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Abstract

This paper addresses the problem of reactive power
dispatch in a power system partitioned into several
areas controlled by different transmission system oper-
ators. Previous research has shown that nearly optimal
performance could be achieved in a time-invariant sys-
tem by using a specific iterative decentralized control
scheme with no information exchange. At each itera-
tion of this scheme, every transmission system operator
concurrently schedules its own control settings for
the next iteration while representing the neighboring
areas with external network equivalents. This paper
focuses on some parameter tracking techniques to
extend the range of application of the decentralized
control scheme to time-varying systems, where the
time-varying nature of the system is modeled as a
succession of steady-state operating conditions with
variation of the load demand. Those new techniques
are evaluated in the context of IEEE 118 bus system
partitioned into three control areas.

1. Introduction

Secure operation of power systems requires appro-
priate coordination of the control actions, which has
motivated the development of sophisticated control
schemes [1]. Hence, most transmission system oper-
ators (TSOs) have specifically implemented voltage
control in their own control area. Some examples are
reported in [2]–[4], which detail some practices within
Northern America and Europe.

While dynamics issues have been locally addressed
with automatic voltage regulation [5], some recent
incidents raise the problem of the steady-state control
of large-scale systems [6]. More specifically, a major
issue is to coordinate the operation scheduling of the
different TSOs so as to achieve high performance in the
interconnected networks [7]. While many authors deal
with reactive power dispatch issues for single-TSO

systems (e.g. [8], [9]), multi-TSO system operation
has lately been receiving increasing attention. Actually,
several authors have emphasized the potential benefits
of a coordinating control center [10], [11] and decen-
tralized control schemes [12]–[14] to address multi-
TSO operation issues.

In [14], a decentralized scheme is proposed, where
the different TSOs concurrently schedule reactive
power dispatch within their own control area while rep-
resenting the neighboring areas with external network
equivalents, whose parameters are fitted based on local
measurements only. In the context of a time-invariant
system, it is demonstrated that this scheme achieves
nearly optimal performance. However, its performance
is affected when the power system is time varying (non
constant load, sudden loss of transmission element,
etc).

To improve the decentralized scheme in this con-
text, this paper proposes a new procedure to compute
the external network equivalents’ parameters. Unlike
in [14], which considers time-invariant power systems
only, we consider a succession of steady-state condi-
tions and iteratively optimize the control settings for
those situations. In this context, we propose to rely
on some adaptive tracking strategies to compute the
external network equivalents’ parameters. As outlined
in [15], those tracking strategies have already been
widely used to design adaptive control schemes for
power systems. In particular, they have led to the
design of efficient control strategies for damping inter-
area oscillations [16], [17]. Three particular types of
adaptive fitting techniques will be proposed in this
paper. They will be evaluated and compared on the
IEEE 118 bus system, where three control areas have
been defined.

The paper is organized as follows. In Section 2, the
reactive power dispatch problem is formalized and the
benchmark power system is described. In Section 3, a
clear description is given of the decentralized control
scheme proposed in [14]. Afterwards, some methods
for fitting parameters of the equivalents are proposed



to extend the range of applications of the decentralized
control scheme to time-varying system models. In
Section 4, an empirical evaluation of those methods is
carried out. Finally, Section 5 concludes and discusses
some future research directions.

2. Problem formulation

In this section, the multi-TSO reactive power dis-
patch problem is described. Further, the benchmark
power system that will serve to assess the potential
performance of the decentralized control scheme is
presented.

2.1. Centralized problem

As introduced in [9], some TSOs optimize the
voltage settings across their network while considering
a stationary load demand and generation dispatch. This
practice is not rare and many TSOs even use more
heuristic rules for reactive power dispatch [2].

However, we consider in this paper that every TSO
computes at instantk− 1 the voltage settings that will
be applied at instantk to the generators and com-
pensators located in its control area. In a single-TSO
system, the optimal power flow problem (OPF) [18],
[19] faced by the TSO at instantk − 1 can be written
as follows

min
u,x

Ck(u,x) (1)

under the inequality and equality constraints

fk(u,x) ≤ 0 (2)

gk(u,x) = 0 (3)

where u and x are vectors of control variables and
state variables, respectively,Ck(u,x) is the objective
function andfk(u,x) andgk(u,x) represent the con-
straint functions. The superscriptk denotes the fact
that those functions depend on the scheduled active
power generation dispatch, load demand and network
topology at timek. In the context of reactive power
dispatch, the practical meaning of the different terms
used to formalize the optimization problem is detailed
hereafter.

The control variable vectoru usually represents the
tap ratios of the transformers and the voltage settings
of generators and compensation devices [20]. The state
variable vectorx represents the bus voltage angles and
magnitudes.

As the choice of the objective function is particu-
larly strategic, many works focus on its formulation.
While implicit objectives are mainly concerned with
the operational costs and the level of security, those
can be explicitly reflected through different criteria,
which are mainly reported in [8]. More specifically,
common practices are to focus on active power losses
APLk or on reactive power supportRPSk, for which
a formulation is proposed as follows

RPSk(u,x) =

NG∑

j=1

Qj(k)
2 (4)

Qj(k) represents here the reactive power injection of
generatorj at instantk, NG the number of generators.
Some TSOs may also use a weighted sum of active
power losses and of reactive power support. However,
this kind of weighted objective function will not be
studied in this paper.

Finally, Inequality (2) represents the constraints on
the power system (e.g. bus voltage limits, transmission
line current limits, minimum and maximum power
production, etc), while the Equality (3) has mainly
been introduced to represent power flow equations and
the distributed loss compensation (distributed slack-
bus).

2.2. Multi-TSO problem

As noted in [14], in the context of multi-TSO
reactive power dispatch, a new constraint must be
added to the set of equality constraints (3) to set active
power export at its scheduled level at timek.

In the following, we will consider a power sys-
tem withNbTSO TSOs referred to as the subscripts
1,2 , ...,NbTSO. We will also suppose that the con-
straint functionsfk(u,x) and gk(u,x) can be de-
composed intoNbTSO constraint functionsfk

1 (u,x),
fk
2 (u,x),..., fk

NbTSO(u,x) and gk
1 (u,x), gk

2 (u,x),...,
gk

NbTSO(u,x), respectively, where each constraint
function fk

i (u,x) or gk
i (u,x) corresponds to the con-

straints associated withTSOi.
Since the TSOs mostly focus on their own area,

they usually have different objective functions. How-
ever, to compare the results obtained in a multi-
TSO context with those that would be obtained if
the TSOs had merged into a single entity, we will
assume in this paper that every TSO has the same
type of objective. This means that the cost function
Ck(u,x) can be expressed as the sum ofNbTSO

functionsCk
1 (u,x),Ck

2 (u,x),...,Ck
NbTSO(u,x) where

each functionCk
i (u,x) has the same nature (i.e.APLk

or RPSk).



2.3. Benchmark system

The benchmark power system used herewith is the
IEEE 118 bus system (presented in [21], for example),
which has been partitioned into three areas referred to
as1, 2, and3. This system is shown in Figure 1.

We model the time-varying load demand by a
discrete-time variation of the load demand, and con-
sider that the “real” time interval between two succes-
sive discrete instantsk − 1 and k is 30 minutes. At
each instantk, the active power demandPDj

(k) and
the corresponding reactive power demandQDj

(k) are
obtained by multiplying their respective initial values
by a load factorr(k). They can thus be expressed as
follows

PDj
(k) = PDj

(0) × r(k) (5)

QDj
(k) = QDj

(0) × r(k) (6)

where PDj
(0) and QDj

(0) represent the active and
reactive power demand as defined in [21], respectively.

For a convenient and realistic modeling of the load
demand variations in the IEEE 118 bus system, the
load factorr(k) is associated with real observations
on the French power system during the period January
1st-31st, 2008. More precisely, we have averaged the
French power demand over this period and computed
the ratiosr(k) between the demand at the different in-
stantsk and this average. We note that, in a real system,
r(k) could be accurately predicted at instantk−1 using
short-term load forecasting methods. We will assume
from now on that no prediction error occurs in this
case.

We assume that the active power injections homo-
thetically grow with the load factor. However, a de-
centralized slack bus is used in our simulations, which
may slightly change the generation pattern depending
on active power losses. All the control variables inu

are continuous, and represent the generators’ and non
discrete compensation devices’ voltage settings.

The period January 1st-26th 2008 will serve as a
“training period” for the adaptive control scheme, and
simulation results will only focus on the period January
27th-31st 2008. To consider fast changes in the system
configuration, a line outage is introduced for the branch
between bus19 and20 on January 28th at noon. The
line is reconnected on January 29th at noon.

3. Decentralized control scheme

As mentioned in [13], a simple approach to address
the problem of multi-TSO operation is to propose a
decentralized coordination scheme where every TSO

Region 2

Region 1

Region 3

area 1

area 2

area 3

Figure 1. IEEE 118 bus system with three TSOs.

maintains its prerogatives (objective function, control
actions, load forecasting, etc) and optimizes its own
control area with respect to a specific procedure. Such
a procedure is detailed hereafter, in the context of
reactive power dispatch.

3.1. Decentralized algorithm

The main features of the decentralized control
scheme proposed in [14], and adapted here to time-
varying systems, are sketched on Figure 2. The scheme
is iterative in nature, and every TSO concurrently
solves at timek − 1 the scheduling problem corre-
sponding to its own area at timek, and then, applies
its control actions on the system at timek.

The coordination relies on the fact that every TSO
is recommended to model the external system with a
set of parametric equality constraintshk

i (ui,xi, z
∗

i (k)),
which correspond to a simple external network model
(ENM) whose parameters are denoted byz∗i (k), and
to solve the optimization problem corresponding to its
control area in a greedy way. The scheme is obviously
simple since, among others, it requires no need for
communication between the different TSOs or for a
centralized authority to coordinate their actions.

While different types of ENM could be advocated,
we propose to focus in this paper on the equivalent
that performs best in time-invariant conditions. Hence,
we use the constant PQ equivalent, whose higher
performance is demonstrated in [14]. In such a context,
z∗i (k) is a 2 × NbIi component vector, whereNbIi
represents the number of interconnection lines between
TSOi and the other TSOs. It gathers all the values of
active power and reactive power parameters of the PQ
equivalents used byTSOi to represent the external
system.
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Figure 2. The role of TSOi in the decentralized optimization scheme.

At instant k − 1, every TSOi thus solves the
following optimization problem

min
ui,xi

Ck
i (ui,xi) (7)

under the inequality and equality constraints

fk
i (ui,xi) ≤ 0 (8)

gk
i (ui,xi) = 0 (9)

hk
i (ui,xi, z

∗

i (k)) = 0 (10)

The solutionsu∗

1(k), u∗

2(k),..., u
∗

NbTSO(k) are ap-
pended ontou∗(k), which is applied to the intercon-
nected system at instantk.

It may happen that the actionsu∗

1(k), u∗

2(k),...,
u∗

NbTSO(k) correspond to a state that does not satisfy1

constraints (2) and (3). Usually, as shown in [14],
the constraints, if violated, are only slightly “passed
over,” and, in practice, some dedicated controllers may
accordingly change the operation conditions of the
system to make sure that the constraints are satisfied.
In our simulation environment, we will consider that
such controllers exist, and that their combined action
is equivalent to choosing, instead ofu∗(k), a vector of
control variablesum(k) solution of

min
u,x

||u∗(k) − u|| (11)

under Inequality (2) and Equality (3). Active power and
reactive power flows at each interconnection, repre-
sented byzm

i (k), are then measured by each TSO, and
the history of measurements at the interconnections is
updated.

We will suppose in this paper that every TSO pro-
ceeds fairly, according to the recommended procedure,
and uses the same type of equivalent and procedure to
compute its parametersz∗i (k).

1. This may be checked in a simulation environment by running
a load flow.

3.2. Adaptive parameter fitting

As two key elements of the decentralized control
scheme, there are the equivalents used by every TSO to
represent its neighboring areas and the procedure to fit
the parameters of those equivalents ’at best’ so that the
final allocation leads to nearly optimal performance.

As represented in Figure 2, several types of in-
puts may be considered in the design of parameter
tracking procedure. Those are, for example, the past
observations of the power system, load predictions,
and past values of the equivalents’ parameters. In this
paper, for computing the parameters of a PQ equivalent
related to a particular interconnection, we will only
consider as input the past measurements of active and
reactive power at this interconnection. This strategy
is also used in [14]. The parameter tracking issue is
tackled by using three different least squares-based
fitting approaches, which are detailed hereafter.

3.2.1. Exponential recursive least squares ap-
proach. The exponential recursive least squares
(ERLS) strategy computesz∗i (k) by solving the fol-
lowing miminization problem

min
z

k−1∑

j=0

β1+j−k × ||zm(j) − z||
2 (12)

where β is a memory factor such thatβ ∈ [0, 1],
and zm

i (j) the parameters’ on-site measurement at
instantj. As the choice of the memory factorβ affects
the value of z∗i (k), this choice may be subject to
some tuning. This approach was used in [14] to fit
the parameters of the equivalents, and was shown to
be successful for time-invariant power system models.



3.2.2. Environment-dependent exponential recur-
sive least squares approach.While the ERLS ap-
proach emphasizes the importance of recent mea-
surements, those measurements may correspond to
a power system state that is particularly different
from the scheduled one. A solution could be to use
an environment-dependent exponential recursive least
squares approach (ED-ERLS), where the memory fac-
tor γ(k, j) would weight the measurements at instantj

according to the similarity between the power system
state at timej and the one scheduled for timek. For
the sake of simplicity, we consider in this paper that
the state at instantj is similar to the state at instantk
if the associated load factorr(j) is close tor(k).

The termγ(k, j) can thus be typically written as
follows

γ(k, j) = Nσ
r(k)(r(j)) (13)

whereNσ
r(k)(·) is a Gaussian function with meanr(k)

and varianceσ.
In this context,z∗i (k) is the solution of the following

problem

min
z

k−1∑

j=0

[γ(k, j)]1+j−k × ||zm(j) − z||
2 (14)

3.2.3. Adaptive forgetting factor approach.The pre-
vious approaches do not allow a fast tracking of spe-
cific changes in the system configuration (e.g. change
in the system topology), which could significantly
affect the steady-state values of the parameters at the
interconnections. Therefore, we propose an adaptive
forgetting factor (AFF) approach, which is introduced
in [22] for tracking non-linear systems in both slow
and fast time-varying environments. The rationale of
this method is to use, as weighting factor, the product
of two termsψ(k) × γ(k, j), whereγ(k, j) is defined
by Eqn (13), and whereψ(k) ∈]0, 1[ is close to1,
when there is no fast change in the system between
instantsk − 1 andk, and close to0 otherwise.

More specifically, ψ(k) depends on the predic-
tion error observed at timek − 1, ǫi(k − 1) =
||zm

i (k − 1) − z∗i (k − 1)||, in the following way

ψ(k) = exp(−τ × ǫi(k − 1)) (15)

whereτ is a forgetting factor.
Therefore,z∗i (k) is the solution of the following

problem

min
z

k−1∑

j=0

[ψ(k) × γ(k, j)]1+j−k × ||zm(j) − z||
2 (16)

4. Simulation results

The adaptive parameter tracking procedures are eval-
uated on the IEEE 118 bus system with three TSOs
introduced in Section 2.3. Since a “training period”
is necessary to initialize the history of measurements
and control variables, only results corresponding to the
period January 27th-31st, 2008 are presented.

4.1. Evaluation index

The decentralized optimization scheme is said to
perform well, if the control settingum(k) that is
applied at every instantk is close to the optimal control
settingsu∗(k) that would be computed if all TSOs
had merged into a single entity. In this paper, the
distance betweenum(k) and u∗(k) is computed as
the difference betweenC(um(k)) andC(u∗(k)). More
specifically, the suboptimality measure at instantk is
assessed as follows

SO(k) =
C(um(k)) − C(u∗(k))

mean
k

C(u∗(k))
(17)

Although it is informative to study the evolution of
SO(k) with respect tok, we propose, for a convenient
analysis of the performance of the control scheme, to
focus on the average suboptimality measureASO over
the period January 27th-31st, 2008.

The ASO obtained with the different parameter
fitting techniques will be compared with the average
suboptimality measure overk that would be obtained
if the control scheme proposed in [14] were to iterate
an infinite number of times for every operating state
corresponding to instantk. When minimizing active
power losses, this average suboptimality is equal to
0.27%, and it amounts9.27% for the minimization of
reactive power support.

4.2. Performance with ERLS-algorithm

Figure 3 depicts the average suboptimality measure
obtained with an ERLS-algorithm when minimizing
active power losses. One can observe that the memory
factor β has a small influence on theASO when
the objective function is the minimization of active
power losses. In this case, the performance of the
decentralized control scheme is particularly close to
the one that would be obtained by iterating the scheme
an infinite number of times for every instantk. In
particular, the average suboptimality measure amounts
0.29% with β = 0.1.

As the average suboptimality measure is much
higher with the other objective function under con-
sideration, the remainder of this section will mainly
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Figure 3. Average suboptimality index as a function
of β for the minimization of active power losses
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through the decentralized control scheme with an
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of σ and τ for the minimization of reactive power
support through the decentralized control scheme
with an AFF fitting algorithm.

focus on the minimization of reactive power support.
Figure 4 presents the average subotpimality index ob-
tained with an ERLS-algorithm and the minimization
of reactive power support. The lowestASO is reported
for β = 0.575. Even with such a memory factor, the
ASO is significantly higher than the one that would
be obtained by iterating the scheme an infinite number
of times for every instantk (11.49% vs 9.27%).

4.3. Performance with ED-ERLS-algorithm

The performance of the decentralized control
scheme with an ED-ERLS parameter fitting procedure,
when the objective is to minimize reactive power
support, is reported on Figure 5. The impact of the

similarity factor σ is important, and one can observe
that the best performance is reached withσ ≃ 0.04.
In this case, the average suboptimality index,ASO,
is around 9.43%, which represents a considerable
improvement over the performance observed with the
ERLS algorithm.

4.4. Performance with AFF-algorithm

The performance of the decentralized control
scheme with an AFF parameter fitting procedure when
the objective is to minimize reactive power support
is reported on Figure 6. This figure highlights the
impact of the similarity factorσ and of the deviation
factor τ on the performance of the control scheme.



More specifically, in this case, the best performance is
reached withσ = 0.04 andτ = 0.025. Those values of
σ andτ lead to an average suboptimality indexASO
equal to8.59%, which is even better than the average
suboptimality that would be obtained by iterating the
scheme an infinite number of times for every instant
k. However, in real systems,σ and τ would need
to be fitted in real-time, and the performance of the
decentralized control scheme would certainly be worse.

5. Conclusion

We have addressed in this paper the problem of de-
centralized optimization of multi-TSO power systems
where the load demand evolves according to a discrete-
time load curve. Further development of a previously
proposed decentralized control scheme (see [14]) has
been presented. In this scheme, the TSOs assume an
external network equivalent for their neighboring areas
at the interconnections, and optimize at every iteration
their control actions in a greedy way, i.e. without
taking into consideration the impact that their actions
may have on the other TSOs objectives. The range of
application of this scheme has been extended to time-
varying power systems by using parameter tracking
techniques to better fit the parameters of the external
network equivalents.

Although the control scheme does not require any
explicit coordination and communication between the
different TSOs, it achieves nearly optimal performance
in the context of the minimization of active power
losses, even with the original, and more simple, fitting
techniques of [14]. Therefore, in this context, the
need for sophisticated parameter tracking techniques
is limited. On the other hand, we have shown that
the simple adaptive parameter fitting technique of [14]
does not lead to sufficient performance, when all TSOs
aim to minimize reactive power support in their own
area. In this context, the newly introduced param-
eter tracking methods lead to decentralized control
schemes that achieve significantly better performance.
In particular, the decentralized control scheme with an
adaptive forgetting factor fitting procedure appears as
an intriguing potential alternative to schedule reactive
power dispatch in multi-TSO power systems. However,
we believe that, prior to applying this decentralized
control scheme to real systems, further investigation is
still needed.

First, we have observed that the performance of
the decentralized scheme depends on the tuning of its
parameters (e.g. the parametersσ and τ significantly
influence the performance of the AFF technique). Sys-
tematic methods should thus be designed to optimize

those parameters in real systems.
Second, up to now, the decentralized scheme has

only been evaluated on the IEEE 118 bus system. It
would be interesting to assess its performance within
the framework of a large-scale system, such as the
UCTE system for example.

Third, further research should also investigate the
performance of the scheme when the TSOs have in-
dividual objectives of different types (e.g. some TSOs
focus on active power losses while others on reactive
power support), as it usually occurs in real systems.
Such a study, among others, would require the defi-
nition of a quantitative index of the performance of
multi-party ressource allocations.
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