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Abstract In many global optimization problems motivated by enginmegpplications, the number of
function evaluations is severely limited by time or cost.€fsure that each evaluation contributes to the
localization of good candidates for the role of global miizien, a sequential choice of evaluation points
is usually carried out. In particular, when Kriging is usedriterpolate past evaluations, the uncertainty
associated with the lack of information on the function carelipressed and used to compute a number
of criteria accounting for the interest of an additionalleaéion at any given point. This paper introduces
minimizers entropy as a new Kriging-based criterion forsbguential choice of points at which the function
should be evaluated. Based stepwise uncertainty reductipih accounts for the informational gain on the
minimizer expected from a new evaluation. The criterionppraximated using conditional simulations
of the Gaussian process model behind Kriging, and thenteénto an algorithm similar in spirit to
the Efficient Global OptimizatiofEGO) algorithm. An empirical comparison is carried outvizetn our
criterion andexpected improvememnne of the reference criteria in the literature. Experitaeresults
indicate major evaluation savings over EGO. Finally, thehod, which we call IAGO (for Informational
Approach to Global Optimization), is extended to robusira@ation problems, where both the factors to
be tuned and the function evaluations are corrupted by noise

Keywords Gaussian process, global optimization, Kriging, robugtmization, stepwise uncertainty
reduction

1 Introduction

This paper is devoted to global optimization in a contextplansive function evaluation. The objective is to
find global minimizers irX (the factor space, a bounded subséR®f of an unknown functiorf : X — R,
using a very limited number of function evaluations. Notattthe global minimizer may not be unique
(any global minimizer will be denoted as‘). Such a problem is frequently encountered in the industria
world. For instance, in the automotive industry, optimalstr-related parameters are obtained using costly
real tests and time-consuming computer simulations (desgighulation of crash-related deformations may
take up to 24 hours on dedicated servers). It then becomesteggo favor optimization methods that use
the dramatically scarce information as efficiently as puesi

To make up for the lack of knowledge on the function, surredatso called meta or approximate)
models are used to obtain cheap approximations [13]. Theyaut to be convenient tools for visualizing
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the function behavior or suggesting the location of an @l point at whichf should be evaluated in
the search fox*. Surrogate models based on Gaussian processes have dqzaaitieular attention. Known

in geostatistics under the name Kifiging since the early 1960s [15], Gaussian process models provide
a probabilistic framework to account for the uncertaingnstning from the lack of information on the
system. When dealing with an optimization problem, thisfesvork allows the set of function evaluations
to be chosen efficiently [12—-14].

In this context, several strategies have been proposetl swihificant advantages over traditional opti-
mization methods when confronted to expensive-to-evaliugictions. Most of therimplicitly seek a likely
value forz*, and then assume it to be a suitable location for a new evaluat f. Yet, given existing eval-
uation results, the most likely location of a global minigrizs not necessarily a good evaluation point to
improve our knowledge om*. As we shall show, by making full use of Kriging, it is instepdssible to
explicitly estimate the probability distribution of the optimum Iaoat which allows an information-based
search strategy.

Based on these observations, the present paper introdunésiners entropy as a criterion for the
choice of new evaluation points. This criterion, directigpired fromstepwise uncertainty reductidf],
is then inserted in an algorithm similar to tB&icient Global OptimizatioEGO) algorithm [14]. We call
the resulting algorithm IAGO, foinformational Approach to Global Optimization

Section 2 recalls the principle of Kriging-based optimiaaf along with some general ideas on Gaus-
sian process modeling that are used in Section 3 to buildtanas of the distribution of the global mini-
mizers. Section 4 details the stepwise uncertainty rednetpproach applied to global optimization, while
Section 5 describes the corresponding algorithm and ienskins to noisy problems. Section 6 illustrates
the behavior of the new algorithm on some simple benchmantilpms, along with its performances com-
pared with those of the classical EGO algorithm, chosent$ayéod compromise between local and global
search [17]. Finally, after a conclusion section and to ntaiepaper self-contained, Section 8 recalls, as
an appendix, some more results on Gaussian process modetingriging.

2 Kriging-based global optimization

When dealing with expensive-to-evaluate functions, o@tion methods based on probabilistic surrogate
models (and Kriging in particular) have significant advgets over traditional optimization techniques,
as they require fewer function evaluations to provide areptable solution. Kriging provides not only
a cheap approximation of the function but also an estimathefpotential error in this approximation.
Numerous illustrations of this superiority can be foundhe titerature (see, for instance, [6]) and many
variations have been explored (for extensive surveys,ksgjeahd [17]). As explained in this section, these
methods deal with the cost of evaluation using an adaptivgbag strategy, replacing the optimization of
the expensive-to-evaluate functigrby a series of optimizations of a cheap criterion.

2.1 Gaussian process modeling and Kriging

This section briefly recalls the principle of Gaussian pssdgP) modeling, and lays down the necessary
notation. A more detailed presentation is available in thgeadix (Section 8).

When modeling with Gaussian processes, the funcfimassumed to be a sample path of a Gaussian
random process’, with mean functionn () and covariance functiok(-, -) defined ovei?. If we denote
(12, A, P) the underlying probability space, this amounts to assurtiagdw € {2, such thatF'(w, ) =
(). Whenever possible, we shall omit the dependende iof w to simplify notation.

In particular, given a set of evaluation point§ = {1, ..., x,} (thedesign, Vz,; € S the evaluation
result f(x;) is viewed asa sample value of the random varialiiéz;). Kriging computes an unbiased
linear predictor off’(x) in the vector spacBs = span{F'(x1), ..., F(x,)}, which can be written as

F(x) = Az)" Fs, (1)

with Fs = [F(x1), ..., F(x,)]", andX(z) the vector of Kriging coefficients for the predictionat



Given the covariance function @f, the Kriging coefficients can be computed along with thearaze
of the prediction error
6%(x) = var(EF(x) — F(x)). @)
The covariance function df is chosen within a parametrized class (for instance, th@Matlass), and its
parameters are either estimated from the data or choseara(gge Section 8.3.2 for details on the choice
of a covariance function).
Oncef has been evaluated at all evaluation pointS,ithe predicted value of atx is given by

f@)=X=)"fs . (3)

with fs = [f(z1),..., f(z,)]" (fs is viewed as a sample value BE). The same results could be derived
in a Bayesian framework, whe#€(x) is Gaussian conditionally to the evaluations carried dt£ fs),
with meanf(z) and variancé?(x).

Note that the random processEée) and F'(x) satisfy

Va; € S, F(x;) = F(x;), (4)

and that the prediction at; € Sis f(«;). When f is assumed to be evaluated exactly, Kriging is thus
an interpolation, with the considerable advantage ovegrdtiterpolation methods that it also provides an
explicit characterization of the prediction error (zerean Gaussian with varianéé(z)).

2.2 Adaptive sampling strategies

The general principle of optimization using Kriging is s#ively to evaluatef at a point that optimizes a
criterion based on the model obtained using previous etialugesults. The simplest approach would be
to choose a minimizer of the predictighas a new evaluation point. However, by doing so, too much
confidence would be put in the current prediction and seadikély to stall on a local optimum (as
illustrated by Figure 1). To compromise between local arabgl search, more emphasis has to be put
on the prediction error, which can indicate locations wheadditional evaluations are needed to improve
confidence in the model. This approach has led to a numbeitefiarto select additional evaluation points
based on both prediction and prediction error.

A standard example of such a criterioreigpected improveme(tl) [18]. As the name suggests, it in-
volves computing how much improvementin the optimum is exge, if f is evaluated at a given additional
point. Let f,;, be the best function value obtained so far. The improvemgméaed from an additional
evaluation off atx given fg, the results of past evaluations, can then be expressed as

El(x) = E [max (fmin — F (x),0) |Fs = fs].
SinceF () is conditionally Gaussian with megf{z) and varianceé? (),

El(x) = 6(x) [u@(u) + %(u)} , (5)

with A
u = fmin - f(w)
o(x)
and ¢ the normal cumulative distribution function. The new ewaion point is then chosen as a global
maximizer of El¢). An example is given on Figure 2, where the problem that idedeghe naive method
of Figure 1 is directly solved with the El criterion. This rhet has been used for computer experiments in
[17], while modified criteria have been used in [11] and [2b{leal with noisy functions.

In [13] and [24], a fair number of alternative criteria aregpented and compared. Although quite differ-
ent in their formulation, they generally aim to answer thesajuestion: What is the most likely position
of *? Another, and probably more relevant, question is: Wheoellsithe evaluation be carried out opti-
mally to improve knowledge on the global minimizers?

In what follows, a criterion that addresses this questidhbe presented, along with its performances.
The reference for comparison will be El, which is a reasomadmpromise between local and global
search [17], and has been successfully used in many apptisat
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3 Estimating the density ofx*

Once a Kriging surrogate modélhas been obtained, any global minimizerfds a natural approximation
of *. However, it might be excessively daring to trust this appration as it does not take in account
the uncertainty of the prediction. A more cautious apprdachstimatinge™* is to use the probabilistic
framework associated with. Of coursez* is not necessarily unique, and we shall focus on descrilbieg t
set of all global minimizers of as efficiently as possible.

3.1 Probabilistic modeling of the global minimizers of

According to the GP model, a global minimizet of f corresponds to a global minimizer of this particular
sample path of'. It seems therefore natural to use the GP modégltofobtain a probabilistic model fat*.
Consider theandomset M3, of the global minimizers of” overX; i.e. the set of all global minimizers for
each sample path, which for anyc (2 can be written as

Mi(w) ={z* € X|F(w,z") = IrlnelrslgF(w,u)}

To ensure that\} (w) is not emptyfor all w, we assume that' has continuous sample paths with proba-
bility one. This continuity can be ensured through a propeiae of covariance function (see, e.g., [1]).

Let X* be arandom vector uniformly distributed a3 (from now on, we omit the dependency.bt;
in w). The probability density function of this random vectonddional to past evaluation results, that we
shall thereafter call conditional density of the global miizers and denotex | ¢, (x) , is of great interest,
as it allows one not only to estimate the global minimizerg ¢for example, through the maximization
of their conditional density), but also to characterize timeertainty associated with this estimation. In
fact,px-| 7, (x) contains all of what has been assumed and learned aboutsteznsyHowever, no tractable
analytical expression forx - | ¢, () is available [2, 19]. To overcome this difficulty, the apprbaaken here
is to consider a discrete version of the conditional distidn, and to approximate it using Monte Carlo
simulations.

LetG = {x1, ...,z } be afinite subset &f, M be the random set of global minimizers®overG,
and X/ be a random vector uniformly distributed ov;,. The conditional probability mass function of
X given fs (or simply minimizers distribution) is theve € G

Px:p(x) = P(Xg =z | Fs = fs) .

It can be approximated using conditional simulatiores, simulations off’ that satisfyFs = fs. Assuming
that non-conditional simulations are available, severgthods exist to make them conditional [4]. Condi-
tioning by Kriging seems the most promising of them in thespre context and will be presented in the
next section.

To keep the presentation simple, we assume in what folloatsStit G.

3.2 Conditioning by Kriging

This method, due to G. Matheron, uses the unbiasedness d&ribimg prediction to transform non-
conditional simulations into simulations interpolatihg tresultsfs of the evaluationsl'he idea is to sample
from the conditional distribution of the prediction ertBr— F rather than from the conditional distribution
of F', which is made easier by the fact that the statistical pitggeeof the prediction error do not depend on
the result of the evaluations, nor on the meafx) of F(x).

To present this more formally, |éf be a zero-mean Gaussian process with covariance funictitire
same as that of") and Z be its Kriging predictor based on the random variablés:;), x; € S, and
consider the random process

T(@) = f(2) + | Z(@) - Z(@)] | (6)

wheref is the mean of the Kriging predictor based on the design pairi. Since this Kriging predictor is

an interpolator, at evaluation pointsSpwe havef (x;) = f(x;). Equation (4) implies thaf (z;) = Z (),
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Fig. 3 Conditioning a simulation:tgp) unknown real curvef (doted line), sample points (squares) and associatedrigrigiediction
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simulation of the Kriging erroe — % is picked up from the non-conditional simulation and addethé Kriging prediction to get the
conditional simulation (thin line).

which leads tdl'(x;) = f(x;), Va; € S. In other wordsT is such that all its sample paths interpolate
the known values of. It is then easy to check th&t has the same finite-dimension distributionsras
conditionally to past evaluation results [Elmply because the prediction ertér— Z, for Z, has the same
distribution as the prediction error fé# , F — £'. Note that the same vectdr(x) of Kriging coefficients is
used to interpolate the data and the simulations at desigitspt)sing (3), one can rewrite (6) as

T(x) = Z(x) + Xx)" [fs — Zg], ()

with Zs = [Z(z1), ..., Z(zn)]".

In summary, to simulaté’ overG conditionally to past evaluation resulfs, we can simulate a zero-
mean Gaussian proce8overG, compute the prediction error for each simulation and shétprediction
error around the desired meé’nThis is achieved by the following procedure (illustratedrigure 3)

— compute, for every point ifiz, the vector of Kriging coefficients based on the design am§,

— compute the Kriging predictioﬁ(sc) based on past evaluation resuftsfor everyz in G,

— collect non-conditional sample paths BfoverG (provided that a Gaussian sampler is available, set-
ting the proper covariance for the simulated vector can Ihéesed using, for example, the Cholesky
decomposition),

— apply (7) for each non conditional simulation and at everinpm G. That is, to generaté(x), a
conditional simulation of () from a non-conditional simulatioa(x) of Z(x), apply

t(x) = 2(z) + X(z)"[fs — 5], (8)
wherezg is the sampled valued & overS, which is available sincg C G.

With this sampling method, it becomes straightforward toeste Px - | 7, Leta] be a global minimizer
of thei-th conditional simulationi(= 1,...,r) overG (if it is not unique, choose one randomly). Then,
foranyz in G, a classical estimator is

=1
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Fig. 4 Estimation of the distribution o (top) Kriging interpolation, 95% confidence intervals and sagnmbints; botton) esti-
mated distribution ofX ¢, using 10000 conditional simulations 6fand a regular grid fo6.

with ¢ the Kronecker symbol. Figure 4 presents the approximzﬁ’ija@fS for an example where locating
a global minimizer is not easy. Knowing the conditional digition of X gives valuable information on
the areas oK where a global minimizer might be located, and that ough&tinbestigated. This idea will
be detailed in the next section.

4 The stepwise uncertainty reduction strategy

The knowledge about the global minimizersfos summarized bﬁxg .- In order to evaluate the interest
of a new evaluation of at a given point, a measure of the expected information gagtjuired. An efficient
measure ionditional entropy as used in sequential testing [9] in tBéepwise Uncertainty Reduction
(SUR) strategy. This section extends the SUR strategy toed)laptimization.

4.1 Conditional entropy

The entropy of a discrete random variabldexpressed in bits) is defined as:

ZP =u)log, P(U = u).

H(U) measures the spread of the distributiorUoflt decreases as this distribution gets more peaked. In
particular :

- Px:\p,(@) =1/N Vo € G = H(X}) = log,(N),

- 0if ¢ # = .
- P = {] 27T ) —o

Similarly, for any evens3, the entropy ofJ relative to the probability measur¥.|5) is

H(U|B) = ZP = u|B)log, P(U = u|B).



The conditional entropy of U given another discrete randanableV is

HUV) = ZP HU|V =),

and the conditional entropy &f given5 andV is

H(U|B,V) = ZP = 0B H(U|B,V = v). (10)

Note thatH (U|V) and H(U|B,V) are, despite the similarity of notation with conditionapextation,
deterministic quantitiedVore details on conditional entropy can be found in [5].

4.2 Conditional minimizers entropy

Let Fp(x) be a discrete version df (z), defined asdp(z) = Q(F(x)) with ) a quantization operator.
@ is characterized by a finite set 8f real numbergy., ...,y }, and definedu € R as

Q(u) = yg with k = min lyi — wl. (12)

For optimization problems, the SUR strategy for the sebactif the next value ok € X at which f will
be evaluated will be based @( X | Fs = fs, Fo(x)), the conditional entropy oK & given the evaluation
results{Fs = fs} andFg(x) (we shall refer to it later on as conditional entropy of thenimizers, or
simply minimizers entropy).

Using (10) we can write

H(XG|Fs = fs, Fo(x ZP Fo(x) = yil Fs = fo)H(X¢|Fs = fs, Fo(x) = yi) (12)
with
H(XE|Fs = fs, Fo(x) = i) = — Y Pxzip.y,(0)10gy Pxz gy, (1)
ucG
and

Px:fen(w) = P(XT = u|Fs = f5, Fo(x) = yi)-

H(XE|Fs = fs, Fo()) is a measure of the anticipated uncertainty remaining ingiven the candi-
date evaluation point and the resulifs of the previous evaluations. Anticipation is introducediR) by
considering the entropy aX ¢, resulting from every possible sample valuelGf(x). At each stage of the
iterative optimization, the SUR strategy retains for thetrevaluation a point that minimizes the expected
entropy of the minimizers distribution after the evaluatibe., a point that maximizes the expected gain in
information aboutX¢,.

The conditional entropy of the minimizers thus takes in actdhe conditional statistical properties of
F and particularly the covariance function of the model. BHags the interest of the SUR strategy applied
to global optimization. It makes use of what has been preshoassumed and learned abguto pick up
the most informative evaluation point. By contrast, the likecion (as most standard criteria) depends only
on the conditional mean and variancefoft the design point being considered.

5 Implementing the SUR strategy
5.1 IAGO algorithm

Our algorithm is similar in spirit to the strategy for Krigjrbased optimization known &fficient Global
Optimization(EGO) [14]. EGO starts with a small initial design, estinsatee parameters of the covariance
function of ' and computes the Kriging model. Based on this model, aniadditpoint is selected in the
design space to be the location of the next evaluatiofi o§ing the EI criterion. The parameters of the



Algorithm

Input: SetS = {x1, ..., =, } of evaluation points and corresponding valifesof the functionf
Output: Additional evaluation poinieyew

1. ChooseG, a discrete representation Xf

2. Set covariance parameters either a priori or by maximiketifood estimation based of

3. Computer non-conditional simulations ovék

4. Computef(x) andé(x) overG by Kriging from f

5. while the set of candidate points has not been entirely explored

6 do Take an untried poink. in the set of candidate points

7 Compute the parametefg1, . .., yas } of the quantization operata@p

8 Compute the Kriging coefficients at every pointdrbased on evaluation points $handx.
9

fori«— 1to M
10. do Construct conditional simulations using (7) and assuntig f(x.) = y;
11. Find a global minimizet;, of the k-th conditional simulation ove& (k = 1,...,7)
12. Estimateré‘fS,yi overG using (9)
13. ComputeH(X((*;|Fg = fs, FQ (J:C) = yi)
14. Compute the minimizers entropy given an evaluatiosatising (12)

15. Outpute,ew that minimizes the conditional entropy over the set of cdatdi points

Table 1 Selection of a new evaluation point fér

covariance function are then re-estimated, the model nepcted, and the process of choosing new points
continues until the improvement expected from samplingtamiél points has become sufficiently small.
The IAGO algorithm uses the same idea of iterative incoramaof the obtained information to the prior
on the function, but with a different criterion.

To compute the minimizers entropy using (12), a differerdrgization operato€).. is used for each
value ofx to improve the precision with which the empirical mean ofrepy reduction over possible
evaluation results is computed. We use the fact fiat) is conditionally Gaussian with meaf(z) and
variances?(x) obtained by Kriging, to select a set of valugsg (z), . . ., ym(x)}, such that

P(FQz(w):y”FS:fS):%V?:E [1:M]. (13)

Here we used a set of ten possible valugs=£ 10).

For each of these possible values (or hypothédas) = y;), PXE‘fwi is computed using conditional
simulations. The minimizers entropy is then obtained ugi®). These operations are carried out on a
discrete set of candidate evaluation points (see Sectibfobsome details on the choice of this set), and a
new evaluation of is finally performed at a point that minimizes minimizersrepl. Next, as in the EGO
algorithm, the covariance parameters are re-estimatedhenchodel re-computed. The procedure for the
choice of an additional evaluation point is described inl@dh

When the number of additional function evaluations is net#fed beforehand, we propose to use as a
stopping criterion the conditional probability that thelghl minimum of the GP model be no further apart
of fmin = ming,es f(x;) (the best function value yet obtairnetthan a given tolerance threshald The
algorithm then stops when

P(F* < fmin +5|FS = fS) < PStop s

with F* = ming ¢ ¢ F(x), andPsyop € [0, 1] a critical value to be chosen by the user. Proposed in [18],
this stopping criterion is well suited here, since evahugthe repartition function of (*) does not require
any additional computatioWe can indeed use the conditional simulations that have pedbrmed to
approximate the conditional distribution &, for this purpose, provided that we keep track, for each of
them, not only of a global minimizer, but also of the minimurhe histogram thus obtained can then easily
be transformed into a simple approximation of the condal@apartition function of the minimum

5.2 Computational complexity

With the previous notatiom the number of evaluation pointsthe number of conditional simulation,
the number of points ifi and M the number of discretized potential evaluation resultsafoevaluation,
the computational complexity for the approximation of thimimizers entropy (Steps 7 to 14 in Table 1) is
as follows:
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— computing Kriging coefficients at every point@ (Step 8):0(n?N), as (20) (to be found in appendix)
has to be solvedv times while changing the + 1-st evaluation point each time. A large part of the
factorization of the covariance matrix can be reused, angditg at an untried point is then simply in
0(n?),

— constructing conditional simulations (Step 10)nrN) (M is not involved since the main part of the
conditioning procedure described by (8) can be carried otdide the loop on the discretized potential
evaluation results),

— locating the global minimizers for each simulation by ex$taue search (Step 11 (rN M),

Since all other operations are @(V) at most, evaluating minimizers entropy at any given poigunes
O(N) operations.

To complete the description of an implementable algoritiva, must specify a choice fd&z and a
policy for the minimization of minimizers entropy. What folvs is just an example of a possible strategy,
and many variants could be considered.

The simplest choice fdk is a uniform grid orX. However, as the number of evaluationsfdhcreases,
the spread of°’x . diminishes along with the precision for the computationtaf entropy. To keep a
satisfactory precision over tim&; can be a random sample of point&Xinre-sampled after every evaluation
of f with the distributionﬁxg .- Re-sampling makes it possible to use aatith a smaller cardinal and

to escape, at least partly, the curse of dimensionalitye@ample usingaxg |#5» @Ny non-parametric density
estimator could be used along with a sampling method suchetiopblis-Hastings, see, e.qg., [3]).

Ideally, to choose an additional evaluation point farsing IAGO, minimizers entropy should be mini-
mized overX. However, this of course is in itself a global optimizatiowiplem, with many local optima. It
would be possible to design an ad-hoc optimization metheth(fL3]), but this perspective is not explored
here. Instead, we evaluate the criterion extensively oedioaen set of candidate points. Note that only the
surrogate model is involved at this stage, which makes tipeoagh practical. The idea is, exactly as for
the choice ofG, to use a space-filling sample coveriigand resampled after each new evaluation. The
currentimplementation of IAGO simply uses a Latin Hyper €(bHC) sample, however, it would be easy
to adapt this sample iteratively using the conditionalrdistion of the minimizersf’Xéf‘fS as a prior. For
instance, areas of the design space where the distribgtrrfficiently small could be ignored. After a few
evaluations, a large portion of the design space usualisfiest this property, and the computations saved
could be used to improve knowledge on the criterion by satrgp}iherepxé|fS is high (using the same
approach as for the choice G).

As dimension increases, trying to cover the factor spacéevideieping the same accuracy leads to an
exponential increase in complexity. However, in a contéxé@ensive function evaluation, the objective
is less to specify exactly all global minimizers (which wddle too demanding in function evaluations
anyway), than to use available information efficiently tduee the likely areas for the location of these
minimizers. This is exactly the driving concept behind IAG® practice, within a set of one thousand
candidate points, picking an additional evaluation pagqiires about five minutes with a standard personal
computer (and this figure is relatively independent of theeatision of factor space). Moreover, the result
obtained can be trusted to be a consistent choice withirs#tisf candidate points, in regard of what has
been assumed and learned abfut

5.3 Taking noise in account

Practical optimization problems often involve noise. T$gstion discusses possible adaptations of the op-
timization algorithm that make it possible to deal with ryosstuations, namely noise on the evaluation of
f and noise on the factors.

5.3.1 Noise on the evaluation ¢f

When the results of the evaluations pfare corrupted by noise, the algorithm must take this faat int
account. A useful tool to deal with such situations@-interpolative Kriging'see Section 8.2).

If the evaluation akz; € Sis assumed to be corrupted by an additive Gaussian apigigh known mean
and variance, the Kriging prediction should no longer bermblative. The optimization algorithm remains
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Fig. 5 Example of prediction by Kriging (bold line) of noisy measuorents represented by squares. Dashed lines represent 95%
confidence regions for the prediction and the thin solid i;men example of conditional simulation obtained using thethod
presented in Section 5.3.1.

nearly unchanged, except for the conditional simulati®asnple paths of’, should be built conditionally

to evaluation results,e. realizations of the random variablg¢éx;) + ¢; for ; € S. Since the variance of
the prediction error is no longer zero at evaluation poim®ther words, there is some uncertainty left on
the values off at evaluation points), we first have to sample, at each etiatupoint, from the distribution

of I’ conditionally to noisy evaluation results. An interpolatsimulation, based on these samples, is then
built using conditioning by Kriging. An example of such a silation is presented on Figure 5 for a noise
variance of 0.01.

5.3.2 Noise on the factors

In many industrial design problems, the variability of ttedues of the factors in mass production has a sig-
nificant impact on performance. One might then want to desigystem that optimizes some performance
measure while ensuring that performance uncertainty ¢eiemfrom noise on the factors) remains under
control. These so-calledbust optimizatioproblems can generally be written as

argmin J(x) , (14)
zeD

with J(x) a cost function reflecting some statistical property of theupted performance measufer +
€), wheree is a random vector accounting for noise on the factors. @alssost functions are:

— mean:.J(x) = Ec[f(x + €)],
— standard deviationf (x) = \/vare(f(x + €)),
— linear combination of mean and standard deviatibfx) = E.[f(x + €)] + \/vare(f(z + €)),
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— a-quantile:J(x) = Q%(x) with Q*(x) such thaP(f(x + ) < Q% (x)) = «a.

Using, for example, ther-quantile as a cost function, it is possible to adapt ourroztition algorithm
to solve (14). Given a set of evaluation resuftsat noise-free evaluation points, and if it is possible to
sample from the distributiop, of e, a Monte Carlo approximatio@®(x) of Q° () is easily obtained by
computingf(sc + €) over a set sampled from.. The global optimization algorithm can then be applied
to Q*(x) instead off, using pseudo-evaluationd? = [Q*(x,),...,Q(x,)] (recomputed after each
evaluation off) instead offs. This naive approach can certainly be improved, but is sefiicio show the
feasibility of a robust approach and to illustrate on a semtample (to be presented in the next section)
the impact ofe on the evaluation points to be chosen by IAGO.

Itis of course possible to combine these ideas and to dealtsineously with noise both on the factors
and the function evaluations.

6 lllustrations

This section presents some simple examples of global ggtion using IAGO, with a regular grid as a set
of candidate evaluation points. An empirical comparisotigiobal optimization using expected improve-
ment is also presented. The Matérn covariance class wilsbd for Kriging prediction, as it facilitates the
tuning of the variance, regularity and range of correlattbthe underlying random process, but note that
any kind of admissible covariance function could have bessduThe parameters of the covariance may be
estimated from the data using a maximume-likelihood apgrdaee Section 8.3).

6.1 A one-dimensional example

Consider the function with two global minimizers illusedtby Figure 6 and defined ky:  — 4[1 —
sin(x 4+ 8 exp(z — 7))]. Given an initial design consisting of three points, the @\@lgorithm is used to
compute six additional points iteratively. The final Krigimodel is depicted in the left part of Figure 6,
along with the resulting conditional distribution for thénimizers on the right part. After adding some
noise on the function evaluations, the variant of IAGO pnése in Section 5.3.1 is also applied to the
function with the same initial design. In both cases, sixitoithl evaluations have significantly reduced
the uncertainty associated with the position of the globaimizers. The remaining likely locations reduce
to small areas centered on the two actual global minimizertie noisy case, larger zones are identified, a
direct consequence of the uncertainty associated withvide&tions.

Figure 7 illustrates robust optimization using the samecfionm and initial design, but considering an
additive zero-mean Gaussian noise on the factors with a@atdrdeviation of 0.2. The cost function used
is the 90%-quantil&)?°” which is computed on the surrogate model but also, and amlyhe sake of
comparison, on the true function using Monte Carlo uncetygiropagation (the quantile is approximated
using 5000 simulations). After six iterations of the robaptimization algorithm, the distribution of the
robust minimizers is sufficiently peaked to give a good agipnation of the true global robust minimizer.

These result are encouraging as they show that the requiteshéast uncertainty reduction is met.
The next section provides some more examples, along withrgpadson with EGO, the El-based global
optimization algorithm.

6.2 Empirical comparison with expected improvement

Consider first the function described by Figure 8. Given atiaindesign of three points, both EI and
minimizers entropy are computed. Their optimization pdeg two candidate evaluation points fgmwhich
are also presented on Figure 8, along with the post-evalugtiediction and conditional distribution for
X . For this example, the regularity parameter of the Matémadance is set a priori to a high value (2.5).
By taking in account the covariance functioniofthrough conditional simulations, the minimizers entropy
uses regularity to conclude faster. The resulting conaitialistribution of the minimizers is then generally
more peaked using the IAGO algorithm than using the EGO dlgur(as illustrated by Figure 8(c) and
Figure 8(b)).
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(c) IAGO algorithm for noisy evaluations (the additive rmis zero-mean Gaussian with standard deviation 0.2)

Fig. 6 Example of global optimization using IAGO on a function oforariable (dotted line), with an initial design consistafghree
points (represented by squares). Six additional evalusitize carried out (triangles) using two versions of the |1A&gorithm. The
graphs on théeft part of the figure account for the predictions, while tight part presents the corresponding conditional distributions
of the global minimizers.

Consider now the Branin function (see, for instance, [8§firted as

f:[-5,10] x [0,15] — R
(z1,22) — (.232 — 57121% + %xl — 6)2 + 10 (1 — %) cos(z1) + 10.

It has three global minimizes} ~ (—3.14,12.27)T, x5 ~ (3.14,2.27)T andx} ~ (9.42,2.47)T, and the
global minimum is approximately equal to 0.4. Given an alitiniform design of sixteen points, fifteen ad-
ditional points are iteratively selected and evaluatedgitiie IAGO and EGO algorithms. The parameters
of the Matérn covariance are estimated on the initial desigd kept unchanged during both procedures.
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Fig. 7 Example of robust optimization using IAGO and the cost fiorc°%. The functionf (dotted line), corrupted by an additive
Gaussian noise on the factor (zero mean with a standardtideviaf 0.2), is studied starting from the initial design bfde points
already used in Figure 6. Six additional evaluations argezhout (triangles), which are used to estimate the costtiom based on the
Kriging model (bold line), along with the conditional distntion of the robust minimizersight). The cost functionQ?°% estimated,
only for the sake of comparison, from the true function udiante Carlo uncertainty propagation is also provided (ribee).

Table 2 Estimation results for the Branin function using the evadres of Figure 9

EGO IAGO
15 iterations | 35iterations | 15iterations | 35 iterations

Euclidean distance betwees and its 3.22 3.22 2.18 0.23
final estimate

Value of the true function at estimatefl ~ 17.95 17.95 2.59 0.40
minimizer

Euclidean distance betwees and its 2.40 2.40 0.44 0.18
final estimate

Value of the true function at estimatefi  13.00 13.00 0.85 0.42
minimizer

Euclidean distance betweesi; and its 0.04 0.04 0.82 0.23
final estimate

Value of the true function at estimatefl 0.40 0.40 1.94 0.44
minimizer

The positions of the evaluation points are presented onr&iguleft), along with the three global mini-
mizers. Table 2 summarizes the results obtained with EGAABO, based on the final Kriging models
obtained with both approaches. Note that the El criterida@®@O is maximized with a high precision, while
minimizers entropy in IAGO is computed over a thousand cdetgi evaluation points located on a regular
grid. It appears nevertheless that the algorithm usingdtlssbn a single global minimizer, while the mini-
mizers entropy allows a relatively fast estimation of atletl of them. Besides IAGO yields a better global
approximation of the supposedly unknown function. If tweatlditional evaluations are carried out (as
presented in the right part of Figure 9), the final Kriginggiodion using minimizers entropy estimates the
minimum with an error of less than 0.05 for all three minimgzécf. Table 2), while the use of EI does not
improve the information on any minimizer any further. Th#atence between the two strategies is clearly
evidenced. The El criterion, overestimating the confidendée initial prediction, has led to performing
evaluations extremely close to one another, for a very simfimation gain. In a context of expensive
function evaluation, this is highly detrimental. The eplyariterion, using the same covariance parameters,
does not stack points almost at the same location beforedpagientified the most likely zones for the
minimizers. The use of what has been assumed and learnetitabdunction is clearly more efficient in
this case, and this property should be highly attractiverwdemaling with problems of higher dimension.

7 Discussion
7.1 Robustness to uncertainty on the covariance parameters

Jones studied in [13] the potential of Kriging-based gladygtimization methods such as EGO. One of
his most important conclusion, is that these metham“perform poorly if the initial sample is highly
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Fig. 8 Comparison between minimizers entropy and El:lgfeside contains the Kriging predictions before and after afitahal
evaluation chosen with either EIl or minimizers entropy, levtiieright side presents the corresponding conditional distribuitte
global minimizers.

deceptivé An eloquent example is provided on page 373 [13], wherena &inction is sampled using its
own period, leading to a flat prediction over the domain, eisged with a small prediction error.

This potential for deception is present throughout the |1A@Gcedure, and should not be ignored. To
overcome this difficulty, several methods have been prap(se=, e.g., Enhanced Method 4 in [13] or [10]),
which achieve some sort of robustness to an underestimaititve prediction error and more generally to a
bad choice of covariance function. They seem to perforneb#tan classical algorithms, including EGO.

Comparing the IAGO approach to such methods is an integestipic for future research. The issue
considered here was to demonstrate the interest of the merisnentropy criterion, and we felt that this
had to be done independently from the rest of the procedure.
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Fig. 9 Fifteen iterations of two optimization algorithms, thaffeli by their criteria for selecting evaluation points ffron the Branin
function: ¢op) the El criterion is used bptton) the minimizers entropy criterion is used with a thousanub@date evaluation points
for f set on a regular grid (squares account for initial datangles for new evaluations, and crosses give the actualidosadf the
three global minimizers).

It is of course essential to make IAGO robust to errors in $t@ration of the covariance parameters.
In many industrial problems, this can be easily done by upimy knowledge on the unknown function to
restrict the possible values for these parameters. For geamxperts of the field often have information
regarding the range of values attainable by the unknowrtiemcT his information can be directly used to
restrict the search space for the variance of the modelionggssF, or even to choose it beforehand.

More generally, given the probabilistic framework usedeheétr should be relatively easy to develop
a Bayesian or minimax extension of IAGO to guide the estiomtf the parameters of the covariance
function. A comparison with robust methods such as thosailddtin [13] will then be essential.

7.2 Conclusions and perspectives

In this paper, a stepwise uncertainty reduction strategyoean used for the sequential global optimization
of expensive-to-evaluate functions. This strategy iteefit selects a minimizer of the conditional minimiz-
ers entropy as the new evaluation point. To compute thi®ppta Gaussian random model of the function
evaluations is used and the minimizers entropy is estinthtedgh Kriging and conditional simulations. At
each iteration, the result of the new evaluation is incoae in the data base used to re-build the Kriging
model (with a possible re-estimation of the parameterssafavariance function).

We have shown on some simple examples that, compared todbksiadl El-based algorithm EGO,
the method proposed significantly reduces the evaluatitumteh the search for global optimizers. The
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stepwise uncertainty reduction strategy allows the oatition method to adapt the type of search to the
information available on the function. In particular, thinimizers entropy criterion makes full use of the
assumed regularity of the unknown function to balance dlabd local searches.

Choosing an adequate set of candidate points is crucialpasst allow a good estimation of a global
minimizer of the criterion, while keeping computation figdes. Promising results have already been ob-
tained with space-filling designs, and adaptive samplingedaon the conditional density of the global
minimizers should be useful as dimension increases.

Extension to constrained optimization is an obviously imt@at topic for future investigations. When it
is easy to discard the candidate pointsXithat do not satisfy the constraints, the extension is tridar
expensive-to-evaluate constraints, the extension is anohpllenge.

Finally, the stepwise uncertainty reduction strategy eisged with conditioning by Kriging is a promis-
ing solution for the robust optimization of expensive-i@leate functions, a problem that is central to many
industrial situations, for which an efficient product desigust be found in the presence of significant un-
certainty on the values actually taken by some factors insrpasduction. In addition, robustness to the
uncertainty associated with the estimation of the paramseaiethe covariance function should also be
sought.

8 Appendix: modeling with Gaussian processes

This section recalls the main concepts used in this paperelyaGaussian process modeling and Kriging.
The major results will be presented along with the genemh&work for the estimation of the model
parameters.

8.1 Kriging whenf is evaluated exactly

Kriging [4, 15] is a prediction method based on random preesdhat can be used to approximate or
interpolate data. It can also be understood as a kernelsggremethod, such aplines[23] or Support
Vector Regressiof0]. It originates from geostatistics and is widely usedhis domain since the 60s.
Kriging is also known as th8est Linear Unbiased PredictiofBLUP) in statistics, and has been more
recently designated as Gaussian Processes (GP) in the ®@srirachine learning community.

As mentioned in Section 2.1, it is assumed that the funcfiema sample path of a Gaussian random
process. Denote bym(x) = E[F(x)] the mean function of () and byk(x, y) its covariance function,
written as

k(z,y) = cov(F(z), F(y)).
Kriging then computes the BLUP df(x), denoted byﬁ(w), in the vector space generated by the evalua-
tionsHs = span{F(z1), ..., F(z,)}. As an element ofls, F'(x) can be written as

F(x)=Xx)"Fs. (15)
As the BLUP,E'(x) must have the smallest variance for the prediction error
62 (x) = E[(F(2) — F(@))?, (16)
among all unbiased predictors. The variance of the prexfiairor satisfies
62(x) = k(z, ) + AMz) T KX(x) — 2X(z) Tk(x), (17)

with
K = (k(zi,z;)), (i,j) € [1,n]*

then x n covariance matrix of" at evaluation points i§, and
k(x) = [k(xy,),... kiz,,x)]"

the vector of covariances betweegiix) and Fs
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The prediction method [16] assumes that the meaki(af) can be written as a finite linear combination
m(z) = B p(z),

whereg is a vector of fixed but unknown coefficients, and

p(.’l)) = [pl(w)a R apl(w)]T

is a vector of known functions of the factor vecterUsually these functions are monomials of low degree
in the components at (in practice, their degree does not exceed two). Theseiimetmay be used to
reflect some prior knowledge on the unknown function. As weehreone for the examples considered here,
we simply use an unknown constant.

The Kriging predictor atr is then the best linear predictor subject to the unbiasedoesstraint
E(F(x)) = m(x), whatever the unknowg. The unbiasedness constraint translates into

BTP"A(z) = Bp(x), (18)
with
p(x1)"
P= :
p(z,)’
For (18) to be satisfied for g, the Kriging coefficients must satisfy the linear constigin
PTA(z) = p(x), (19)

called universality constraintdy Matheron. At this point, Kriging can be reformulated aidies: find
the vector of Kriging coefficients that minimizes the vadarof the prediction error (17) subject to the
constraints (19). This problem can be solved via a Lagrarfgianulation, withu () a vector of Lagrange
multipliers for the constraints in (19)The coefficients\(x) are then solutions of the linear system of

equations
(7 0) (35) - () ”

with 0 a matrix of zeros. A convenient expression for the variarfdd® prediction error is obtained by
substitutingk(xz) — Pu(x) for KA(x) in (17) as justified by (20), to get

o) = E[F(@) ~ F(@)] = k(. 2) ~ M) Tk(z) — pla) u(z) . (21)

The variance of the prediction erroratcan thus be computed without any evaluatiorf pfising (20) and

(21). It provides a measure of the quality associated wighktiging prediction. Evaluations of remain

needed to estimate the parameters of the covariance faraitio (if any), as will be seen in Section 8.3.2.
Oncef has been evaluated at all evaluation points, the prediofitine value taken by atx becomes

flx)=A=)"fs, (22)

with fs = [f(x1), ..., f(z,)]" (fs is viewed as a sample value BE).
It is easy to check that (20) implies that

Va, € S, F(x;) = F(x;).

The prediction off atx; € Sisthenf(x;), so Kriging is an interpolation with the considerable adage
that it also accounts for model uncertainty through an exmharacterization of the prediction error.

Remark: The Bayesian framework (see, for instance, [26]) is anr@dtitve approach to derive the
BLUP, in which F' is viewed as a Bayesian prior on the output. In the case of @mean model, the
conditional distribution of the function is then Gaussiaithvmean

E[F(x)| Fs = fs] = k(x) K~ fs, (23)
and variance
Var [F(x)| Fs = fs] = k(z,x) — k(x) " K 'k(zx),
which are exactly the mean (22) and variance (21) of the Kggiredictor for a model’ with zero mean.

The Kriging predictor can also be viewed as the conditioredmofF'(x) in the case of an unknown mean,
if the universality constraints are viewed as a non-infdivegorior ong3.
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8.2 Kriging whenf is evaluated approximately

The Kriging predictor was previously defined as the elemérnhe spaceHs generated by the random
variablesF'(x;) that minimizes the prediction error. A natural step is teeextthis formulation to the case
of a function whose evaluations are corrupted by additidejpendent and identically distributed Gaussian
noise variables; with zero mean and variane€. The model of the observations then becomgs® =
F(x;) + €, i = 1,...,n, and the Kriging predictor foF'(x) takes the formi(z) = A(z)T F$>® with

Fgbs = [Fobs, ... ,F;ES]T. The unbiasedness constraint (19) remain unchanged, Wigilsnean-square
error (2) becomes

E[F(m) — F(x)]* = k(x,x) + )\(m)T(K +02L)A(x) — 2)\(w)Tk(m),

with I,, the identity matrix. Finally, using Lagrange multipliers laefore, it is easy to show that the coeffi-
cientsA(x) of the prediction must satisfy

(<5 0)(2)- ()

The resulting prediction is no longer interpolative, bun ctill be viewed as the mean of the conditional
distribution of F'. The variance of the prediction error is again obtainedgi&21).

8.3 Covariance choice

Choosing a suitable covariance functibf, -) for a givenf is a recurrent and fundamental question. It
involves the choice of a parametrized class (or model) chdance, and the estimation of its parameters.

8.3.1 Covariance classes

The asymptotic theory of Kriging [21] stresses the impartaaf the behaviour of the covariance near the
origin. This behaviour is indeed linked with the quadratiean regularity of the random process. For in-
stance, if the covariance function is continuous at theiortgen the process will be continuous in quadratic
mean. In practice, one often uses covariances thaheaeiant by translationor equivalentlystationary),
isotropic, and such that regularity can be adjusted. Non-statior@argr@ances are seldom used in practice,
as they make parameter estimation particularly difficyltlgbtropy, however, is not required and can even
be inappropriate when the factors are of different natukasexample of an anisotropic, stationary covari-
ance class i&(z,y) = k(h), with h = \/(z — y)TA(z — y) where(z,y) € X? and A is a symmetric
positive definite matrix.

A number of covariance classes are classically used (foaniee, exponential +— o2 exp(—0|h|*),
product of exponentials, or polynomial). TMatérn covarianceslass offers the possibility to adjust regu-
larity with a single parameter [21]. Stein (1999) advocdlesuse of the following parametrization of the

Matérn class:
o2 201/2p\ " 2012,
- v y 2
(k) 2”1F(V)( P ) * ( p ) (@5)

wherefC,, is the modified Bessel function of the second kind [27]. Tlaisgpneterization is easy to interpret,
asv controls regularityg? is the varianceX(0) = o2), andp represents theangeof the covariance,e.,

the characteristic correlation distance. To stress thafsignce and relevance of the regularity parameter,
Figure 10 shows the influence ofon the covariance function, and Figure 11 demonstratempgct on
the sample paths. Since Kriging assumes fhiata sample path af, a careful choice of the parameters of
the covariance is essential.
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Fig. 11 Three sample paths of a zero-mean Gaussian process withéanMalvariance. Conventions are as in Figure:18: 4 for
the solid line,v = 1 for the dashed line and = 0.25 for the dotted line.

8.3.2 Covariance parameters

The parameters for a given covariance class can either liedsiag prior knowledge on the system, or be
estimated from experimental data. In geostatistics, @sitim is carried out using the adequacy between the
empirical and model covariances [4]. In other areas, crabdation [23] and maximum likelihood [21] are
mostly employed. For simplicity and generality reasong,[#e maximum-likelihood method is preferred
here. Using the joint probability density of the observedi€an vector, and assuming that the mean of
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Fig. 12 Example of Kriging interpolation (bold line) for a functioof one variable. The data are represented by squares, and the
covariance parameters were estimated by REML. Dasheddiglesit 95% confidence region for the prediction. The thificstines
are examples of conditional simulations.

F(x) is zero for the sake of simplicity, one obtains the maximikelhood estimate of the vectérof the
covariance parameters (see, for instance, [22]) by minngithe negative log-likelihood

1(6) = % log 27 + %logdet K(0)+ %fSTK(O)*lfS . (26)

When the mean foF'(x) is unknown, the parameters can be estimated, using for drahmeREstricted
Maximum LikelihoodREML, see [21]). This is the approach used for the exampldisis paper.

Figure 12 illustrates prediction by Kriging with a Matérnvapiance, the parameters of which have been
estimated by REML. The prediction interpolates the datd, @nfidence intervals are deduced from the
square root of the variance of the prediction error to asbesgquality of the prediction between data. Fig-
ure 12 also contains a series of conditional simulationtafobd with the method explained in Section 3.2),
namely sample paths @f that interpolate the data. As implied by (23), the Kriginggtiction is the mean
of these conditional simulations.
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