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Abstract In many global optimization problems motivated by engiivegeapplications, the number of function
evaluations is severely limited by time or cost. To ensuet &ach evaluation contributes to the localization of
good candidates for the role of global minimizer, a seqaéotioice of evaluation points is usually carried out.
In particular, when Kriging is used to interpolate past ea#ibns, the uncertainty associated with the lack of
information on the function can be expressed and used toungmumber of criteria accounting for the interest
of an additional evaluation at any given point. This pap&oiiuces minimizers entropy as a new Kriging-based
criterion for the sequential choice of points at which thediion should be evaluated. Basedstepwise uncer-
tainty reduction it accounts for the informational gain on the minimizer esfed from a new evaluation. The
criterion is approximated using conditional simulatiofishee Gaussian process model behind Kriging, and then
inserted into an algorithm similar in spirit to ttefficient Global OptimizatiofEGO) algorithm. An empirical
comparison is carried out between our criterion argected improvemenine of the reference criteria in the
literature. Experimental results indicate major evalbrasavings over EGO. Finally, the method, which we call
IAGO (for Informational Approach to Global Optimization$, extended to robust optimization problems, where
both the factors to be tuned and the function evaluations@reipted by noise.

Keywords Gaussian process, global optimization, Kriging, robusinojzation, stepwise uncertainty reduction

1 Introduction

This paper is devoted to global optimization in a contextxgensive function evaluation. The objective is to
find global minimizers inX (the factor space, a bounded subseRéj of an unknown functiory : X — R,
using a very limited number of function evaluations. Notattthe global minimizer may not be unique (any
global minimizer will be denoted as*). Such a problem is frequently encountered in the industvald.

For instance, in the automotive industry, optimal crasghtegl parameters are obtained using costly real tests and
time-consuming computer simulations (a single simulatibecrash-related deformations may take up to 24 hours
on dedicated servers). It then becomes essential to fatoniaption methods that use the dramatically scarce
information as efficiently as possible.

To make up for the lack of knowledge on the function, surredatso called meta or approximate) models
are used to obtain cheap approximations [13]. They turn@mbgtconvenient tools for visualizing the function
behavior or suggesting the location of an additional pointlasich f should be evaluated in the search f6r.
Surrogate models based on Gaussian processes have reaaitiedlar attention. Known in geostatistics under
the name ofKriging since the early 1960s [15], Gaussian process models previgi®babilistic framework
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to account for the uncertainty stemming from the lack of infation on the system. When dealing with an
optimization problem, this framework allows the set of ftioe evaluations to be chosen efficiently [12—14].

In this context, several strategies have been proposeld sighificant advantages over traditional optimiza-
tion methods when confronted to expensive-to-evaluatetioims. Most of thermimplicitly seek a likely value
for *, and then assume it to be a suitable location for a new evafuaf f. Yet, given existing evaluation
results, the most likely location of a global minimizer is mecessarily a good evaluation point to improve our
knowledge onc*. As we shall show, by making full use of Kriging, it is instepdssible toexplicitly estimate
the probability distribution of the optimum location, whiallows an information-based search strategy.

Based on these observations, the present paper introducesirers entropy as a criterion for the choice of
new evaluation points. This criterion, directly inspiredrh stepwise uncertainty reductid8], is then inserted in
an algorithm similar to th&fficient Global OptimizatiofEGO) algorithm [14]. We call the resulting algorithm
IAGO, for Informational Approach to Global Optimization

Section 2 recalls the principle of Kriging-based optimiaat along with some general ideas on Gaussian
process modeling that are used in Section 3 to build an estiofathe distribution of the global minimizers.
Section 4 details the stepwise uncertainty reduction amtrapplied to global optimization, while Section 5
describes the corresponding algorithm and its extensmnsisy problems. Section 6 illustrates the behavior of
the new algorithm on some simple benchmark problems, alothgits performances compared with those of the
classical EGO algorithm, chosen for its good compromiseéen local and global search [17]. Finally, after a
conclusion section and to make this paper self-containectjé 8 recalls, as an appendix, some more results on
Gaussian process modeling and Kriging.

2 Kriging-based global optimization

When dealing with expensive-to-evaluate functions, ojatition methods based on probabilistic surrogate mod-
els (and Kriging in particular) have significant advantagesr traditional optimization techniques, as they require
fewer function evaluations to provide an acceptable smutriging provides not only a cheap approximation of
the function but also an estimate of the potential error i &pproximation. Numerous illustrations of this supe-
riority can be found in the literature (see, for instancé), §d many variations have been explored (for extensive
surveys, see [13] and [17]). As explained in this sectioas¢hmethods deal with the cost of evaluation using
an adaptive sampling strategy, replacing the optimizatiothhe expensive-to-evaluate functigrby a series of
optimizations of a cheap criterion.

2.1 Gaussian process modeling and Kriging

This section briefly recalls the principle of Gaussian pssc@P) modeling, and lays down the necessary nota-
tion. A more detailed presentation is available in the agpe(Section 8).

When modeling with Gaussian processes, the fungtisressumed to be a sample path of a Gaussian random
processF, with mean functionn () and covariance functioh(-, -) defined oveiX?. If we denote(12, A, P) the
underlying probability space, this amounts to assuming tha € 2, such thatF(w,-) = f(-). Whenever
possible, we shall omit the dependence-ah w to simplify notation.

In particular, given a set of evaluation point§ = {x1,...,x,} (thedesign, Va; € S the evaluation result
f(=x;) is viewed as a sample value of the random varidh(le;). Kriging computes an unbiased linear predictor
of F'(x) in the vector spaclls = span{F'(x1), ..., F(zn)}, which can be written as

F(x) = A(z) Fs, Q)

with Fs = [F(x1),..., F(z,)]", and(x) the vector of Kriging coefficients for the predictionaat
Given the covariance function @f, the Kriging coefficients can be computed along with thearase of the
prediction error
6%(x) = var(F(z) — F(x)). 2

The covariance function of" is chosen within a parametrized class (for instance, theeMatlass), and its
parameters are either estimated from the data or choseora(sge Section 8.3.2 for details on the choice of a
covariance function).

Oncejf has been evaluated at all evaluation pointS,ithe predicted value of atx is given by

fla) =) fs ©)
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Fig. 1 Naive approach to optimization using Krigindof) predictionf (bold line) of the true functiory (dotted line, supposedly
unknown) obtained from an initial design materialized byamgs; botton) prediction after seven iterations minimizirfg

with fs = [f(x1),..., f(zn)]T (fs is viewed as a sample value B%). The same results could be derived in a
Bayesian framework, wher®(z) is Gaussian conditionally to the evaluations carried @yt£ fs), with mean
f(x) and varianceé? ().

Note that the random processeér) and F'(x) satisfy

Va; € S, F(a;) = F(x;), (4)

and that the prediction at; € S is f(x;). When f is assumed to be evaluated exactly, Kriging is thus an
interpolation, with the considerable advantage over aititerpolation methods that it also provides an explicit
characterization of the prediction error (zero-mean Ganssith variances? (x)).

2.2 Adaptive sampling strategies

The general principle of optimization using Kriging is atively to evaluatg at a point that optimizes a criterion
based on the model obtained using previous evaluationtsediie simplest approach would be to choose a
minimizer of the predictionf as a new evaluation point. However, by doing so, too much denie would

be put in the current prediction and search is likely to sialla local optimum (as illustrated by Figure 1). To
compromise between local and global search, more emphasitotbe put on the prediction error, which can
indicate locations where additional evaluations are né¢demprove confidence in the model. This approach
has led to a number of criteria to select additional evabmgpioints based on both prediction and prediction error.

A standard example of such a criterioreigpected improveme(tl) [18]. As the name suggests, it involves
computing how much improvement in the optimum is expectefli$ evaluated at a given additional point. Let
fmin be the best function value obtained so far. The improvemqueaed from an additional evaluation pat
x given fs, the results of past evaluations, can then be expressed as

El(z) = E [max (fmin — F (z),0) |[F5 = fs].
SinceF (x) is conditionally Gaussian with megffx) and variance?(x),

El(z) = &(x) [u@(u) + %(u)} : (5)
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Fig. 2 El approach to optimization using Krigingop) prediction f (bold line), 95% confidence intervals computed usinglashed
line) and true functiory (dotted line); botton) expected improvement.

with

w= fmiriff(w)

()

and® the normal cumulative distribution function. The new ewadion point is then chosen as a global maximizer
of El(x). An example is given on Figure 2, where the problem that idedethe naive method of Figure 1 is
directly solved with the El criterion. This method has besedifor computer experiments in [17], while modified
criteria have been used in [11] and [25] to deal with noisycfions.

In [13] and [24], a fair number of alternative criteria aregented and compared. Although quite different
in their formulation, they generally aim to answer the samestjon: What is the most likely position af*?
Another, and probably more relevant, question is: Wherelsttbe evaluation be carried out optimally to improve
knowledge on the global minimizers?

In what follows, a criterion that addresses this questidhlve presented, along with its performances. The
reference for comparison will be El, which is a reasonablamomise between local and global search [17], and
has been successfully used in many applications.

3 Estimating the density ofz™

Once a Kriging surrogate modghas been obtained, any global minimizerfa$ a natural approximation af*.
However, it might be excessively daring to trust this appr@tion as it does not take in account the uncertainty
of the prediction. A more cautious approach to estimatifigs to use the probabilistic framework associated
with F. Of coursex™ is not necessarily unique, and we shall focus on descrilieget of all global minimizers

of f as efficiently as possible.

3.1 Probabilistic modeling of the global minimizers of

According to the GP model, a global minimizei of f corresponds to a global minimizer of this particular
sample path of". It seems therefore natural to use the GP modef tf obtain a probabilistic model fat™.



Consider theandomset M5 of the global minimizers of” overX; i.e.the set of all global minimizers for each
sample path, which for any € 2 can be written as

Mi(w) ={z" € X|F(w,z") = mi

To ensure thaiMx (w) is not empty for allv, we assume thaf has continuous sample paths with probability
one. This continuity can be ensured through a proper chdicevariance function (see, e.qg., [1]).

Let X* be a random vector uniformly distributed awi (from now on, we omit the dependency 0%
in w). The probability density function of this random vectonddional to past evaluation results, that we shall
thereafter call conditional density of the global minintizand denotg x| ¢, (x) , is of great interest, as it allows
one not only to estimate the global minimizersfoffor example, through the maximization of their conditibna
density), but also to characterize the uncertainty asttiaith this estimation. In fachx -| ¢, (z) contains all of
what has been assumed and learned about the system. Hom@tractable analytical expression fok - ¢, (x)
is available [2, 19]. To overcome this difficulty, the apprhaaken here is to consider a discrete version of the
conditional distribution, and to approximate it using Me@arlo simulations.

LetG = {x1,...,z N} be afinite subset af, Mg, be the random set of global minimizers@foverG, and
X ¢ be arandom vector uniformly distributed @rig,. The conditional probability mass function &f¢ given fs
(or simply minimizers distribution) is thenz € G

Px:\f.(x) = P(Xg =z| Fs = fs) .

It can be approximated using conditional simulatidres, simulations ofF' that satisfyFs = fs. Assuming that
non-conditional simulations are available, several mashexist to make them conditional [4]. Conditioning by
Kriging seems the most promising of them in the present cbated will be presented in the next section.

To keep the presentation simple, we assume in what folloatsStir G.

3.2 Conditioning by Kriging

This method, due to G. Matheron, uses the unbiasedness Kfitfiag prediction to transform non-conditional
simulations into simulations interpolating the resuyftsof the evaluations. The idea is to sample from the con-
ditional distribution of the prediction errar — F' rather than from the conditional distribution 8 which is
made easier by the fact that the statistical propertieseptiediction error do not depend on the result of the
evaluations, nor on the meam(x) of F(x).

To present this more formally, I€t be a zero-mean Gaussian process with covariance furic{tbie same as
that of F)) and Z be its Kriging predictor based on the random variat#és;), «; € S, and consider the random
process

T(z) = f(z) + [Z(2) - Z(2)], (6)

where is the mean of the Kriging predictor based on the design pair. Since this Kriging predictor is an
interpolator, at evaluation points f) we havef (xz;) = f(z;). Equation (4) implies thaZ (x;) = Z(x;), which
leads toT'(z;) = f(=;), V&; € S. In other words,T" is such that all its sample paths interpolate the known
values off. Itis then easy to check thdthas the same finite-dimension distributionsFasonditionally to past
evaluation results [7], simply because the predictionretro Z, for Z, has the same distribution as the prediction
error for ', F — F. Note that the same vectalz) of Kriging coefficients is used to interpolate the data ared th
simulations at design points. Using (3), one can rewriteas)

T(x) = Z(z) + Az) " [fs — Zs], @)

With Zs = [Z(z1), ..., Z(zn)] .

In summary, to simulaté’ over G conditionally to past evaluation resulfs, we can simulate a zero-mean
Gaussian process overG, compute the prediction error for each simulation and shétprediction error around
the desired meafi. This is achieved by the following procedure (illustratedrigure 3):

— compute, for every point ifis, the vector of Kriging coefficients based on the design jsaim§,

— compute the Kriging predictiofi(z) based on past evaluation resuftsfor everyz in G,

— collect non-conditional sample paths.fover G (provided that a Gaussian sampler is available, setting the
proper covariance for the simulated vector can be achiesidufor example, the Cholesky decomposition),
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Fig. 3 Conditioning a simulation:t¢p) unknown real curve (doted line), sample points (squares) and associatedrigrigiediction
f (bold line); (middlg non-conditional simulatiorz, sample points and associated Kriging predictiotbold line); potton) the
simulation of the Kriging erroe — % is picked up from the non-conditional simulation and addethé Kriging prediction to get the
conditional simulation (thin line).

— apply (7) for each non conditional simulation and at everynpo G. That is, to generatgx), a conditional
simulation ofT'(x) from a non-conditional simulatiogn(x) of Z(x), apply

t(x) = z(x) + A(@) " [fs — 2s), ®)

wherezg is the sampled valued ¢f overS, which is available sincB c G.

With this sampling method, it becomes straightforward ItdIMePX; |- Letz; be a global minimizer of
the-th conditional simulationi(= 1,...,r) overG (if it is not unique, choose one randomly). Then, for any
in G, a classical estimator is

Pxaig@) = = 3 6 (), ©
=1

with ¢ the Kronecker symbol. Figure 4 presents the approximaﬁi@g‘fs for an example where locating a global
minimizer is not easy. Knowing the conditional distributiof X gives valuable information on the areas™of
where a global minimizer might be located, and that oughtetangestigated. This idea will be detailed in the
next section.

4 The stepwise uncertainty reduction strategy

The knowledge about the global minimizersfois summarized byf'Xé ;- In order to evaluate the interest of a
new evaluation of at a given point, a measure of the expected information gaiguired. An efficient measure
is conditional entropyas used in sequential testing [9] in tBeepwise Uncertainty Reductig8UR) strategy.
This section extends the SUR strategy to global optiminatio
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4.1 Conditional entropy

The entropy of a discrete random variablgexpressed in bits) is defined as:

ZP =u)logy P(U = u).
H(U) measures the spread of the distributio/oft decreases as this distribution gets more peaked. licphat

- Pxf‘ﬁ(w) =1/N Ve € G = H(X() =logy(N),

0 if .
- Py (@) = {1 ‘- f ;2 = H(X%) =0

Similarly, for any event3, the entropy of’ relative to the probability measur¥.|B) is

H{U|B) = ZP = u|B) logy P(U = u|B).

The conditional entropy of U given another discrete randaniableV is
H(U|V) Z P(V =v)H(U|V =v),
and the conditional entropy &f given53 andV is

H(U|B,V) ZP =|B)H(U|B,V =v). (10)

Note thatd (U|V) andH (U|B, V') are, despite the similarity of notation with conditionapextation, determin-
istic quantities. More details on conditional entropy carfdund in [5].



4.2 Conditional minimizers entropy

Let Fo(x) be a discrete version df (x), defined asFg(z) = Q(F(x)) with Q a quantization operato) is
characterized by a finite set 8f real numberqy;, ...,y }, and defined’u € R as

Q(u) = yy with k& = min |y; — ul. (11)
3

For optimization problems, the SUR strategy for the sebactf the next value ok ¢ X at which f will be
evaluated will be based ol (X¢|Fs = fs, Fo(«)), the conditional entropy oK ¢; given the evaluation results
{Fs = fs} andFg(x) (we shall refer to it later on as conditional entropy of theimizers, or simply minimizers
entropy).

Using (10) we can write

M
H(XE|Fs = fs, Fo(@)) = Y P(Fo(x) = yilFs = fo)H(XE|Fs = fs, Fo(@) = v;) (12)
=1
with
H(XE|Fs = fo, Fo(®) = yi) = — 3 Pxz|f.y;(Wlogy Pxe sy, (W),
ueG
and

Px:\foy () = P(X" = u|Fs = fs, Fo(x) = yi).

H(XG|Fs = fs, Fo(=x)) is a measure of the anticipated uncertainty remaining fngiven the candidate
evaluation pointz and the resulffs of the previous evaluations. Anticipation is introduced12) by consid-
ering the entropy ofX ¢ resulting from every possible sample value/f(x). At each stage of the iterative
optimization, the SUR strategy retains for the next evadued point that minimizes the expected entropy of the
minimizers distribution after the evaluation, i.e., a gdimat maximizes the expected gain in information about
X¢.

The conditional entropy of the minimizers thus takes in aotdhe conditional statistical properties Bf
and particularly the covariance function of the model. Ehies the interest of the SUR strategy applied to
global optimization. It makes use of what has been prewoassumed and learned abqguto pick up the
most informative evaluation point. By contrast, the Elemitbn (as most standard criteria) depends only on the
conditional mean and variance Bfat the design point being considered.

5 Implementing the SUR strategy
5.1 IAGO algorithm

Our algorithm is similar in spirit to the strategy for Krigjrbased optimization known &fficient Global Opti-
mization(EGO) [14]. EGO starts with a small initial design, estinsiee parameters of the covariance function
of F and computes the Kriging model. Based on this model, aniadditpoint is selected in the design space to
be the location of the next evaluation pfusing the El criterion. The parameters of the covariancetfon are
then re-estimated, the model re-computed, and the pro€¢es®osing new points continues until the improve-
ment expected from sampling additional points has becorfiisatly small. The IAGO algorithm uses the
same idea of iterative incorporation of the obtained infation to the prior on the function, but with a different
criterion.

To compute the minimizers entropy using (12), a differerdrgization operatof),. is used for each value of
x to improve the precision with which the empirical mean ofrepy reduction over possible evaluation results
is computed. We use the fact thifz) is conditionally Gaussian with meaf{z) and variance?(x) obtained
by Kriging, to select a set of valudg, (x), ...,y ()}, such that

P(FQw(w):yHFS:fS):%ViE [1:M]. (13)

Here we used a set of ten possible valugs=£ 10).

For each of these possible values (or hypothdses) = y;), ﬁxé \s,: 1S computed using conditional
simulations. The minimizers entropy is then obtained uglr®). These operations are carried out on a discrete set
of candidate evaluation points (see Section 5.2 for sonalgen the choice of this set), and a new evaluation of



Algorithm

Input: SetS = {«1,..., =z, } of evaluation points and corresponding valyfesof the functionf
Output: Additional evaluation poiniyew

1. ChooseG, a discrete representation Xf

2. Set covariance parameters either a priori or by maxinmketifood estimation based ofy
3. Computer non-conditional simulations ové

4. Computef(x) andé(x) overG by Kriging from f

5. while the set of candidate points has not been entirely explored

6 do Take an untried point. in the set of candidate points

7 Compute the parametefg, . .., yas } of the quantization operata@p

8 Compute the Kriging coefficients at every pointGrbased on evaluation points $handx.
9 fori«+ 1to M

10. do Construct conditional simulations using (7) and assuntiag f(x.) = y;

11. Find a global minimizes; of the k-th conditional simulation ove® (k = 1,...,7)
12. EstimateP’x «| ¢, ,,, overG using (9)

13. Computel] (X |Fs = fs, Fg(c) = yi)

14. Compute the minimizers entropy given an evaluationatising (12)

15. Outputz,ew that minimizes the conditional entropy over the set of cdatdi points

Table 1 Selection of a new evaluation point fgr

fisfinally performed at a point that minimizes minimizersrepy. Next, as in the EGO algorithm, the covariance
parameters are re-estimated and the model re-computeghrdtedure for the choice of an additional evaluation
point is described in Table 1.

When the number of additional function evaluations is natc#fed beforehand, we propose to use as a
stopping criterion the conditional probability that thelghl minimum of the GP model be no further apart of
fmin = ming, cs f(x;) (the best function value yet obtained) than a given tolexahreshold. The algorithm
then stops when

P(F* < fmin +5|FS = fS) < PStop s

with F* = ming ¢ ¢ F(2), and P, € [0, 1] @ critical value to be chosen by the user. Proposed in [18], th
stopping criterion is well suited here, since evaluating tépartition function off (z*) does not require any
additional computation. We can indeed use the conditianallations that have been performed to approximate
the conditional distribution oK/ for this purpose, provided that we keep track, for each afitheot only of a
global minimizer, but also of the minimum. The histogramgtubtained can then easily be transformed into a
simple approximation of the conditional repartition fupotof the minimum.

5.2 Computational complexity

With the previous notation; the number of evaluation points,the number of conditional simulationg] the
number of points iz and M the number of discretized potential evaluation resultsafoevaluation, the com-
putational complexity for the approximation of the minimig entropy (Steps 7 to 14 in Table 1) is as follows:

— computing Kriging coefficients at every point @ (Step 8):0(rn?N), as (20) (to be found in appendix) has
to be solvedV times while changing the + 1-st evaluation point each time. A large part of the factdrra
of the covariance matrix can be reused, and Kriging at anaghproint is then simply it (n?),

— constructing conditional simulations (Step 10)nrN) (M is not involved since the main part of the condi-
tioning procedure described by (8) can be carried out caitsid loop on the discretized potential evaluation
results),

— locating the global minimizers for each simulation by exdtaxe search (Step 119 (r N M).

Since all other operations are @ V) at most, evaluating minimizers entropy at any given poigunesO(N)
operations.

To complete the description of an implementable algoritiam,must specify a choice fdk and a policy
for the minimization of minimizers entropy. What follows jisst an example of a possible strategy, and many
variants could be considered.

The simplest choice fdf is a uniform grid onX. However, as the number of evaluationsfdhcreases, the
spread ofPXg |, diminishes along with the precision for the computationhef éntropy. To keep a satisfactory
precision over time{z can be a random sample of pointsinre-sampled after every evaluation pfvith the
distributionﬁxé‘fs. Re-sampling makes it possible to use aGetith a smaller cardinal and to escape, at least
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partly, the curse of dimensionality (to resample us}ﬁggm, any non-parametric density estimator could be
used along with a sampling method such as Metropolis-Hgstisee, e.g., [3]).

Ideally, to choose an additional evaluation point farsing IAGO, minimizers entropy should be minimized
overX. However, this of course is in itself a global optimizatiamiplem, with many local optima. It would be
possible to design an ad-hoc optimization method (as in)[1b8 this perspective is not explored here. Instead,
we evaluate the criterion extensively over a chosen setrafidate points. Note that only the surrogate model is
involved at this stage, which makes the approach pracfited.idea is, exactly as for the choice @f to use a
space-filling sample covering and resampled after each new evaluation. The current inguieation of IAGO
simply uses a Latin Hyper Cube (LHC) sample, however, it wdé easy to adapt this sample iteratively using
the conditional distribution of the mlnlmlzedgx*” as a prior. For instance, areas of the design space where
the distribution is sufficiently small could be ignored. éfa few evaluations, a large portion of the design space
usually satisfies this property, and the computations sewattl be used to improve knowledge on the criterion
by sampling whereﬁxgwS is high (using the same approach as for the choicg)of

As dimension increases, trying to cover the factor spacéevkaieping the same accuracy leads to an ex-
ponential increase in complexity. However, in a context xgemnsive function evaluation, the objective is less
to specify exactly all global minimizers (which would be tdemanding in function evaluations anyway), than
to use available information efficiently to reduce the lkakeas for the location of these minimizers. This is
exactly the driving concept behind IAGO. In practice, witld set of one thousand candidate points, picking
an additional evaluation point requires about three mmuith a standard personal computer (and this figure
is relatively independent of the dimension of factor spab®&reover, the result obtained can be trusted to be a
consistent choice within this set of candidate points, gard of what has been assumed and learned gbout

5.3 Taking noise in account

Practical optimization problems often involve noise. Tégstion discusses possible adaptations of the optimiza-
tion algorithm that make it possible to deal with noisy siias, namely noise on the evaluation fond noise
on the factors.

5.3.1 Noise on the evaluation ¢f

When the results of the evaluations joére corrupted by noise, the algorithm must take this factaccount. A
useful tool to deal with such situationsrisn-interpolative Krigingsee Section 8.2).

If the evaluation at; € S is assumed to be corrupted by an additive Gaussian apigith known mean and
variance, the Kriging prediction should no longer be intdaive. The optimization algorithm remains nearly
unchanged, except for the conditional simulations. Samailes ofF", should be built conditionally to evaluation
results,i.e. realizations of the random variablg$x;) + ¢, for ; € S. Since the variance of the prediction
error is no longer zero at evaluation points (in other wotksre is some uncertainty left on the valuesfadt
evaluation points), we first have to sample, at each evalugtoint, from the distribution of* conditionally to
noisy evaluation results. An interpolative simulationséa on these samples, is then built using conditioning by
Kriging. An example of such a simulation is presented on fédufor a noise variance of 0.01.

5.3.2 Noise on the factors

In many industrial design problems, the variability of ttedues of the factors in mass production has a significant
impact on performance. One might then want to design a sytsignoptimizes some performance measure while
ensuring that performance uncertainty (stemming fromenois the factors) remains under control. These so-
calledrobust optimizatiorproblems can generally be written as

argmin J(x) , (14)
zeD

with J(x) a cost function reflecting some statistical property of theupted performance measufér + ¢),
wheree is a random vector accounting for noise on the factors. @alssost functions are:

— mean:J(xz) = Ee[f(x + €)],
— standard deviationi(xz) = \/vare(f(x + €)),
— linear combination of mean and standard deviatiff) = Ec[f(x + €)] + /vare(f(z + €)),
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Fig. 5 Example of prediction by Kriging (bold line) of noisy measorents represented by squares. Dashed lines represent 95%
confidence regions for the prediction and the thin solid i;m@n example of conditional simulation obtained using thethod
presented in Section 5.3.1.

— a-quantile:J(x) = Q“(x) with Q%(x) such tha®(f(z +¢) < Q%(x)) = a.

Using, for example, the-quantile as a cost function, it is possible to adapt oumoigtition algorithm to solve
(14). Given a set of evaluation resulfs at noise-free evaluation points, and if it is possible to glenfrom the
distributionpe of €, a Monte Carlo approximatio@® (x) of Q®(x) is easily obtained by computinf(x + )
over a set sampled fropx. The global optimization algorithm can then be applie@tt(x) instead off, using
pseudo-evaluation = [Q%(x1),..., Q% (xx)] (recomputed after each evaluation fyfinstead offs. This
naive approach can certainly be improved, but is sufficierghtow the feasibility of a robust approach and to
illustrate on a simple example (to be presented in the netiosg the impact ot on the evaluation points to be
chosen by IAGO.

It is of course possible to combine these ideas and to dealtsineously with noise both on the factors and
the function evaluations.

6 Illustrations

This section presents some simple examples of global apiion using IAGO, with a regular grid as a set of
candidate evaluation points. An empirical comparison wittbal optimization using expected improvement is
also presented. The Matérn covariance class will be uselrigmg prediction, as it facilitates the tuning of
the variance, regularity and range of correlation of theeulythg random process, but note that any kind of
admissible covariance function could have been used. Tiareders of the covariance may be estimated from
the data using a maximum-likelihood approach (see Sect®n 8
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6.1 A one-dimensional example

Consider the function with two global minimizers illusedtby Figure 6 and defined by: 2 — 4[1 — sin(z +
8exp(xz — 7))]. Given an initial design consisting of three points, the B@lgorithm is used to compute six
additional points iteratively. The final Kriging model ismleted in the left part of Figure 6, along with the
resulting conditional distribution for the minimizers dmetright part. After adding some noise on the function
evaluations, the variant of IAGO presented in Section 584dlso applied to the function with the same initial
design. In both cases, six additional evaluations havefgigntly reduced the uncertainty associated with the
position of the global minimizers. The remaining likely &imns reduce to small areas centered on the two actual
global minimizers. In the noisy case, larger zones are ifiletita direct consequence of the uncertainty associated
with the evaluations.

Figure 7 illustrates robust optimization using the sametion and initial design, but considering an additive
zero-mean Gaussian noise on the factors with a standardtievof 0.2. The cost function used is the 90%-
quantile@?°”, which is computed on the surrogate model but also, and @nlthé sake of comparison, on the
true function using Monte Carlo uncertainty propagatidre (quantile is approximated using 5000 simulations).
After six iterations of the robust optimization algoriththe distribution of the robust minimizers is sufficiently
peaked to give a good approximation of the true global rotmisimizer.

These result are encouraging as they show that the requiterhfast uncertainty reduction is met. The next
section provides some more examples, along with a comparigin EGO, the El-based global optimization
algorithm.

6.2 Empirical comparison with expected improvement

Consider first the function described by Figure 8. Given dtiairdesign of three points, both ElI and minimiz-
ers entropy are computed. Their optimization provides tandidate evaluation points fgt, which are also
presented on Figure 8, along with the post-evaluation ptiedi and conditional distribution faX . For this
example, the regularity parameter of the Matérn covariasc®t a priori to a high value (2.5). By taking in
account the covariance function Bfthrough conditional simulations, the minimizers entroggsiregularity to
conclude faster. The resulting conditional distributidrihee minimizers is then generally more peaked using the
IAGO algorithm than using the EGO algorithm (as illustralbgdrigure 8(c) and Figure 8(b)).

Consider now the Branin function (see, for instance, [8fired as

f:[-5,10] x [0,15] — R
(z1,22) —> (:vg - %x% + %xl - 6)2 + 10 (1 - %) cos(z1) + 10.

It has three global minimizers; ~ (—3.14,12.27)7, 3 ~ (3.14,2.27)T andx} ~ (9.42,2.47)T, and the global
minimum is approximately equal to 0.4. Given an initial wnih design of sixteen points, fifteen additional
points are iteratively selected and evaluated using thedABd EGO algorithms. The parameters of the Matéern
covariance are estimated on the initial design, and keptamged during both procedures. The positions of the
evaluation points are presented on Figure 9 (left), alorig thie three global minimizers. Table 2 summarizes the
results obtained with EGO and IAGO, based on the final Krigimapels obtained with both approaches. Note
that the El criterion in EGO is maximized with a high precisiavhile minimizers entropy in IAGO is computed
over a thousand candidate evaluation points located onuaregrid. It appears nevertheless that the algorithm
using El stalls on a single global minimizer, while the miigers entropy allows a relatively fast estimation of all
three of them. Besides IAGO yields a better global approtionaof the supposedly unknown function. If twenty
additional evaluations are carried out (as presented inghepart of Figure 9), the final Kriging prediction using
minimizers entropy estimates the minimum with an error e§lthan 0.05 for all three minimizers (cf. Table 2),
while the use of El does not improve the information on anyimirer any further. The difference between the
two strategies is clearly evidenced. The El criterion, esémating the confidence in the initial prediction, has
led to performing evaluations extremely close to one anmpfioe a very small information gain. In a context
of expensive function evaluation, this is highly detrimr@niThe entropy criterion, using the same covariance
parameters, does not stack points almost at the same lodztfore having identified the most likely zones for
the minimizers. The use of what has been assumed and learaatithe function is clearly more efficient in this
case, and this property should be highly attractive whetirdeeith problems of higher dimension.
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(a) Kriging prediction and conditional distribution of tiggobal minimizers based on the initial design
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(c) IAGO algorithm for noisy evaluations (the additive reis zero-mean Gaussian with standard deviation 0.2)

Fig. 6 Example of global optimization using IAGO on a function oforariable (dotted line), with an initial design consistofdhree
points (represented by squares). Six additional evalusitie carried out (triangles) using two versions of the 1A&gorithm. The
graphs on théeft part of the figure account for the predictions, while tight part presents the corresponding conditional distributions
of the global minimizers.

7 Discussion
7.1 Robustness to uncertainty on the covariance parameters

Jones studied in [13] the potential of Kriging-based gladgatimization methods such as EGO. One of his most
important conclusion, is that these methodarf perform poorly if the initial sample is highly deceptivAn
eloguent example is provided on page 373 [13], where a simgifin is sampled using its own period, leading to
a flat prediction over the domain, associated with a smatliptien error.
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Fig. 7 Example of robust optimization using IAGO and the cost fiorc)99%. The functionf (dotted line), corrupted by an additive
Gaussian noise on the factor (zero mean with a standardtideviaf 0.2), is studied starting from the initial design bfée points
already used in Figure 6. Six additional evaluations argezhout (triangles), which are used to estimate the costtiom based on the
Kriging model (bold line), along with the conditional dimtion of the robust minimizersight). The cost functio°% estimated,
only for the sake of comparison, from the true function usvtante Carlo uncertainty propagation is also provided (mhikee).

Table 2 Estimation results for the Branin function using the evatures of Figure 9

EGO IAGO
15 iterations | 35iterations | 15 iterations | 35 iterations

Euclidean distance between; and its 3.22 3.22 2.18 0.23
final estimate

Value of the true function at estimatefi  17.95 17.95 2.59 0.40
minimizer

Euclidean distance betweesi; and its 2.40 2.40 0.44 0.18
final estimate

Value of the true function at estimatel  13.00 13.00 0.85 0.42
minimizer

Euclidean distance betwees; and its 0.04 0.04 0.82 0.23
final estimate

Value of the true function at estimatefl 0.40 0.40 1.94 0.44
minimizer

This potential for deception is present throughout the I1A@6cedure, and should not be ignored. To over-
come this difficulty, several methods have been proposes] ésg., Enhanced Method 4 in [13] or [10]), which
achieve some sort of robustness to an underestimation gféuéction error and more generally to a bad choice
of covariance function. They seem to perform better thassital algorithms, including EGO.

Comparing the IAGO approach to such methods is an integetdjpic for future research. The issue consid-
ered here was to demonstrate the interest of the minimizersgy criterion, and we felt that this had to be done
independently from the rest of the procedure.

It is of course essential to make IAGO robust to errors in tstingtion of the covariance parameters. In
many industrial problems, this can be easily done by usiigg gnowledge on the unknown function to restrict
the possible values for these parameters. For examplertexgiehe field often have information regarding the
range of values attainable by the unknown function. Thisrimiation can be directly used to restrict the search
space for the variance of the modeling procgser even to choose it beforehand.

More generally, given the probabilistic framework usedehérshould be relatively easy to develop a Bayesian
or minimax extension of IAGO to guide the estimation of thegpaeters of the covariance function. A compari-
son with robust methods such as those detailed in [13] welhthe essential.

7.2 Conclusions and perspectives

In this paper, a stepwise uncertainty reduction strategydegn used for the sequential global optimization of
expensive-to-evaluate functions. This strategy iteeftigelects a minimizer of the conditional minimizers en-
tropy as the new evaluation point. To compute this entro@aassian random model of the function evaluations
is used and the minimizers entropy is estimated throughigignd conditional simulations. At each iteration,

the result of the new evaluation is incorporated in the dasetused to re-build the Kriging model (with a possible
re-estimation of the parameters of its covariance fungtion
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(c) Prediction and minimizers distribution after an aduill evaluation off chosen with minimizers entropy

Fig. 8 Comparison between minimizers entropy and El:l#feside contains the Kriging predictions before and after aditehal
evaluation chosen with either EI or minimizers entropy, levtieright side presents the corresponding conditional distribubitie
global minimizers.

We have shown on some simple examples that, compared to dabksiadl El-based algorithm EGO, the
method proposed significantly reduces the evaluation teiffiothe search for global optimizers. The stepwise
uncertainty reduction strategy allows the optimizationthod to adapt the type of search to the information
available on the function. In particular, the minimizersrepy criterion makes full use of the assumed regularity
of the unknown function to balance global and local searches

Choosing an adequate set of candidate points is crucid nasstt allow a good estimation of a global min-
imizer of the criterion, while keeping computation feasibPromising results have already been obtained with
space-filling designs, and adaptive sampling based on tiditcanal density of the global minimizers should be
useful as dimension increases.
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Fig. 9 Fifteen iterations of two optimization algorithms, thaffeli by their criteria for selecting evaluation points ffron the Branin
function: ¢op) the El criterion is used bpttorm) the minimizers entropy criterion is used with a thousambladate evaluation points
for f set on a regular grid (squares account for initial datanglies for new evaluations, and crosses give the actualidosadf the
three global minimizers).

Extension to constrained optimization is an obviously int@at topic for future investigations. When it is
easy to discard the candidate point&Xithat do not satisfy the constraints, the extension is tritiar expensive-
to-evaluate constraints, the extension is a major chadleng

Finally, the stepwise uncertainty reduction strategy eissed with conditioning by Kriging is a promising
solution for the robust optimization of expensive-to-ewxé functions, a problem that is central to many industrial
situations, for which an efficient product design must bentbin the presence of significant uncertainty on the
values actually taken by some factors in mass productioadtfition, robustness to the uncertainty associated
with the estimation of the parameters of the covariancetfonshould also be sought.

8 Appendix: modeling with Gaussian processes

This section recalls the main concepts used in this paperelyaGaussian process modeling and Kriging. The
major results will be presented along with the general fraank for the estimation of the model parameters.

8.1 Kriging whenf is evaluated exactly

Kriging [4, 15] is a prediction method based on random preesshat can be used to approximate or interpolate

data. It can also be understood as a kernel regression meitinddasplines[23] or Support Vector Regression
[20]. It originates from geostatistics and is widely usedhis domain since the 60s. Kriging is also known as
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the Best Linear Unbiased PredictiofBLUP) in statistics, and has been more recently designase@aussian
Processes (GP) in the 90s in the machine learning community.

As mentioned in Section 2.1, it is assumed that the functiena sample path of a Gaussian random process
F'. Denote bym(x) = E[F(x)] the mean function of'(x) and byk(x, y) its covariance function, written as

k(z,y) = cov(F(z), F(y)).

Kriging then computes the BLUP df (), denoted byF'(x), in the vector space generated by the evaluations
Hs = span{F(z1),..., F(zn)}. As an element ofls, F(x) can be written as

F(z) = A(z) Fs. (15)
As the BLUP,F'(x) must have the smallest variance for the prediction error
&°(x) = El(F(x) — F(=))’), (16)
among all unbiased predictors. The variance of the prexdiairor satisfies
6% (@) = k(z, @) + Ma) KX(@) ~ 2\(2) k(). (17)

with
K = (k(zi,x;)), (i,5) € [1,n]°

then x n covariance matrix of” at evaluation points i§, and
k(z) = [k(z1, @), ..., k(zn, )"

the vector of covariances betweglix) and Fs
The prediction method [16] assumes that the meaki(af) can be written as a finite linear combination

whereg is a vector of fixed but unknown coefficients, and

p(x) = [p1(z),....;i(z)]"

is a vector of known functions of the factor vectarUsually these functions are monomials of low degree in the
components ofe (in practice, their degree does not exceed two). Theseitursctnay be used to reflect some
prior knowledge on the unknown function. As we have noneleréxamples considered here, we simply use an
unknown constant.

The Kriging predictor at: is then the best linear predictor subject to the unbiasedo@sstraint (F (x)) =
m(x), whatever the unknowg. The unbiasedness constraint translates into

B P A(x) = B p(z), (18)
with
p(z1)"
P = :
p(xn)"

For (18) to be satisfied for aB, the Kriging coefficients must satisfy the linear constisin
P'X(2) = p(x), (19)

calleduniversality constraintby Matheron. At this point, Kriging can be reformulated dtofws: find the vector
of Kriging coefficients that minimizes the variance of thedtiction error (17) subject to the constraints (19).
This problem can be solved via a Lagrangian formulationhwitz) a vector ofl Lagrange multipliers for the
constraints in (19). The coefficiendx) are then solutions of the linear system of equations

(7 0) () - G “
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with 0 a matrix of zeros. A convenient expression for the variarfdde prediction error is obtained by substi-
tuting k(x) — Pu(x) for KX(x) in (17) as justified by (20), to get

5*(@) =E [F(z) - F(x)]” = k(z, ) — AM(@) T k(z) — p(@) T u(x) . (21)

The variance of the prediction erroratcan thus be computed without any evaluatiory péising (20) and (21).
It provides a measure of the quality associated with theiKgigrediction. Evaluations of remain needed to
estimate the parameters of the covariance functiofi @f any), as will be seen in Section 8.3.2.

Onceyf has been evaluated at all evaluation points, the prediofitime value taken by atx becomes

fl@)=X=) " fs (22)

with fs = [f(z1),..., f(zn)]" (fs is viewed as a sample value BE).
It is easy to check that (20) implies that

Va, € S, ﬁ’(wl) = F(x;).

The prediction off atz; € Sisthenf(x;), so Kriging is an interpolation with the considerable adage that
it also accounts for model uncertainty through an explicéracterization of the prediction error.

Remark: The Bayesian framework (see, for instance, [26]) is anadtieve approach to derive the BLUP, in
which F'is viewed as a Bayesian prior on the output. In the case ofarmean model, the conditional distribution
of the function is then Gaussian with mean

E[F(z)| Fs = fs] = k(z) K~ fs, (23)

and variance
Var [F(z)| Fs = fs] = k(z, ) — k(z) K k(z),

which are exactly the mean (22) and variance (21) of the Kggiredictor for a modeF’ with zero mean. The
Kriging predictor can also be viewed as the conditional mefaf(x) in the case of an unknown mean, if the
universality constraints are viewed as a non-informatiiermn 3.

8.2 Kriging wheny is evaluated approximately

The Kriging predictor was previously defined as the eleméthespacéis generated by the random variables
F(x;) that minimizes the prediction error. A natural step is teeext this formulation to the case of a function
whose evaluations are corrupted by additive independehtdemtically distributed Gaussian noise variabiges

with zero mean and variane€. The model of the observations then becon‘i@q%S =F(x;)+e,i=1,...,n,
. T

and the Kriging predictor fo'(x) takes the formi'(z) = A(z) T FSP® with FSPS = [Fg'fs, - .,F;ES} . The

unbiasedness constraint (19) remain unchanged, while éa@+square error (2) becomes

E[F(x) — F(z)]> = k(z, ) + A(z) (K + 02I,)A(z) — 2X(z) k(z),

with I,, the identity matrix. Finally, using Lagrange multipliers efore, it is easy to show that the coefficients
A(z) of the prediction must satisfy

K +02I, P\ (A=) _ [ k(z)
() (@) =G &9
The resulting prediction is no longer interpolative, but séill be viewed as the mean of the conditional distribu-
tion of F'. The variance of the prediction error is again obtainedgié21).

8.3 Covariance choice

Choosing a suitable covariance functiefy, -) for a givenf is a recurrent and fundamental question. It involves
the choice of a parametrized class (or model) of covarisawee the estimation of its parameters.
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Fig. 10 Matérn covariances with = 0.5, 02 = 1. Solid line corresponds t@ = 4, dashed line te = 1 and dotted line tor = 0.25.

8.3.1 Covariance classes

The asymptotic theory of Kriging [21] stresses the impartaaf the behaviour of the covariance near the origin.
This behaviour is indeed linked with the quadratic-meanuleity of the random process. For instance, if the
covariance function is continuous at the origin, then treess will be continuous in quadratic mean. In prac-
tice, one often uses covariances thatiavariant by translation(or equivalentlystationary), isotropic, and such
that regularity can be adjusted. Non-stationary covagarare seldom used in practice, as they make parameter
estimation particularly difficult [4]. Isotropy, howeves not required and can even be inappropriate when the
factors are of different natures. An example of an anisatregtationary covariance classkige, y) = k(h), with
h=+/(x — y)TA(x — y) where(z, y) € X? and A is a symmetric positive definite matrix.

A number of covariance classes are classically used (ftariog, exponential — o2 exp(—0|h|*), product
of exponentials, or polynomial). ThHelatérn covarianceclass offers the possibility to adjust regularity with a
single parameter [21]. Stein (1999) advocates the use dbtosving parametrization of the Matérn class:

o wl/2p v wl/2p
k(h):pilp(y)( P )KV( ) ), (25)

where K, is the modified Bessel function of the second kind [27]. Thasapneterization is easy to interpret,
aswv controls regularitys? is the varianceK(0) = o), andp represents theangeof the covariancei.e., the
characteristic correlation distance. To stress the s@ifie and relevance of the regularity parameter, Figure 10
shows the influence af on the covariance function, and Figure 11 demonstratesjiadt on the sample paths.
Since Kriging assumes thgtis a sample path of", a careful choice of the parameters of the covariance is
essential.

8.3.2 Covariance parameters

The parameters for a given covariance class can either be disimg prior knowledge on the system, or be
estimated from experimental data. In geostatistics, edtim is carried out using the adequacy between the
empirical and model covariances [4]. In other areas, cradislation [23] and maximum likelihood [21] are
mostly employed. For simplicity and generality reasong,[#fe maximum-likelihood method is preferred here.
Using the joint probability density of the observed Gaussiactor, and assuming that the meanrdte) is
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Fig. 11 Three sample paths of a zero-mean Gaussian process withéanMatvariance. Conventions are as in Figure:18: 4 for
the solid line,r = 1 for the dashed line and = 0.25 for the dotted line.

zero for the sake of simplicity, one obtains the maximunellfkood estimate of the vect@r of the covariance
parameters (see, for instance, [22]) by minimizing the tiegéog-likelihood

1(6) = 2 log 2m + 1 log det K(0) + 3 7 K(8) s (26)
When the mean foF'(x) is unknown, the parameters can be estimated, using for dgahgREstricted Maxi-
mum LikelihoodREML, see [21]). This is the approach used for the exampléisis paper.

Figure 12 illustrates prediction by Kriging with a Matérnveoiance, the parameters of which have been
estimated by REML. The prediction interpolates the datd, @nfidence intervals are deduced from the square
root of the variance of the prediction error to assess théityua the prediction between data. Figure 12 also
contains a series of conditional simulations (obtainedhwie method explained in Section 3.2), namely sample
paths ofF that interpolate the data. As implied by (23), the Krigingdtiction is the mean of these conditional
simulations.
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