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Abstract. The optimization of the output of complex computer codes has often to be achieved
with a small budget of evaluations. Algorithms dedicated to such problems have been developed
and compared, such as the Expected Improvement algorithm (EI) or the Informational Approach
to Global Optimization (IAGO). However, the influence of noisy evaluation results on the
outcome of these comparisons has often been neglected, despite its frequent appearance in
industrial problems. In this paper, empirical convergence rates for EI and IAGO are compared
when an additive noise corrupts the result of an evaluation. IAGO appears more efficient than
EI and various modifications of EI designed to deal with noisy evaluations.
Keywords. Global optimization; computer simulations; kriging; Gaussian process; noisy
evaluations.

1. Context and objectives
Computer simulations are often used to optimize a product or a process, i.e., to find the best
feasible values for design parameters. These optimization problems have specific difficulties
due to the very nature of the function to be optimized (thereafter called objective function).
First, the derivatives of the objective function cannot generally be obtained, which prevents the
use of gradient-based optimization methods. Second, computer simulations are often very time
consuming (several hours for one run is common). The optimization must therefore be carried out
with a restricted budget of function evaluations, generally excluding stochastic search algorithms,
such as simulated annealing. Third, the objective functions encountered hardly ever turn out to
be convex, discouraging the use of local methods. Fourth, evaluations of the objective function
may be corrupted by noise. This noise might for instance stem from propagation of round-off
errors, bad conditioning or slow convergence of iterative schemes. Figure 1 illustrates a problem
of convergence in a Navier-Stokes simulation. Other examples can be found in [1] in the context
of aeronautics.

In this paper, we empirically compare two global optimization algorithms, namely the
Expected Improvement (EI) algorithm1 [2] and the Informational Approach to Global

1 In the literature, EI refers to a criterion that has to be optimized to choose the location of the next evaluation.
Here, to simplify the presentation, EI stands for the optimization algorithm based on this criterion.
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Figure 1: Simulation of airflow in an intake port of a Renault engine. This Navier-Stokes problem
is solved iteratively by a finite element method. Left: 3D representation of an intake port.
Right: value of the swirl, which quantifies the level of turbulence in the combustion chamber, as
a function of the number of iterations of the solving procedure. Due to limitation of computer
resources, the solver must be stopped before the stabilization of the solution.

Optimization (IAGO) strategy recently proposed in [3], when the evaluations are noisy. Both
algorithms are based on a stochastic model of the objective function and aim at using a few
evaluations of the objective function as efficiently as possible to infer the location of optimizers.
A comparison in the noise-free case is presented in [4], however, no comparison between the
two methods have yet been carried out when the evaluations are noisy. A brief introduction to
statistical approaches for global optimization in the noise-free case is presented in Section 2.
Section 3 describes the modifications necessary to deal with noisy evaluations. Empirical
convergence rates are provided in Section 4 for both algorithms.

2. Noise-free GP-based global optimization
Global optimization algorithms based on statistical models have recently received particular
attention [5–7]. These algorithms use a statistical model to build a prediction of the objective
function (also called surrogate model). In this section, it is assumed that there is no noise, i.e.,
that the evaluations results correspond exactly to the values of the objective function. Using a
prediction allows one to infer the most likely locations of the optimum given the past evaluations
and to choose the next evaluation points accordingly. In principle, the statistical model need not
be of any particular kind but the use of Gaussian random processes (GPs) turns out to be both
easy and very efficient in practice. In this section, we shall recall some basic facts about Kriging,
a well-known linear prediction method in the context of GPs, before very briefly presenting the
EI and IAGO algorithms.

2.1. Kriging basics

Let ξ be a GP indexed by a parameter space X ⊂ R
d with mean m(x), x ∈ X, and covariance

function k(x, y), (x, y) ∈ X
2. Assume that m(x) can be written as a linear parametric function

m(x) = bTp(x), where p(x) is the q-dimensional vector of all monomials of degree less than



or equal to l ∈ N, and b ∈ R
q is a vector of fixed but unknown coefficients. The theory of

(universal) kriging (see, e.g., [8]) is concerned with the construction of the best linear unbiased

predictor (BLUP) of ξ based on a finite set of pointwise observations of the process. For

x ∈ X, xn = (x1, . . . , xn) ∈ X
n, n ≥ 1, denote by ξ̂(x;xn) a linear predictor of ξ(x) based

on ξ(x1), . . . , ξ(xn), which can be written as

ξ̂(x;xn) = λ(x;xn)Tξ
n

, (1)

with ξ
n

= (ξ(x1), . . . , ξ(xn))T and λ(x;xn) a vector of weights λi(x;xn), i = 1, . . . , n. A

fundamental result of kriging theory is that the BLUP is the linear projection of ξ(x) onto
span{ξ(xi), i ≤ n} orthogonally to the space of functions P := {bTp(x); b ∈ R

q} and in such way
that the norm of the prediction error is minimum, which leads to express the vector of kriging
coefficients λ(x;xn) as the solution of the linear system of equations

(
k(xn, xn) PT

P 0

)(
λ(x;xn)
α(x;xn)

)
=

(
k(x, xn)

p(x)

)
, (2)

where k(xn, xn) is the n× n matrix of covariances k(xi, xj), P is a q × n matrix with entries xj
i

for j = 1, . . . , n and multi-indexes i = (i1, . . . , id) such that |i| := i1 + · · · + id ≤ l, α(x;xn) is a
vector of Lagrange coefficients, k(x, xn) is a vector of size n with entries k(x, xi) and p(x) is a
vector of size q with entries xi, i such that |i| ≤ l.

The variance of the kriging error, or kriging variance, is given by

σ̂2(x;xn) := var[ξ(x) − ξ̂(x;xn)] = k(x, x) − λ(x;xn)Tk(x, xn) − α(x;xn)Tp(x) . (3)

The knowledge of this variance makes it possible to derive confidence intervals for the predictions.

2.2. The Expected Improvement algorithm

The EI algorithm [2] is a well-known optimization method based on GP modeling [9]. The
objective function f : X → R (to be maximized, say) is modeled by a GP ξ. Let Mn =
maxi=1,...,n ξ(xi) be the maximum observed at step n. The EI strategy chooses an evaluation
point xn+1 that maximizes the quantity

E[Mn+1 | ξ
n
] = E

[
max

(
ξ(xn+1),Mn

)
| ξ

n

]
= Mn + E

[
max

(
ξ(xn+1) − Mn, 0

)
| ξ

n

]
(4)

(we have used the fact that E[Mn | ξ
n
] = Mn). The function ρn(x) := E

[
max

(
ξ(x)−Mn, 0

)
| ξ

n

]

is called the expected improvement at x. This quantity is always positive and represents the
average excursion of ξ(x) above the current maximum Mn. The expected improvement has a
closed-form expression, based on the kriging predictor:

ρn(x) =

{
σ̂(x;xn)Φ′

(
u

bσ(x;x
n
)

)
+ uΦ

(
u

bσ(x;x
n
)

)
if σ̂ > 0,

max (u, 0) if σ̂ = 0 ,
(5)

with u = ξ̂(x;xn) − Mn, and where Φ denotes the Gaussian cumulative density function.
Practical issues. A first practical issue is the choice of a covariance function for ξ.
Generally, this covariance is chosen inside a parametrized class of covariances, for instance
Matérn covariances [10] or polynomial covariances [11]. The parameters can be estimated using
restricted maximum likelihood estimation (REML) [10; 12; 13]. A second practical issue is the
maximization of ρn(x). Because evaluating ρn(x) is cheap, a very large number of evaluation
points can be chosen. Thus, a convenient solution is to restrict the search of the maximum on
a finite subset Xd of X and to compute ρn(x) extensively over Xd. This approach is acceptable
provided that Xd ensures a regular filling of X. This can for example be achieved by using a
regular lattice (in low dimension) or a Latin hypercube sampling (LHS) [14] (in high dimension).



2.3. The IAGO algorithm

The authors have recently introduced an Informational Approach to Global Optimization (IAGO)
based on GP modeling [3]. IAGO provides a choice of evaluation point that is one-step optimal
in terms of reduction of the uncertainty on the maximizer location. It is based on two main
ideas.

Let Xd be a finite subset of X, as above, and denote by X∗ ∈ Xd a global maximizer of ξ

on Xd. Note that X∗ is a random variable. The first idea of the IAGO strategy is to estimate
the probability distribution PX∗|ξ

n

: Xd → [0, 1] of X∗ conditioned on the observations ξ(xi),

i = 1, . . . , n. This estimation can be carried out using conditional simulations of ξ [3]. A
conditional simulation of ξ is simply the generation of a sample path of ξ conditioned on the
observations. Generating a conditional sample path is straightforward using the kriging predictor
(see [3; 8] for an insight into how conditional simulations are generated). In the noise-free setting,
conditional simulations interpolate the observations (see Figure 2).

The second idea is to consider the entropy of PX∗|ξ
n

as a measure of uncertainty on the

maximizer location and then to select a new observation point xn+1 ∈ Xd that will, in mean,
maximize the decrease of the entropy. Formally, the IAGO strategy is defined as

xn+1 = arg min
x∈Xd

E[H(X∗; ξ
n
, ξ(x)) | ξ

n
] , (6)

= arg min
x∈Xd

∫

z∈R

H(X∗; ξ
n
, ξ(x) = z)pξ(x)|ξ

n

(z)dz , (7)

where H(X∗; ξ
n
, ξ(x)) stands for the entropy of X∗ conditioned on the vector of observations ξ

n
and the candidate observation ξ(x), which can be written as

H(X∗; ξ
n
, ξ(x)) = −

∑

y∈Xd

PX∗|ξ
n
, ξ(x)(y) log PX∗|ξ

n
, ξ(x)(y) ,

and pξ(x)|ξ
n

denotes the density of the candidate observation conditioned on ξ
n
.

Practical issues regarding the IAGO strategy are discussed in [3].

3. Optimization with noisy evaluations
The literature on the optimization of computer models generally assumes that the evaluations are
noise-free. However this may be too-idealized a view, as illustrated by the example of Figure 1.
Evaluation errors usually stem from a trade-off between the precision of the numerical model
and computer resources. The problem to be addressed in this section is the optimization of an
objective function f : X → R from noisy evaluations

fobs
i = f(xi) + εi ,

where, for all i, εi ∈ R represents an additive evaluation error.

3.1. Kriging with noisy observations

Assume that the fobs
i s are sample values of the random variables ξobs

i = ξ(xi) + Ni, i = 1, . . . , n,
where the Nis are Gaussian random variables with zero-mean and known covariance matrix
KN . (If a parametrized covariance is chosen for the noise, its parameters can be estimated by
maximum likelihood together with those of the covariance of ξ). When, as generally assumed,
the noise is white, KN = σ2

NIn, where In is the n × n identity matrix.

The BLUP ξ̂(x;xn) of ξ(x) is the linear projection of ξ(x) onto span{ξobs
i , i ≤ n} orthogonally

to the space of functions P := {bTp(x); b ∈ R
q} and in such way that the norm of the prediction

error is minimum. Thus,
ξ̂(x;xn) = λ(x;xn)Tξobs

n
,



with ξobs
n

= (ξobs
1 , . . . , ξobs

n )T. The vector λ(x;xn) = (λ1(x;xn), . . . , λn(x;xn))T is obtained by
solving the system

(
k(xn, xn) + KN PT

P 0

)(
λ(x;xn)
α(x;xn)

)
=

(
k(x, xn)

p(x)

)
. (8)

As in Section 2.1, the variance of the prediction is given by (3).
In the next two sections, we discuss the specific changes to be made to the EI and IAGO

algorithms to deal with noisy evaluations.

3.2. EI with noisy evaluations

In principle, the EI algorithm can be used in the case of noisy evaluations without modification.
An iteration of the EI algorithm then writes

xn+1 = arg max
x∈Xd

ρn(x) ,

with ρn(x) again defined by (5), where Mn is replaced by maxi∈{1,...,n} ξobs
i , and where ξ̂(x;xn)

and σ̂(x;xn) are the kriging predictor and the kriging variance obtained from (8).
However, Mn = maxi∈{1,...,n} ξobs

i no longer converges to the maximum of ξ when the
number of observations grows (Mn actually tends to exceed the maximum of ξ). Other
choices for the estimator of the maximum could be considered. For instance, we could choose
Mn = maxx∈Xd

ξ̂(x;xn), i.e., we would consider the excursions (the improvement) above the
maximum of the predictor instead of the maximum of the noisy observations (this modification
will be referred to as EIm). Another approach, called Augmented Expected Improvement (AEI),
is proposed in [7]. The AEI is an empirical modification of the classical EI criterion, which was
shown to perform better on several test problems. To the best of our knowledge, there are no
other modifications of the EI criterion designed specifically to cope with noisy evaluations2. In
Section 4, they will be compared, with the results obtained with IAGO.

3.3. IAGO with noisy evaluations

As for the EI algorithm, the IAGO algorithm can be used without modification in the case of noisy
evaluations. Note that sample paths conditioned on noisy observations have to be generated,
which is again straightforward using the noisy version of kriging. Figure 2 illustrates conditional
simulation in the case of noisy evaluations.

4. Numerical experiments
We feel that the comparison of EI and IAGO should be based on a Monte-Carlo approach rather
than on a small set of classical test functions [4]. Indeed, the Monte-Carlo approach makes
it possible to estimate convergence rates for an entire class of functions, as opposed to a few
particular functions.

The proposed comparison methodology uses sample paths of a GP with a given covariance
function as objective functions, and observes the resulting mean convergence rates using EI,
EIm, AEI and IAGO in the case of noisy evaluations. We use the same covariance function
in the optimization algorithms, and therefore compare the algorithms on the class of functions
they are assumed to optimize. To do so, sample paths of a GP with a Matérn covariance are
generated over a regular lattice Xd ⊂ [0, 1]2. Using the parametrization in [10, p. 50], the Matérn
covariance can be written as

k(x, y) =
σ2

2ν−1Γ(ν)

(
2ν1/2h

ρ

)ν

Kν

(
2ν1/2h

ρ

)
, (9)

2 In [1], the authors propose to optimize with the EI algorithm an approximate version of the objective function
when the evaluations are noisy. We feel that it is not relevant to include this approach in our comparisons.
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Figure 2: Conditional simulations and estimates of the maximizer distribution. Top: irregularly
sampled evaluations of f(x) (squares) without noise (left) and with noise (right), kriging
prediction (bold solid line), 95% confidence intervals of the prediction (dotted lines), conditional
sample paths (thin solid line). Bottom : estimates of PX∗|ξ

n

without noise (left) and with noise

(right).

where h = ‖x − y‖, Kν is the modified Bessel function of the second kind, ν > 0 controls the
regularity (the differentiability) of the covariance at the origin, σ2 > 0 is a variance parameter,
and ρ > 0 is a scale parameter.

The regularity parameter ν has a significant influence on the convergence rates in the noise-
free case [4]. When ν increases, the sample paths get smoother and easier to optimize. To
account for a variety of possible behaviors for the objective function, we chose to work with
two regularities. A set of 500 smooth sample paths were generated using ν = 5, ρ = 0.3 and
σ = 1.5 as parameters for the Matérn covariance. The same number of irregular sample paths
were generated using ν = 1.5, ρ = 0.3 and σ = 1.5.

For each sample path, sixty optimization steps were performed using EI, EIm, AEI and IAGO.
To provide a reference, we also performed a uniform random search over Xd. Each evaluation was
corrupted by additive Gaussian white noise (with zero mean and standard deviation σN = 0.5).
We provide at each iteration step, and for each criterion, the mean distance (over all sample paths)
between the true global maximum maxx∈Xd

ξ(x) and the current estimate of the maximum given

by the kriging predictor maxi=1,...,n ξ̂(xi;xn). Note that this convergence measure corresponds
to the EIm criterion. We also compute the mean entropy (over all sample paths) of PX∗|ξ

n

to

account for the quality of the estimation of the maximizer.
For both comparison criteria, and both regularities, IAGO performs better, and this right

from the start (see Figures 3 and 4). In fact, the regularity of sample paths has little influence
on the convergence rate of one algorithm relatively to another in the case of noisy evaluations
(compare Figures 3 and 4), as opposed to the noise-free case [4]. For both regularities, EI



converges faster than random search in terms of the distance to the maximum but does not
bring any improvement in terms of entropy reduction. The two variants of EI do not bring any
major improvement over the original version. EIm is actually outperformed not only by EI, but
even by a simple random search, while the small gain offered by AEI is insufficient to better
IAGO.
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Figure 3: Convergence rates using EI, EIm, AEI, IAGO and random search, when convergence
is measured by entropy of PX∗|ξ

n

(top), and when convergence is measured by the distance

maxx∈Xd
ξ(x) − maxi=1,...,n ξ̂(xi;xn) (bottom). The sample paths used here are smoother than

those used for Figure 4 (the parameters for the Matérn covariance are ν = 5, ρ = 0.3 and
σ = 1.5). The noise standard deviation is σ2

N = 0.5

5. Conclusions
This paper has presented two statistical global optimization algorithms in the case of noisy
evaluations of the objective function. We conducted an empirical study of their performance and
found a clear superiority of IAGO over EI in the case of noisy evaluations.
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Figure 4: Convergence rates using EI, EIm, AEI, IAGO and random search, when convergence
is measured by entropy of PX∗|ξ

n

. The sample paths are simulated using the covariance (9) with

ν = 1.5, ρ = 0.3 and σ = 1.5. The standard deviation of noise is σ2
N = 0.5. We do not provide

the convergence rates in terms of the distance to the maximum, as they are similar to those of
Figure 3.
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