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Abstract — Bayesian optimization uses a probabilistic model of the objective function to guide the search
for the optimum. It is particularly interesting for the optimization of expensive-to-evaluate functions.
For the last decade, it has been increasingly used for industrial optimization problems and especially for
numerical design involving complex computer simulations.We feel that Bayesian optimization should
be considered with attention by anyone who has to identify the parameters of a model based on a very
limited number of model simulations because of model complexity. In this paper, we wish to describe,
as simply as possible, how Bayesian optimization can be usedin parameter identification and to present
a new application. We concentrate on two algorithms, namelyEGO (for Efficient Global Optimization)
and IAGO (for Informational Approach to Global Optimization), and describe how they can be used for
parameter identification when the budget for evaluating thecost function is severely limited. Some open
questions that must be addressed for theoretical and practical reasons are indicated.

Keywords: Gaussian processes, global optimization, Kriging

1. INTRODUCTION

The identification of a parametric model (or parameter estima-
tion) is usually carried out by minimizing some cost function
f (x) that quantifies the difference between experimental data
and results of model simulation, wherex ∈ X is the parameter
vector of the model. When this cannot be done analytically,
minimizing f by conventional iterative methods, possibly com-
bined with multistart to try to escape local minima, generally
requires many model simulations. We assume in this paper
that the number of model simulations (or function evaluations)
effectively achievable is severely limited by either time or cost.

It then becomes essential to look for optimization methods that
use the information available as efficiently as possible. Such
methods often use an approximation based on the results of past
evaluations as a cheap proxy for the function to be optimized.
We shall refer to this proxy as asurrogate approximationto
avoid confusion with the parametric model.

During the last decade, surrogate approximations relying on
a probabilistic model of the function to be optimized have
received particular attention [Huang, 2005, Jones, 2001, Ville-
monteix et al., 2008b]. The field of optimization techniques
that rely on such models is known asBayesian Optimization
[Zilinskas, 1992]. The interest of a Bayesian approach to the
optimization of expensive-to-evaluate functions has already
been discussed extensively (especially in Jones [2001]) and
confirmed by many applications to industrial design problems
(see, e.g., Huang and Allen [2005], Villemonteix et al. [2008a]).
The context of restricted evaluation budget indeed makes most
algorithms inefficient. Since the mere simulation of complex
knowledge-based parametric models often requires an heavy
computational effort and the usual iterative algorithms for non-
linear parameter estimation rely on a large number of such sim-

ulations, the potential of Bayesian optimization in parameter
estimation must be investigated.

Our first results in this context were presented in Villemonteix
et al. [2007], but practical details were reduced to a minimum,
and no real-life application was proposed. In this paper, we
wish to describe, as simply as possible, how Bayesian opti-
mization can be used in parameter identification and to present
an application. We shall concentrate on two algorithms, both
based on Gaussian processes and Kriging, namely the refer-
ence algorithm EGO (for Efficient Global Optimization [Jones
et al., 1998]) and a very recent alternative IAGO (for Informa-
tional Approach to Global Optimization [Villemonteix et al.,
2008a,b]).

In Section 2, we recall the principles behind EGO and IAGO.
We give some details about these algorithms in Section 3,
present an application in Section 4, and finally discuss some
open questions in Section 5.

2. GAUSSIAN PROCESSES FOR OPTIMIZATION

Bayesian optimization is based on two main ideas. The first
one is to model the cost functionf (·) by a random process
F(·), here assumed to be Gaussian with mean functionm(·)
and covariance functionk(·, ·) (in what follows, we shall simply
call them mean and covariance). This means in particular that
for Sn = {x1, ...,xn} ⊂ X a set of evaluation points, the vector
of evaluation resultsfn = [ f (x1), ..., f (xn)]

T is viewed as a
realization of the random vectorFn = [F(x1), ...,F(xn)]

T. The
second idea is to choose the evaluation points iteratively based
on what has been learned through the previous evaluation. If
n evaluations have been performed at the points inSn, the
(n+ 1)-th point is chosen by optimizing a sampling criterion
J(x,Sn, fn,F) that measures the interest of an additional eval-
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Figure 1. Naive approach to optimization based on a surrogate
approximation.(Top) Surrogate approximation̂f (bold
line) of f (dash-dotted line) based on available evaluation
results (squares).(Bottom)Surrogate approximation ob-
tained after four iterations of the algorithm that evaluates f
at a minimizer off̂ . A local minimizer has been identified,
but the global one is ignored.

uation atx, given the resultsfn of past evaluations and the
Gaussian modelF . To choose the(n+ 1)-th evaluation point,
one has to solve

xn+1 = argmax
x∈X

J(x,Sn, fn,F). (1)

In summary, Bayesian optimization replaces the optimization of
an expensive-to-evaluate function by a series of optimizations
of a cheap criterion. This criterion quantifies the interestof
any additional evaluation, and reflects our concern for a careful
spending of the evaluation budget.

In this section, we shall discuss how to build a surrogate approx-
imation using Kriging, before giving some details about two
possible sampling criteria build from this surrogate approxima-
tion. But first, we shall illustrate what we are trying to achieve.
Assume that some surrogate approximationf̂ (x) of f (x) for all
x ∈ X has been built. A simple sampling criterion would then
be the minimization off̂ (x). The optimization algorithm that
ensues might converge towards a local optimum (cf. Fig. 1)
and is completely dependent on the initial sampling scheme.
To make search more global, one should take into account the
uncertainty associated with the surrogate approximation,and
this is exactly what Kriging allows us to do.

2.1 An introduction to Kriging

Assume that the meanm of F is a finite linear combination
of known functions, which can be written asm(·) = βββTp(·),
with p a vector of known functions, andβββ a vector of fixed but
unknowncoefficients. The theory of Kriging then addresses the
construction, for allx ∈X, of thebest unbiased linear predictor
(BLUP) F̂(x) of F based on the random vectorFn. As a linear
predictor,F̂ can be written as

F̂(x) = λλλ(x)TFn. (2)
Using a Lagrangian formulation, one can show that, for the
predictor to be a BLUP, the vector of Kriging coefficientsλλλ(x)
must satisfy

(

K P
PT 0

)(

λλλ(x)
µµµ(x)

)

=

(

k(x)
p(x)

)

, (3)

with
K = (k(xi ,x j)) , (i, j) ∈ J1,nK2

the covariance matrix of the evaluation results,
k(x) = [k(x1,x), . . . ,k(xn,x)]T

the vector of covariances betweenF(x) andFn,

P =







p(x1)
T

...
p(xn)

T






.

the regression matrix, andµµµ(x) a vector of Lagrange coeffi-
cients.

Given the covariance ofF , the Kriging coefficients atx can thus
be computed without evaluatingf (x), along with the variance
of the prediction error

σ̂2(x) = E
[

F(x)− F̂(x)
]2

= k(x,x)−λλλ(x)Tk(x)−p(x)Tµµµ(x) ,
(4)

Usually, however, the covariance ofF is not known a priori. It
may then be chosen among a parametric family (for example,
the Matérn covariance class [Stein, 1999]), with the parameters
estimated by maximum likelihood (we shall discuss this point
in Section 5). Given the evaluation resultsfn, the prediction of
f (x) becomeŝf (x) = λλλ(x)Tfn which can be used as a surrogate
approximation for f , while σ̂2(x) gives us an explicit char-
acterisation of the uncertainty associated with this prediction.
The conditional distribution ofF(x) is indeed Gaussian with
mean f̂ (x) and variancêσ2(x). Fig. 2(a) presents an example
of prediction by Kriging. In what follows we describe two
sampling criteria that use Kriging to balance local and global
searches.

2.2 Maximizing the expected improvement

Sampling at a maximizer of theexpected improvement(EI) was
initially proposed by Mockus et al. [1978]. This strategy has
been the object of most publications in the field in the last few
years [Jones, 2001, Jones et al., 1998] and has been used for
industrial applications (see, e.g., Huang [2005]).

A trivial estimator of the minimum off after n evaluations
is Mn = minxi∈Sn F(xi). The EI strategy chooses as the next
evaluation pointxn+1, a minimizer ofE[min(Mn,F(x))|Fn],
the expected value of this estimatorafter the evaluation atx
and given the previous evaluation resultsFn = {Fn = fn}. This
amount to maximizing the expected improvement

EI(x) = E[max(Mn−F(x),0)|Fn], (5)

which represents the average excursion ofF(x) under the
current estimate of the minimum. The EI has a closed-form
expression [Jones, 2001], which involves both the Kriging
prediction f̂ and the variancêσ2 of its error

EI(x) = σ̂(x)Φ′(u)+uΦ(u), (6)

with u = (x − mn)/σ̂(x), mn = minxi∈Sn f (xi) and Φ(·) the
Gaussian cumulative density function.

As can be seen on Fig. 2(c), the EI criterion favors sampling
where the prediction is small, but also where the uncertainty on
this prediction is large.

2.3 Minimizing the conditional entropy of the global minimizers

Where EI concentrates on the globalminimum, we proposed in
Villemonteix et al. [2008b] to concentrate rather on the global
minimizers, which is of particular importance in a context
of parameter estimation. Instead of considering an estimator
of the minimum, we estimatethe probability distributionof
the global minimizers. LetXd be a finite subset ofX and



denote byX∗ a minimizer of F over Xd. The probability
distributionPX∗(·|Fn) = P(X∗ = ·|Fn) of the random vectorX∗

given all previous evaluation results can then be approximated
usingconditional simulationsof F [Villemonteix et al., 2008b].
Conditional simulations are simulations ofF that interpolate
all available evaluation results (see, e.g., [Chilès and Delfiner,
1999] for details on how to generate them).

Assuming thatXd is a suitable representation ofX (we shall
discuss this idea in Section 3.2),PX∗(·|Fn) represents what has
been learned (through evaluations) and assumed (through the
Gaussian model) about the minimizers. The main idea is then to
quantify the uncertainty left on the location of these minimizers
by the entropyof PX∗(·|Fn). The progress made in finding a
solution to the optimization problem is thus summarized by a
scalar.

We then suggest to sample where the largest uncertainty reduc-
tion is expected, by minimizing theconditional entropy of the
global minimizers(CEM)

Hn(x) =

Z

y∈R

pF(x)(y|Fn)H(X∗|Fn,F(x) = y)dy, (7)

with pF(x)(·|Fn) the conditional distribution of the evaluation
resultF(x) at x (Gaussian with mean and variance obtained by
Kriging) and

H(X∗|Fn,F(x) = y) = − ∑
u∈Xd

PX∗(u|Fn,F(x) = y)

log2(PX∗(u|Fn,F(x) = y)) (8)
the entropy ofPX∗(·|Fn,F(x) = y), the distribution ofX∗ given
Fn and{F(x) = y}. Practical details on the evaluation of (7)
and particularly the approximation ofpF(x)(·|Fn) are discussed
in Villemonteix et al. [2008b].On Fig. 2(c) and 2(d), we can
compare, on the same simple example, the EI and CEM sam-
pling criteria. Their difference appears particularly clearly near
the origin. EI samples atx= 0, clearly not the most informative
choice with half of its neighborhood outside search space.

3. USING IAGO AND EGO

In the previous section, we have described briefly the principles
of two sampling criteria for optimization. Both have been espe-
cially conceived for a careful spending of the evaluation budget.
In this section, we shall discuss how to insert these criteria
into optimization algorithms, and give some recommendations
regarding their practical use.

3.1 From the sampling criterion to the optimization algorithm

We have seen in Section 2 that the principle of Bayesian
optimization was iteratively to choose points at which the cost
function should be evaluated, by optimizing a sampling criteria
J. If we use, as here, a Gaussian model and Kriging to build the
surrogate approximation, the resulting optimization algorithm
looks like Algorithm 1. First,f has to be sampled on a small
initial design in order to initialize the Kriging predictor, and
possibly to allow an estimation of the covariance parameters.
Then, the Kriging predictor is computed, and an additional
point is selected to be the location of the next evaluation off ,
by optimizing the sampling criterionJ, based on this predictor.
The covariance function may then be updated (for example by
re-estimating its parameters), the model is re-computed, and the
process of choosing new points continues until some stopping
condition is met. The optimization algorithms based on EI
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Figure 2. (a) Example of prediction by Kriging (bold line)
based on two evaluation results (circles) of a supposedly
unknown function (dotted line). The dash-dotted lines
delimit 95% intervals for this prediction, and the thin
line is the conditional distribution of the minimum.(b)
Corresponding distribution of the global minimizers.(c)
Expected improvement corresponding to the prediction.
The next evaluation point would bex = 0 (the value of
EI at x = 0.8 is slightly lower).(d) Corresponding CEM,
which would lead to sample atx = 0.87.

Algorithm 1. Bayesian optimization based on Kriging and the sampling crite-
rion J (for example EI or CEM)

1: Evaluatef on an initial design ⊲ cf. Section
2: while the stopping condition is not satisfied,do ⊲ cf.

Section 3.3
3: Choose a covariance function ⊲ cf. Section 5
4: Compute the Kriging prediction based on all available

evaluation results
5: Evaluatef at argoptx∈X

J(x,Sn, fn,F).
6: end while

and CEM have been named respectively EGO and IAGO. The
advantages of IAGO over EGO will be discussed in Section 5.
However, it must be stated right away that the computational
complexity of IAGO is significantly higher than that of EGO
(cf. Villemonteix et al. [2008b]). The complexity of computing
EI is O(n3), while for CEM it is O(n2N), with N the size of
Xd. In practice, IAGO should only be used for simulation times
that are significantly larger than the time needed to minimize
the CEM sampling criterion (a few minutes on a personal
computer for problems such as the one described in Section 4).
Fig. 3 presents an application of IAGO to the sine function
already used for Fig. 2. After twelve iterations, the three global
minimizers have been identified as shown by the conditional
distribution (right-hand part of Fig. 3).

In the rest of Section 3, we shall discuss how to optimize EI and
CEM in practice, and the stopping condition. The covariance
choice will be discussed in Section 5, along with the initial
design as we wish to insist on the difficulties still left to deal
with in practice.
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Figure 3. Twelve iterations of IAGO on a sine function.(Left)
Kriging prediction (bold line) based on three initial eval-
uation results (squares) and on the twelve additional eval-
uations chosen by IAGO (circles). The dotted line is the
sine function to be optimized (supposedly unknown). The
thin horizontal line is the conditional distribution of the
global minimum after twelve iterations of IAGO, and its
support is almost reduced to the true global minimum.
(Right) Conditional distribution of the global minimizers
after twelve iterations of IAGO.

3.2 Optimization of the sampling criterion

Optimizing the sampling criterion is an important practical
difficulty of Bayesian optimization, as there may be many local
optima. However, one has to bear in mind that the evaluation
of the sampling criterion does not require any evaluation ofthe
cost functionf , and that there is no need for exact optimization
since the sampling criterion is only used to determine the next
evaluation point. A small error will have little influence onthe
final estimation of the minimum off and of the corresponding
minimizers.

At the beginning of the optimization procedure, we have very
little a priori on the potential location of the minimizers.
However, as the number of evaluations increases, it becomes
obvious that certain areas of search space do not have any
interest for an additional evaluation as they stand no chance
of containing a global minimizer. Therefore, we propose to
usePX∗(·|Fn) as an auxiliary distribution for the optimization
of the sampling criterion. For IAGO, this does not require
any additional computation as this auxiliary distributionis
already computed. The idea is to sample aset of candidate
pointsfrom PX∗(·|Fn) and to compute exhaustively the values
taken by the sampling criterion over this set. An evaluation
is then performed at the most interesting point;PX∗(·|Fn) is
recomputed and the set of candidate points re-sampled.

Note that, to computePX∗(·|Fn), a finite sub-setXd of X is
needed. This set should represent the support of the probability
density of the global minimizer ofF overX. If it stays fixed as
the number of evaluation increases, the support of this density
will dwindle, as well as the capacity ofXd to describe this
support. That is why we propose to re-sampleXd after each
new evaluation usingPX∗(·|Fn) (estimated for example with a
Gaussian kernel estimator [Chib and Greenberg, 1995]).

In summary, we can useXd as the set of candidate points and
re-sample it to improve the precision of the optimization ofthe
sampling criterion, and to maintain a good representation of
the support of the probability density of the minimizers ofF
overX. The resulting optimization algorithm is summarized by
Algorithm 2 (with either EI or CEM as the sampling criterion).

Algorithm 2. Bayesian optimization based on Kriging and the sampling crite-
rion J (for example EI or CEM), when the criterion is computed extensively
over a set of candidate points re-sampled after each new evaluation.

1: Evaluatef on an initial design
2: Choose an initial gridXd
3: while the stopping condition is not satisfied,do
4: Choose a covariance function
5: Compute the Kriging prediction based on all available

evaluation results
6: Estimate the conditional distribution ofX∗

7: Re-sampleXd given the new conditional distribution
8: EvaluateJ exhaustively overXd
9: Evaluatef at argoptx∈Xd

J(x,Sn, fn,F).
10: end while
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Figure 4. Optimization of a sine function with IAGO using (9)
as the stopping condition, withσstop = 0.1. Conventions
are as in Fig. 3.

3.3 Stopping condition

Usually a simple stopping condition is available, namely ex-
haustion of the evaluation budget. It is indeed very common
in practice to have exhausted the evaluation budget while still
having a very poor estimation of the minimizers. Other stopping
conditions have been proposed for either EGO [Jones et al.,
1998] or IAGO [Villemonteix et al., 2008b]. They may be used
when no budget has been specified beforehand. In this paper,
we propose a new stopping condition, which is easier to use in
practice. LetF∗ be the minimum ofF and let var(F∗|Fn) be the
variance ofF∗ given all past evaluation results. This quantity
represent the uncertainty left on the estimation of the minimum.
We then suggest to stop the algorithm when

√

var(F∗)|Fn < σstop, (9)
whereσstop is a positive threshold to be chosen by the user
to reflect the desired precision on the solution. The condi-
tional distribution ofF∗ (an example of which is presented on
Fig. 2(a)) can be approximated along with this variance using
conditional simulations. Fig. 4 shows the impact of the new
stopping condition on the example of Fig. 3.

4. AN INDUSTRIAL APPLICATION

The tuning of a parametric controller based on a performance
criterion quantifying deviation form some ideal response is
formally equivalent to parameter identification. We had to opti-
mize the 32 parameters of the control law of an electrical power
steering device (EPSD). This was based on data generated by a
Matlab/Simulink model of the device interacting with a model
of the car on a driving test case characteristic of the typical use
of the vehicle. The response of the car to this test case can be
visualised in the torque – steering wheel angle plane (cf. Fig. 5).
Its quality was quantified by a cost functionf reflecting the
distance between the response and the ideal one (as specified
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obtained by simulation for the control laws obtained after
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Figure 6. Application of EGO to the identification of the pa-
rameters of the control law of an EPSD. The bold line
represents the best evaluation result obtained by EGO.
The dash-dotted line represents the solution found by the
Nelder-Mead Simplex method after 300 iterations. The
points represent the results of the 300 evaluations on the
LHS Sample. Finally, the dotted line represents the result
of the evaluation at the minimizer of a polynomial model
build from the 300 evaluation results of the LHS sample.

by experts in the field). Given the simulation time (10 minutes)
for the test case and industrial needs, the minimization off had
to be carried out in less than 100 evaluations.

We dealt with this problem using EGO (preferred here to
IAGO because of the relatively short simulation time) and re-
estimated the parameters of a Matérn covariance after each
evaluation, using maximum likelihood estimation. We com-
pared our results with those of two other optimization ap-
proaches. The first was to use the Nelder-Mead Simplex, and
the second was exhaustive computation over a Latin Hyper
Square (LHS) sample [McKay et al., 1979] with 300 points.
EGO turned out to be largely superior to the other approaches
(see Fig. 6). It found in 45 evaluations of the cost function
a better solution than that obtained via LHS sampling in 300
evaluations. Using the Nelder-Mead simplex was clearly the
least efficient of the three approaches.

5. DISCUSSION

Choosing an algorithm.The interest of a given optimization
algorithm can be tested in many ways. If convergence rates can
be derived for a general class of functions, it becomes easy to
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Figure 7. Mean of the estimation errors||x̃∗n − x∗|| over 1000
sample paths as a function of the number of evaluations
of f , for IAGO (bold line) EGO (dotted line) and a
random search (with a uniform distribution, dash-dotted
line), when confronted to a irregular Gaussian process
indexed on[0,1]2. The standard deviation of the estimation
of the mean is always less than 0.02.

assert the interest of the algorithm compared to those of its
competitors for which convergence rates have been obtained.
When this is not the case, one may resort to large sets of test
functions (see, e.g., Floudas et al. [1999]). An opinion canthen
be forged out of the precision obtained in the location of the
minimum and minimizers on each test function, as well as the
number of evaluations required. The practical interest of the
latter approach can actually be questioned. If the comparison
is conducted seriously, no method should turn out to be better
than all others on every test case. A natural question is then,
how can we deduce from the tests conducted which method to
usea priori?

In the context of Bayesian optimization, we think that a more
satisfying approach can be used to compare algorithms. For
example, to compare EGO and IAGO, it seems natural to use
sample paths of the Gaussian model behind both algorithms. By
doing so, we can obtain empirical convergence results such as
the one presented on Fig. 7. To obtain this result, 1000 sample
paths of a Gaussian process (withX = [0,1]2) were generated
and IAGO and EGO were applied to each of them. After each
iteration and for each sample path,||x̃∗n − x∗|| was computed,
where x̃∗n is an estimator ofx∗, obtained as a value of the
parameter vector associated with the cost

m̃n = min(mn−1, f (argmax
x∈Xd

PX∗(x|Fn))).

The vector̃x∗n is thus the solution that would have been retained
in practice with a budget ofn evaluation.

On Fig. 7, IAGO appears to be significantly quicker to converge
than EGO. The drawbacks of the use of EGO are evidenced
on Fig. 8, where IAGO and EGO are applied on one of the
sample paths used to obtain the results of Fig. 7. It appears that
the EI stays stuck on a local minimum. This result has been
obtained on asingle Gaussian process. In Villemonteix et al.
[2008a], we noted that, if the test process is the same as the
model underlying IAGO and EGO, IAGO seemed regularly to
outperform EGO.

This approach could clearly be extended to any type of global
optimization method. We could, for example, create a set of test
random processes, carefully chosen to represent several types of
regularity or other characteristics.
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Choosing a covariance.The choice of a covariance is a central
question for Kriging prediction and, by way of consequence,
for Bayesian optimization. Generally, the covariance is chosen
in a parametrized class, and its parameters are estimated from
available data. The method used for this estimation dependson
the field (variogram fitting in geostatistics, cross-validation in
machine learning or maximum likelihood in statistics [Ville-
monteix et al., 2008b]), but in a context of small evaluation
budget, these methods may not be applicable.

[Jones et al., 1998] propose to initialize the EGO algorithm
by an LHS sample of size 10d, with d the dimension of
search spaceX. By doing so, the algorithm gets information
on the promising areas in search space, but most of all a first
estimation of the parameters can be carried out. This idea is
appealing ifd is small, but asd increases, the size of search
space grows exponentially, and it soon becomes very hard
to estimate the parameters of the covariance. Besides, if we
consider the available evaluation budget for the application in
Section 4, the size of the initial sample would have exceeded
the total evaluation budget.

It finally appears that classical approaches for tuning the co-
variance do not apply in our context1 . Now, EGO or IAGO
may perform very poorly if the covariance is inadequate (see,
e.g., Jones [2001] for examples). Some preliminary results,
not presented here, indicate however that when choosing the
covariance inside the Matérn covariance class, it is possible to
ensure a satisfactory behavior of IAGO or EGO by limiting
search space for the covariance parameters. There even seems
to be fixed covariances that ensure a satisfactory behavior of
these algorithms over a large class of functions.

For the example of Section 4, we estimated the covariance
parameters using maximum likelihood over a very restricted
search space. In future work, we feel that a Bayesian approach
would be best suited here to guide the estimation of the param-
eters of the covariance.

1 Except when evaluations results are available from a problem close to the
one considered. In such a case the parameters can be estimated directly.

6. CONCLUSIONS

The main goal of this paper was to present EGO and IAGO,
two Bayesian optimisation algorithms dedicated to problems
with very restricted simulation budgets to the parameter iden-
tification community. We described the principles shared by
the two algorithms and discussed their use in practice. The
interest of Bayesian optimization for parameter identification
was evidenced by an industrial application.

Comparison using the Gaussian process model behind EGO
and IAGO indicates a clear superiority for IAGO. However,
its computational complexity restricts its potential applications
to the optimization of functions that require a large amountof
computer time to be evaluated.
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