach and to illustrate on a simple example (to be presented in the next section)
the impact ofε on the evaluation points to be chosen by IAGO.

It is of course possible to combine these ideas and to deal simultaneously with noise both on the factors
and the function evaluations.

6 Illustrations

This section presents some simple examples of global optimization using IAGO, with a regular grid as a set
of candidate evaluation points. An empirical comparison with global optimization using expected improve-
ment is also presented. The Matérn covariance class will be used for Kriging prediction, as it facilitates the
tuning of the variance, regularity and range of correlationof the underlying random process, but note that
any kind of admissible covariance function could have been used. The parameters of the covariance may be
estimated from the data using a maximum-likelihood approach (see Section 8.3).

6.1 A one-dimensional example

Consider the function with two global minimizers illustrated by Figure 6 and defined byf : x 7−→ 4[1 −
sin(x + 8 exp(x − 7))]. Given an initial design consisting of three points, the IAGO algorithm is used to
compute six additional points iteratively. The final Kriging model is depicted in the left part of Figure 6,
along with the resulting conditional distribution for the minimizers on the right part. After adding some
noise on the function evaluations, the variant of IAGO presented in Section 5.3.1 is also applied to the
function with the same initial design. In both cases, six additional evaluations have significantly reduced
the uncertainty associated with the position of the global minimizers. The remaining likely locations reduce
to small areas centered on the two actual global minimizers.In the noisy case, larger zones are identified, a
direct consequence of the uncertainty associated with the evaluations.

Figure 7 illustrates robust optimization using the same function and initial design, but considering an
additive zero-mean Gaussian noise on the factors with a standard deviation of 0.2. The cost function used
is the 90%-quantileQ90%, which is computed on the surrogate model but also, and only for the sake of
comparison, on the true function using Monte Carlo uncertainty propagation (the quantile is approximated
using 5000 simulations). After six iterations of the robustoptimization algorithm, the distribution of the
robust minimizers is sufficiently peaked to give a good approximation of the true global robust minimizer.

These result are encouraging as they show that the requirement of fast uncertainty reduction is met.
The next section provides some more examples, along with a comparison with EGO, the EI-based global
optimization algorithm.

6.2 Empirical comparison with expected improvement

Consider first the function described by Figure 8. Given an initial design of three points, both EI and
minimizers entropy are computed. Their optimization provides two candidate evaluation points forf , which
are also presented on Figure 8, along with the post-evaluation prediction and conditional distribution for
X∗

G
. For this example, the regularity parameter of the Matérn covariance is set a priori to a high value (2.5).

By taking in account the covariance function ofF through conditional simulations, the minimizers entropy
uses regularity to conclude faster. The resulting conditional distribution of the minimizers is then generally
more peaked using the IAGO algorithm than using the EGO algorithm (as illustrated by Figure 8(c) and
Figure 8(b)).
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(c) IAGO algorithm for noisy evaluations (the additive noise is zero-mean Gaussian with standard deviation 0.2)

Fig. 6 Example of global optimization using IAGO on a function of one variable (dotted line), with an initial design consistingof three
points (represented by squares). Six additional evaluations are carried out (triangles) using two versions of the IAGOalgorithm. The
graphs on theleft partof the figure account for the predictions, while theright part presents the corresponding conditional distributions
of the global minimizers.

Consider now the Branin function (see, for instance, [8]), defined as

f : [−5, 10]× [0, 15] −→ R

(x1, x2) 7−→
(

x2 −
5.1
4π2 x2

1 + 5
π x1 − 6

)2
+ 10

(

1 − 1
8π

)

cos(x1) + 10.

It has three global minimizersx∗
1 ≈ (−3.14, 12.27)T, x∗

2 ≈ (3.14, 2.27)T andx∗
3 ≈ (9.42, 2.47)T, and the

global minimum is approximately equal to 0.4. Given an initial uniform design of sixteen points, fifteen ad-
ditional points are iteratively selected and evaluated using the IAGO and EGO algorithms. The parameters
of the Matèrn covariance are estimated on the initial design, and kept unchanged during both procedures.
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Fig. 7 Example of robust optimization using IAGO and the cost function Q90%. The functionf (dotted line), corrupted by an additive
Gaussian noise on the factor (zero mean with a standard deviation of 0.2), is studied starting from the initial design of three points
already used in Figure 6. Six additional evaluations are carried out (triangles), which are used to estimate the cost function based on the
Kriging model (bold line), along with the conditional distribution of the robust minimizers (right). The cost functionQ90% estimated,
only for the sake of comparison, from the true function usingMonte Carlo uncertainty propagation is also provided (mixed line).

Table 2 Estimation results for the Branin function using the evaluations of Figure 9

EGO IAGO
15 iterations 35 iterations 15 iterations 35 iterations

Euclidean distance betweenx∗

1
and its

final estimate
3.22 3.22 2.18 0.23

Value of the true function at estimated
minimizer

17.95 17.95 2.59 0.40

Euclidean distance betweenx∗

2
and its

final estimate
2.40 2.40 0.44 0.18

Value of the true function at estimated
minimizer

13.00 13.00 0.85 0.42

Euclidean distance betweenx∗

3
and its

final estimate
0.04 0.04 0.82 0.23

Value of the true function at estimated
minimizer

0.40 0.40 1.94 0.44

The positions of the evaluation points are presented on Figure 9 (left), along with the three global mini-
mizers. Table 2 summarizes the results obtained with EGO andIAGO, based on the final Kriging models
obtained with both approaches. Note that the EI criterion inEGO is maximized with a high precision, while
minimizers entropy in IAGO is computed over a thousand candidate evaluation points located on a regular
grid. It appears nevertheless that the algorithm using EI stalls on a single global minimizer, while the mini-
mizers entropy allows a relatively fast estimation of all three of them. Besides IAGO yields a better global
approximation of the supposedly unknown function. If twenty additional evaluations are carried out (as
presented in the right part of Figure 9), the final Kriging prediction using minimizers entropy estimates the
minimum with an error of less than 0.05 for all three minimizers (cf. Table 2), while the use of EI does not
improve the information on any minimizer any further. The difference between the two strategies is clearly
evidenced. The EI criterion, overestimating the confidencein the initial prediction, has led to performing
evaluations extremely close to one another, for a very smallinformation gain. In a context of expensive
function evaluation, this is highly detrimental. The entropy criterion, using the same covariance parameters,
does not stack points almost at the same location before having identified the most likely zones for the
minimizers. The use of what has been assumed and learned about the function is clearly more efficient in
this case, and this property should be highly attractive when dealing with problems of higher dimension.

7 Discussion

7.1 Robustness to uncertainty on the covariance parameters

Jones studied in [13] the potential of Kriging-based globaloptimization methods such as EGO. One of
his most important conclusion, is that these methods “can perform poorly if the initial sample is highly
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(c) Prediction and minimizers distribution after an additional evaluation off chosen with minimizers entropy

Fig. 8 Comparison between minimizers entropy and EI: theleft side contains the Kriging predictions before and after an additional
evaluation chosen with either EI or minimizers entropy, while theright side presents the corresponding conditional distributionof the
global minimizers.

deceptive”. An eloquent example is provided on page 373 [13], where a sine function is sampled using its
own period, leading to a flat prediction over the domain, associated with a small prediction error.

This potential for deception is present throughout the IAGOprocedure, and should not be ignored. To
overcome this difficulty, several methods have been proposed (see, e.g., Enhanced Method 4 in [13] or [10]),
which achieve some sort of robustness to an underestimationof the prediction error and more generally to a
bad choice of covariance function. They seem to perform better than classical algorithms, including EGO.

Comparing the IAGO approach to such methods is an interesting topic for future research. The issue
considered here was to demonstrate the interest of the minimizers entropy criterion, and we felt that this
had to be done independently from the rest of the procedure.
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Fig. 9 Fifteen iterations of two optimization algorithms, that differ by their criteria for selecting evaluation points forf , on the Branin
function: (top) the EI criterion is used, (bottom) the minimizers entropy criterion is used with a thousand candidate evaluation points
for f set on a regular grid (squares account for initial data, triangles for new evaluations, and crosses give the actual locations of the
three global minimizers).

It is of course essential to make IAGO robust to errors in the estimation of the covariance parameters.
In many industrial problems, this can be easily done by usingprior knowledge on the unknown function to
restrict the possible values for these parameters. For example, experts of the field often have information
regarding the range of values attainable by the unknown function. This information can be directly used to
restrict the search space for the variance of the modeling processF , or even to choose it beforehand.

More generally, given the probabilistic framework used here, it should be relatively easy to develop
a Bayesian or minimax extension of IAGO to guide the estimation of the parameters of the covariance
function. A comparison with robust methods such as those detailed in [13] will then be essential.

7.2 Conclusions and perspectives

In this paper, a stepwise uncertainty reduction strategy has been used for the sequential global optimization
of expensive-to-evaluate functions. This strategy iteratively selects a minimizer of the conditional minimiz-
ers entropy as the new evaluation point. To compute this entropy, a Gaussian random model of the function
evaluations is used and the minimizers entropy is estimatedthrough Kriging and conditional simulations. At
each iteration, the result of the new evaluation is incorporated in the data base used to re-build the Kriging
model (with a possible re-estimation of the parameters of its covariance function).

We have shown on some simple examples that, compared to the classical EI-based algorithm EGO,
the method proposed significantly reduces the evaluation effort in the search for global optimizers. The
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stepwise uncertainty reduction strategy allows the optimization method to adapt the type of search to the
information available on the function. In particular, the minimizers entropy criterion makes full use of the
assumed regularity of the unknown function to balance global and local searches.

Choosing an adequate set of candidate points is crucial, as it must allow a good estimation of a global
minimizer of the criterion, while keeping computation feasible. Promising results have already been ob-
tained with space-filling designs, and adaptive sampling based on the conditional density of the global
minimizers should be useful as dimension increases.

Extension to constrained optimization is an obviously important topic for future investigations. When it
is easy to discard the candidate points inX that do not satisfy the constraints, the extension is trivial. For
expensive-to-evaluate constraints, the extension is a major challenge.

Finally, the stepwise uncertainty reduction strategy associated with conditioning by Kriging is a promis-
ing solution for the robust optimization of expensive-to-evaluate functions, a problem that is central to many
industrial situations, for which an efficient product design must be found in the presence of significant un-
certainty on the values actually taken by some factors in mass production. In addition, robustness to the
uncertainty associated with the estimation of the parameters of the covariance function should also be
sought.

8 Appendix: modeling with Gaussian processes

This section recalls the main concepts used in this paper, namely Gaussian process modeling and Kriging.
The major results will be presented along with the general framework for the estimation of the model
parameters.

8.1 Kriging whenf is evaluated exactly

Kriging [4, 15] is a prediction method based on random processes that can be used to approximate or
interpolate data. It can also be understood as a kernel regression method, such assplines[23] or Support
Vector Regression[20]. It originates from geostatistics and is widely used inthis domain since the 60s.
Kriging is also known as theBest Linear Unbiased Prediction(BLUP) in statistics, and has been more
recently designated as Gaussian Processes (GP) in the 90s inthe machine learning community.

As mentioned in Section 2.1, it is assumed that the functionf is a sample path of a Gaussian random
processF . Denote bym(x) = E[F (x)] the mean function ofF (x) and byk(x, y) its covariance function,
written as

k(x, y) = cov(F (x), F (y)).

Kriging then computes the BLUP ofF (x), denoted byF̂ (x), in the vector space generated by the evalua-
tionsHS = span{F (x1), . . . , F (xn)}. As an element ofHS, F̂ (x) can be written as

F̂ (x) = λ(x)TFS . (15)

As the BLUP,F̂ (x) must have the smallest variance for the prediction error

σ̂2(x) = E[(F̂ (x) − F (x))2], (16)

among all unbiased predictors. The variance of the prediction error satisfies

σ̂2(x) = k(x, x) + λ(x)TKλ(x) − 2λ(x)Tk(x), (17)

with
K = (k(xi, xj)) , (i, j) ∈ J1, nK2

then × n covariance matrix ofF at evaluation points inS, and

k(x) = [k(x1, x), . . . , k(xn, x)]T

the vector of covariances betweenF (x) andFS
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The prediction method [16] assumes that the mean ofF (x) can be written as a finite linear combination

m(x) = βTp(x),

whereβ is a vector of fixed but unknown coefficients, and

p(x) = [p1(x), . . . , pl(x)]T

is a vector of known functions of the factor vectorx. Usually these functions are monomials of low degree
in the components ofx (in practice, their degree does not exceed two). These functions may be used to
reflect some prior knowledge on the unknown function. As we have none for the examples considered here,
we simply use an unknown constant.

The Kriging predictor atx is then the best linear predictor subject to the unbiasedness constraint
E(F̂ (x)) = m(x), whatever the unknownβ. The unbiasedness constraint translates into

βTP Tλ(x) = βTp(x), (18)

with

P =







p(x1)
T

...
p(xn)T






.

For (18) to be satisfied for allβ, the Kriging coefficients must satisfy the linear constraints

P Tλ(x) = p(x), (19)

calleduniversality constraintsby Matheron. At this point, Kriging can be reformulated as follows: find
the vector of Kriging coefficients that minimizes the variance of the prediction error (17) subject to the
constraints (19). This problem can be solved via a Lagrangian formulation, withµ(x) a vector ofl Lagrange
multipliers for the constraints in (19). The coefficientsλ(x) are then solutions of the linear system of
equations

(

K P

P T
0

) (

λ(x)
µ(x)

)

=

(

k(x)
p(x)

)

, (20)

with 0 a matrix of zeros. A convenient expression for the variance of the prediction error is obtained by
substitutingk(x) − Pµ(x) for Kλ(x) in (17) as justified by (20), to get

σ̂2(x) = E

[

F (x) − F̂ (x)
]2

= k(x, x) − λ(x)Tk(x) − p(x)Tµ(x) . (21)

The variance of the prediction error atx can thus be computed without any evaluation off , using (20) and
(21). It provides a measure of the quality associated with the Kriging prediction. Evaluations off remain
needed to estimate the parameters of the covariance function of F (if any), as will be seen in Section 8.3.2.

Oncef has been evaluated at all evaluation points, the predictionof the value taken byf atx becomes

f̂(x) = λ(x)TfS , (22)

with fS = [f(x1), . . . , f(xn)]T (fS is viewed as a sample value ofFS).
It is easy to check that (20) implies that

∀ xi ∈ S, F̂ (xi) = F (xi).

The prediction off atxi ∈ S is thenf(xi), so Kriging is an interpolation with the considerable advantage
that it also accounts for model uncertainty through an explicit characterization of the prediction error.

Remark: The Bayesian framework (see, for instance, [26]) is an alternative approach to derive the
BLUP, in which F is viewed as a Bayesian prior on the output. In the case of a zero-mean model, the
conditional distribution of the function is then Gaussian with mean

E [F (x)|FS = fS] = k(x)TK−1fS, (23)

and variance
Var [F (x)|FS = fS] = k(x, x) − k(x)TK−1k(x),

which are exactly the mean (22) and variance (21) of the Kriging predictor for a modelF with zero mean.
The Kriging predictor can also be viewed as the conditional mean ofF (x) in the case of an unknown mean,
if the universality constraints are viewed as a non-informative prior onβ.
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8.2 Kriging whenf is evaluated approximately

The Kriging predictor was previously defined as the element of the spaceHS generated by the random
variablesF (xi) that minimizes the prediction error. A natural step is to extend this formulation to the case
of a function whose evaluations are corrupted by additive independent and identically distributed Gaussian
noise variablesεi with zero mean and varianceσ2

ε . The model of the observations then becomesF obs
xi

=

F (xi) + εi, i = 1, . . . , n, and the Kriging predictor forF (x) takes the formF̂ (x) = λ(x)TF obs
S

with

F obs
S

=
[

F obs
x1 , . . . , F obs

xn

]T

. The unbiasedness constraint (19) remain unchanged, whilethe mean-square
error (2) becomes

E[F̂ (x) − F (x)]2 = k(x, x) + λ(x)T(K + σ2
εIn)λ(x) − 2λ(x)Tk(x),

with In the identity matrix. Finally, using Lagrange multipliers as before, it is easy to show that the coeffi-
cientsλ(x) of the prediction must satisfy

(

K + σ2
εIn P

P T 0

) (

λ(x)
µ(x)

)

=

(

k(x)
p(x)

)

. (24)

The resulting prediction is no longer interpolative, but can still be viewed as the mean of the conditional
distribution ofF . The variance of the prediction error is again obtained using (21).

8.3 Covariance choice

Choosing a suitable covariance functionk(·, ·) for a givenf is a recurrent and fundamental question. It
involves the choice of a parametrized class (or model) of covariance, and the estimation of its parameters.

8.3.1 Covariance classes

The asymptotic theory of Kriging [21] stresses the importance of the behaviour of the covariance near the
origin. This behaviour is indeed linked with the quadratic-mean regularity of the random process. For in-
stance, if the covariance function is continuous at the origin, then the process will be continuous in quadratic
mean. In practice, one often uses covariances that areinvariant by translation(or equivalentlystationary),
isotropic, and such that regularity can be adjusted. Non-stationary covariances are seldom used in practice,
as they make parameter estimation particularly difficult [4]. Isotropy, however, is not required and can even
be inappropriate when the factors are of different natures.An example of an anisotropic, stationary covari-
ance class isk(x, y) = k(h), with h =

√

(x − y)TA(x − y) where(x, y) ∈ X2 andA is a symmetric
positive definite matrix.

A number of covariance classes are classically used (for instance, exponentialh 7→ σ2 exp(−θ|h|α),
product of exponentials, or polynomial). TheMatérn covarianceclass offers the possibility to adjust regu-
larity with a single parameter [21]. Stein (1999) advocatesthe use of the following parametrization of the
Matérn class:

k(h) =
σ2

2ν−1Γ (ν)

(

2ν1/2h

ρ

)ν

Kν

(

2ν1/2h

ρ

)

, (25)

whereKν is the modified Bessel function of the second kind [27]. This parameterization is easy to interpret,
asν controls regularity,σ2 is the variance (k(0) = σ2), andρ represents therangeof the covariance,i.e.,
the characteristic correlation distance. To stress the significance and relevance of the regularity parameter,
Figure 10 shows the influence ofν on the covariance function, and Figure 11 demonstrates its impact on
the sample paths. Since Kriging assumes thatf is a sample path ofF , a careful choice of the parameters of
the covariance is essential.
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Fig. 11 Three sample paths of a zero-mean Gaussian process with a Matérn covariance. Conventions are as in Figure 10:ν = 4 for
the solid line,ν = 1 for the dashed line andν = 0.25 for the dotted line.

8.3.2 Covariance parameters

The parameters for a given covariance class can either be fixed using prior knowledge on the system, or be
estimated from experimental data. In geostatistics, estimation is carried out using the adequacy between the
empirical and model covariances [4]. In other areas, cross validation [23] and maximum likelihood [21] are
mostly employed. For simplicity and generality reasons [21], the maximum-likelihood method is preferred
here. Using the joint probability density of the observed Gaussian vector, and assuming that the mean of
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Fig. 12 Example of Kriging interpolation (bold line) for a functionof one variable. The data are represented by squares, and the
covariance parameters were estimated by REML. Dashed linesdelimit 95% confidence region for the prediction. The thin solid lines
are examples of conditional simulations.

F (x) is zero for the sake of simplicity, one obtains the maximum-likelihood estimate of the vectorθ of the
covariance parameters (see, for instance, [22]) by minimizing the negative log-likelihood

l(θ) =
n

2
log 2π +

1

2
log det K(θ) +

1

2
fT

S K(θ)−1fS . (26)

When the mean forF (x) is unknown, the parameters can be estimated, using for example theREstricted
Maximum Likelihood(REML, see [21]). This is the approach used for the examples in this paper.

Figure 12 illustrates prediction by Kriging with a Matérn covariance, the parameters of which have been
estimated by REML. The prediction interpolates the data, and confidence intervals are deduced from the
square root of the variance of the prediction error to assessthe quality of the prediction between data. Fig-
ure 12 also contains a series of conditional simulations (obtained with the method explained in Section 3.2),
namely sample paths ofF that interpolate the data. As implied by (23), the Kriging prediction is the mean
of these conditional simulations.
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