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Abstract — Bayesian optimization uses a probabilistic nhotine objective function to guide the search
for the optimum. It is particularly interesting for the apization of expensive-to-evaluate functions.
For the last decade, it has been increasingly used for indusptimization problems and especially for
numerical design involving complex computer simulatione. feel that Bayesian optimization should
be considered with attention by anyone who has to identéyptarameters of a model based on a very
limited number of model simulations because of model cowrifyleln this paper, we wish to describe,
as simply as possible, how Bayesian optimization can be ingearameter identification and to present
a new application. We concentrate on two algorithms, nafB&® (for Efficient Global Optimization)
and IAGO (for Informational Approach to Global Optimizat)o and describe how they can be used for
parameter identification when the budget for evaluating:tist function is severely limited. Some open
guestions that must be addressed for theoretical and pahitasons are indicated.

Keywords: Gaussian processes, global optimization, Kggi

1. INTRODUCTION ulations, the potential of Bayesian optimization in partane
estimation must be investigated.

The identification of a parametric model (or parameter estim Our first results in this context were presented in Villenaiat
tion) is usually carried out by minimizing some cost funatio et al. [2007], but practical details were reduced to a mimmu
f(x) that quantifies the difference between experimental datmd no real-life application was proposed. In this paper, we
and results of model simulation, whexes X is the parameter wish to describe, as simply as possible, how Bayesian opti-
vector of the model. When this cannot be done analyticallynization can be used in parameter identification and to ptese
minimizing f by conventional iterative methods, possibly coman application. We shall concentrate on two algorithmsh bot
bined with multistart to try to escape local minima, genigral based on Gaussian processes and Kriging, namely the refer-
requires many model simulations. We assume in this papence algorithm EGO (for Efficient Global Optimization [Jsne
that the number of model simulations (or function evalugjo et al., 1998]) and a very recent alternative IAGO (for Infarm
effectively achievable is severely limited by either tintecost.  tional Approach to Global Optimization [Villemonteix et. al

It then becomes essential to look for optimization methbods t 2008a,b]).

use the information available as efficiently as possibleehSu In Section 2, we recall the principles behind EGO and IAGO.
methods often use an approximation based on the resultsof pa/e give some details about these algorithms in Section 3,

evaluations as a cheap proxy for the function to be optimizegresent an application in Section 4, and finally discuss some
We shall refer to this proxy as surrogate approximationo  open questions in Section 5.
avoid confusion with the parametric model.

During the last decade, surrogate approximations relyimg o 2. GAUSSIAN PROCESSES FOR OPTIMIZATION

a probabilistic model of the function to be optimized have

received particular attention [Huang, 2005, Jones, 20@e-V Bayesian optimization is based on two main ideas. The first
monteix et al., 2008b]. The field of optimization techniquesne is to model the cost functiofi(-) by a random process
that rely on such models is known 8syesian Optimization F(-), here assumed to be Gaussian with mean funatifn
[zilinskas, 1992]. The interest of a Bayesian approach & thand covariance functiok(-, -) (in what follows, we shall simply
optimization of expensive-to-evaluate functions hasaalye call them mean and covariance). This means in particular tha
been discussed extensively (especially in Jones [2001) afor Sp = {x1,...,Xn} C X a set of evaluation points, the vector
confirmed by many applications to industrial design prolsenof evaluation results, = [f(x1),..., f(xs)]T is viewed as a
(see, e.g., Huang and Allen [2005], Villemonteix et al. [88]).  realization of the random vect&, = [F (X1),...,F (xn)]T. The
The context of restricted evaluation budget indeed make msecond idea is to choose the evaluation points iterativedgd
algorithms inefficient. Since the mere simulation of compleon what has been learned through the previous evaluation. If
knowledge-based parametric models often requires an heavyevaluations have been performed at the point§inthe
computational effort and the usual iterative algorithmsfon-  (n+ 1)-th point is chosen by optimizing a sampling criterion
linear parameter estimation rely on a large number of sunh si J(x, Sp, fn, F) that measures the interest of an additional eval-



) the vector of covariances betweEfx) andFp,
- p(x1)"
P= :
0 01 02 03 04 05 06 07 08 09 1 p(xn)T

the regression matrix, and(x) a vector of Lagrange coeffi-
cients.

Given the covariance &f, the Kriging coefficients at can thus
e be computed without evaluatinix), along with the variance
0 01 02 03 04 ())(.5 06 0.7 08 09 1 Of the prediction error
52 2 (512 T T
Figure 1. Naive approach to optimization based on a sureogal () =E [F (x) = F(x)]" = k(x,%) —A(x) "k(x) =p(x) “()815
approximation.(Top) Surrogate approximatiori (bold
line) of f (dash-dotted line) based on available evaluatio

Usually, however, the covariance Bfis not known a priori. It
N fhay then be chosen among a parametric family (for example,
results (squaresjBottom)Surrogate approximation ob- o "\atérn covariance class [Stein, 1999]), with the patarse

tained after four iterations of the algorithm that evalsdte - ogtimated by maximum likelihood (we shall discuss this poin

ata minimizer off . A local minimizer has been identified, i Section 5). Given the evaluation resufisthe prediction of

but the global one is ignored. f (x) becomed (x) = A(x) T, which can be used as a surrogate
uation atx, given the resultd, of past evaluations and the approximation forf, while 6%(x) gives us an explicit char-
Gaussian moddf. To choose thén + 1)-th evaluation point, acterisation of the uncertainty associated with this pmtésh.

one has to solve The conditional distribution oF (x) is indeed Gaussian with
Xnt+1 = argmax)(x, Sp, fn, F). (1) meanf(x) and variances?(x). Fig. 2(a) presents an example
XeX of prediction by Kriging. In what follows we describe two

In summary, Bayesian optimization replaces the optimizedf ~ sampling criteria that use Kriging to balance local and glob
an expensive-to-evaluate function by a series of optintnat searches.

of a cheap criterion. This criterion quantifies the interefst
any additional evaluation, and reflects our concern for afoar 5 5 Maximizing the expected improvement
spending of the evaluation budget.

In this section, we shall discuss how to build a surrogate@pp Sampling at a maximizer of thexpected improveme(il) was
imation using Kriging, before giving some details about twanitially proposed by Mockus et al. [1978]. This strategysha
possible sampling criteria build from this surrogate appr@- been the object of most publications in the field in the last fe
tion. But first, we shall illustrate what we are trying to aeré. ~ years [Jones, 2001, Jones et al., 1998] and has been used for
Assume that some surrogate approximati¢x) of f (x) forall ~ industrial applications (see, e.g., Huang [2005]).

x € X has been built. A simple sampling criterion would thery tjyia| estimator of the minimum off after n evaluations
be the minimization off (x). The optimization algorithm that s m, = miny.cs, F(x;). The El strategy chooses as the next
ensues might converge towards a local optimum (cf. Fig. Jvaluation pointx,;1, a minimizer of E[min(Mp,F (x))|%n],
and is completely dependent on the initial sampling schemge expected value of this estimatater the evaluation ak

To make search more global, one should take into account thed given the previous evaluation resuis= {F, = f,}. This
uncertainty associated with the surrogate approximaiad, amount to maximizing the expected improvement

this is exactly what Kriging allows us to do. EI(x) = E[maxMn — F(x),0)| %] (5)

2.1 Anintroduction to Kriging which represents the average excursionkgk) under the
current estimate of the minimum. The El has a closed-form

Assume that the meam of F is a finite linear combination expression [Jones, 2001], which involves both the Kriging

of Enown functic;nks, Whi(]ih can be errkiitten ay-) :fprpég’ predictionf and the variancé? of its error

with p a vector of known functions, arfdla vector of fixed but _ - /

unknowrcoefficients. The theory of Kriging then addresses the . EI(X) =0()e (u)_+ ue(u), (6)

construction, for alk € X, of thebest unbiased linear predictor with U = (X — M)/G(X), M = Minges, f(Xi) and ®(-) the

(BLUP) F(x) of F based on the random vect®. As a linear Gaussian cumulative density function.

predictor,F can be written as As can be seen on Fig. 2(c), the El criterion favors sampling
ﬁ(x) — }\(X)TFn. (2) where the prediction is small, but also where the uncestaint

Using a Lagrangian formulation, one can show that, for thiis prediction is large.

predictor to be a BLUP, the vector of Kriging coefficiets) o N o
must satisfy 2.3 Minimizing the conditional entropy of the global mirieis

KP k " .
( pT 0) (:‘lgg ) = ( p&% ) , (3)  Where El concentrates on the glola@himum we proposed in
Villemonteix et al. [2008b] to concentrate rather on thebglo

with . 5 minimizers which is of particular importance in a context
_ K = (k(xi,xj)), (i,]) € [1,n] of parameter estimation. Instead of considering an estimat
the covariance matrix of the evaluation results, of the minimum, we estimatéhe probability distributionof

k(x) = [K(X1,X), ..., K(xn,x)]" the global minimizers. LeXy be a finite subset oK and



denote byX* a minimizer of F over Xy. The probability
distributionPx- (-| Fn) = P(X* = -|5) of the random vectaX*
given all previous evaluation results can then be approtdcha
usingconditional simulationsf F [Villemonteix et al., 2008b].
Conditional simulations are simulations Bf that interpolate -
all available evaluation results (see, e.g., [Chiles anffiire,
1999] for details on how to generate them).

N B O kN W
i

-3 0.1
Assuming thatXy is a suitable representation &f (we shall L e T o E A AT ]
discuss this idea in Section 3.Bx- (| n) represents what has TN T T CoeTm T T e
been learned (through evaluations) and assumed (throegh th @) (b)

Gaussian model) about the minimizers. The mainideais then?
guantify the uncertainty left on the location of these miiziens [':3
by the entropyof Px«(-|7n). The progress made in finding a

6.9
6.8]

solution to the optimization problem is thus summarized by ** 6.7
scalar. 202 266
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We then suggest to sample where the largest uncertaintg+ed os

tion is expected, by minimizing theonditional entropy of the
global minimizer{CEM)
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Hn(X) = /yeR pF(X)(y|—7’—n)H(X*|fnaF(X) :y)dya (7) (©) (d)

with Pe (| 7n) the co_ndmo_nal distribution O.f the evalgatlon Figure 2.(a) Example of prediction by Kriging (bold line)
resultF (x) atx (Gaussian with mean and variance obtained by based on two evaluation results (circles) of a supposedly

Kriging) and unknown function (dotted line). The dash-dotted lines
H(X*|Fn,F(X) =Yy) = — P (U] Fn, F (X) =) delimit 95% intervals for this prediction, and the thin
ucXyg line is the conditional distribution of the minimun(b)
log, (Px+ (U] Fn, F(X) =Y))  (8) Corresponding distribution of the global minimize(s)

the entropy oPx: (| 7, F (X) = y), the distribution ofX* given Expected improvement corresponding to the prediction.

Fn and {F(x) = y}. Practical details on the evaluation of (7) The next evaluation point would be= 0 (the value of
and particularly the approximation @E (-| #n) are discussed El atx = 0.8 is slightly lower).(d) Corresponding CEM,
in Villemonteix et al. [2008b].0n Fig. 2(c) and 2(d), we can  Which would lead to sample at= 0.87.

compare, on the same simple example, the El and CEM sam-

pling criteria. Their difference appears particularlyaslg near  Aigorithm 1. Bayesian optimization based on Kriging and the sampling-cri
the origin. El samples at= 0, clearly not the most informative rion J (for example El or CEM)

choice with half of its neighborhood outside search space. ~ 1: Evaluatef on an initial design > cf. Section
2: while the stopping condition is not satisfieth > cf.
3. USING IAGO AND EGO Section 3.3
3 Choose a covariance function > cf. Section 5
In the previous section, we have described briefly the pplesi 4 Compute the Kriging prediction based on all available
of two sampling criteria for optimization. Both have beepe&s evaluation results

cially conceived for a careful spending of the evaluatiodget. 5 Evaluatef at argopfcy J(x,Sn, fn,F).
In this section, we shall discuss how to insert these cateri 6: end while

Irr(]ag)a(r)giwgItﬁietilfgrzg?crglhgz’ and give some recommendatio and CEM have been named respectively EGO and IAGO. The
' advantages of IAGO over EGO will be discussed in Section 5.

However, it must be stated right away that the computational

complexity of IAGO is significantly higher than that of EGO

cf. Villemonteix et al. [2008b]). The complexity of com g

I is O(n®), while for CEM it is O(n®N), with N the size of

3.1 From the sampling criterion to the optimization alghbrit

We have seen in Section 2 that the principle of Bayesi

optim_ization was iteratively to choos_e pqints at Whic_h tb_e_tc Xg. In practice, IAGO should only be used for simulation times
function should be evaluated, by optimizing a samplingedat v, significantly larger than the time needed to mingmiz

J. If we use, as he_re, anussian mo_del an(_j K_rigi_ng o build ﬂ{ﬁe CEM sampling criterion (a few minutes on a personal
lsurlr(oglfakte zf)prqt)ﬂmalt'og.' t?? Lesuitmtg); optlmlzlagon dtpmn IIcomputer for problems such as the one described in Section 4)
00Ks fike Algorithm ~. FIrSLT has 10 be sampled on a sma Fig. 3 presents an application of IAGO to the sine function

|n|t|aI_ design in order to |n|t|_aI|ze the Kriging predictoand already used for Fig. 2. After twelve iterations, the thrisbgl
possibly to a'.'OW an esfimation of the covariance paranseter inimizers have been identified as shown by the conditional
Then, the Kriging predictor is computed, and an addltlonag]

point is selected to be the location of the next evaluatiofi, of istribution (right-hand part of Fig. 3).

by optimizing the sampling criteriody based on this predictor. In the rest of Section 3, we shall discuss how to optimize EI an
The covariance function may then be updated (for example IGEM in practice, and the stopping condition. The covariance
re-estimating its parameters), the model is re-computetiifee  choice will be discussed in Section 5, along with the initial
process of choosing new points continues until some stgppidesign as we wish to insist on the difficulties still left toatle
condition is met. The optimization algorithms based on Elith in practice.



rion J (for example EI or CEM), when the criterion is computed estesly
over a set of candidate points re-sampled after each newagiai.
1: Evaluatef on an initial design
2: Choose an initial gridy
3: while the stopping condition is not satisfiedh
-3 0.1 4: Choose a covariance function
740 0.1 02 030405 06070809 1 GO 0102 030405 06070809 1 5 COmDUte the K”glng prediCtion based on a” a.Va”able
X X evaluation results

6: Estimate the conditional distribution f*

3
2 06 Algorithm 2. Bayesian optimization based on Kriging and the sampling-cri
1
0

Figure 3. Twelve iterations of IAGO on a sine functigheft) X o T
Kriging prediction (bold line) based on three initial eval- r Re-sampleXy given the new conditional distribution
uation results (squares) and on the twelve additional eval® Evaluate] exhaustively oveKq
uations chosen by IAGO (circles). The dotted line is the o Eva!uatef atarg opfex, J(X,Sn, fn, F).
sine function to be optimized (supposedly unknown). The? end while
thin horizontal line is the conditional distribution of the 3
global minimum after twelve iterations of IAGO, and its 2
support is almost reduced to the true global minimun 1,
(Right) Conditional distribution of the global minimizers o/
after twelve iterations of IAGO. T

0.7,

0.5

B (| %)

3.2 Optimization of the sampling criterion % 0102 0304 05 060708 09 1 % 05 1
Figure 4. Optimization of a sine function with IAGO using (9)
as the stopping condition, witbis;op = 0.1. Conventions

are as in Fig. 3.

Optimizing the sampling criterion is an important practica
difficulty of Bayesian optimization, as there may be manyloc
optima. However, one has to bear in mind that the evaluation
of the sampling criterion does not require any evaluatiothef 3.3 Stopping condition
cost functionf, and that there is no need for exact optimization
since the sampling criterion is only used to determine the: neUsually a simple stopping condition is available, namely ex
evaluation point. A small error will have little influence tmee  haustion of the evaluation budget. It is indeed very common
final estimation of the minimum of and of the corresponding in practice to have exhausted the evaluation budget while st
minimizers. having a very poor estimation of the minimizers. Other stogp
- L conditions have been proposed for either EGO [Jones et al.,
At the beginning of the optimization procedure, we have Veryggg] or IAGO [Villemonteix et al., 2008b]. They may be used

little a priori ﬁn the é)oterfmal Ilocqtlon of the m'n.'mt')zers'when no budget has been specified beforehand. In this paper,
However, as the number of evaluations increases, it becomgs ,onose a new stopping condition, which is easier to use in

obvious that certain areas of search space do not have ag}
n

. ¢ dditional uadi h d s Actice. LeF* be the minimum of and let vafF*| ,) be the
interest for an additional evaluation as they stand N0 &ang,riance ofF* given all past evaluation results. This quantity
of containing a global minimizer. Therefore, we propose t

Pepresent the uncertainty left on the estimation of the mimn.
usePx«(-|Fn) as an auxiliary distribution for the optimization P Y

: ot . . We then suggest to stop the algorithm when
of the sampling criterion. For IAGO, this does not require 99 P 9

any additional computation as this auxiliary distributien v/ var(F*)[n < Ostop, 9)
already computed. The idea is to sampleed of candidate whereosp is a positive threshold to be chosen by the user
pointsfrom Px- (| #n) and to compute exhaustively the valuego reflect the desired precision on the solution. The condi-
taken by the sampling criterion over this set. An evaluatiotional distribution ofF* (an example of which is presented on
is then performed at the most interesting pol; (-| 1) is  Fig. 2(a)) can be approximated along with this variancegisin
recomputed and the set of candidate points re-sampled. conditional simulations. Fig. 4 shows the impact of the new

Note that, to comput®&-(-|7n), a finite sub-seXy of X is stopping condition on the example of Fig. 3.
needed. This set should represent the support of the pidpabi
density of the global minimizer &f overX. If it stays fixed as
the number of evaluation increases, the support of thisiggens
will dwindle, as well as the capacity dfy to describe this
support. That is why we propose to re-samglg after each
new evaluation usingx-(-|7n) (estimated for example with a
Gaussian kernel estimator [Chib and Greenberg, 1995]).

4. AN INDUSTRIAL APPLICATION

The tuning of a parametric controller based on a performance
criterion quantifying deviation form some ideal response i
formally equivalent to parameter identification. We hadpi-o

mize the 32 parameters of the control law of an electricalgrow
steering device (EPSD). This was based on data generated by a
In summary, we can usgqy as the set of candidate points andViatlab/Simulink model of the device interacting with a mbde
re-sample it to improve the precision of the optimizatiotef  of the car on a driving test case characteristic of the typisa
sampling criterion, and to maintain a good representation of the vehicle. The response of the car to this test case can be
the support of the probability density of the minimizersFof visualised in the torque — steering wheel angle plane (gf.F)i
overX. The resulting optimization algorithm is summarized byits quality was quantified by a cost functidnreflecting the
Algorithm 2 (with either EI or CEM as the sampling criterion) distance between the response and the ideal one (as specified
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Figure 5. Response of an EPSD to a driving test case in the Number of evaluationss

torque — steering wheel angle plane. The dotted line is o .

obtained by simulation for the control laws obtained aftefigure 7. Mean of the estimation errdi&, — x*|| over 1000
optimization of 32 parameters using EGO. The continuous ~ Sa@mple paths as a function of the number of evaluations
line represents the ideal response according to experts in Of f, for IAGO (bold line) EGO (dotted line) and a

the field. random search (with a uniform distribution, dash-dotted
line), when confronted to a irregular Gaussian process
80 ‘ ‘ ‘ ‘ ‘ ‘ indexed or{0, 1]%. The standard deviation of the estimation
70f . : ] of the mean is always less than 0.02.

60r
assert the interest of the algorithm compared to those of its
. . competitors for which convergence rates have been obtained
T T T ] When this is not the case, one may resort to large sets of test
S T ] functions (see, e.g., Floudas et al. [1999]). An opinion them
Lol SO be forged out of the precision obtained in the location of the
minimum and minimizers on each test function, as well as the
number of evaluations required. The practical interesthef t
T T !atter approach can actually be questioned. If the commaris
Number of evaluations of the cost function is conducted seriously, no method should turn out to be bette
than all others on every test case. A natural question is, then

Figure 6. Application of EGO to the identification of the pa-how can we deduce from the tests conducted which method to
rameters of the control law of an EPSD. The bold ling;sea priori?

represents the best evaluation result obtained by EGO. ) L )
The dash-dotted line represents the solution found by tHB the context of Bayesian optimization, we think that a more

Nelder-Mead Simplex method after 300 iterations. Théatisfying approach can be used to compare algorithms. For
points represent the results of the 300 evaluations on t§&ample, to compare EGO and IAGO, it seems natural to use
LHS Sample. Finally, the dotted line represents the resu#@mple paths of the Gaussian model behind both algorithyns. B

of the evaluation at the minimizer of a polynomial modef0ing so, we can obtain empirical convergence results ssich a

build from the 300 evaluation results of the LHS sample.the one presented on Fig. 7. To obtain this result, 1000 sampl
paths of a Gaussian process (with= [0, 1]%) were generated

by experts in the field). Given the simulation time (10 mirs)te and IAGO and EGO were applied to each of them. After each
for the test case and industrial needs, the minimizatiohteid  jteration and for each sample patlk;, — x*|| was computed,

to be carried out in less than 100 evaluations. where X} is an estimator of*, obtained as a value of the
Harameter vector associated with the cost

50r

208" :

0pN 0

We dealt with this problem using EGO (preferred here t
IAGO because of the relatively short simulation time) and re My = min(My_1, f(argmaxPx« (x| #n)))-

estimated the parameters of a Matérn covariance after each XeXq

evaluation, using maximum likelihood estimation. We comThe vectoi is thus the solution that would have been retained
pared our results with those of two other optimization apm practice with a budget af evaluation.

proaches. The first was to use the Nelder-Mead Simplex, and o )

the second was exhaustive computation over a Latin Hyp& Fig. 7, IAGO appears to be significantly quicker to coneerg
Square (LHS) sample [McKay et al., 1979] with 300 poimsthan_EGO. The drawbacks of the use of EGO are evidenced
EGO turned out to be largely superior to the other approach@8 Fig. 8, where IAGO and EGO are applied on one of the
(see Fig. 6). It found in 45 evaluations of the cost functio§@mple paths used to obtain the results of Fig. 7. It appkats t

a better solution than that obtained via LHS sampling in 3othe El stays stuck on a local minimum. This result has been
evaluations. Using the Nelder-Mead simplex was clearly th@btained on aingle Gaussian process. In Villemonteix et al.

least efficient of the three approaches. [2008a], we noted that, if the test process is the same as the
model underlying IAGO and EGO, IAGO seemed regularly to
5. DISCUSSION outperform EGO.

This approach could clearly be extended to any type of global
Choosing an algorithmThe interest of a given optimization optimization method. We could, for example, create a sedsif t
algorithm can be tested in many ways. If convergence rates ceandom processes, carefully chosen to represent sevpesl of
be derived for a general class of functions, it becomes easyriegularity or other characteristics.



6. CONCLUSIONS

The main goal of this paper was to present EGO and IAGO,
two Bayesian optimisation algorithms dedicated to prolslem
with very restricted simulation budgets to the parametenid
tification community. We described the principles shared by
the two algorithms and discussed their use in practice. The
interest of Bayesian optimization for parameter identifara
was evidenced by an industrial application.

X2

Comparison using the Gaussian process model behind EGO
and IAGO indicates a clear superiority for IAGO. However,
its computational complexity restricts its potential apgalions
to the optimization of functions that require a large amaafnt
Figure 8. Minimization of one of the conditional sampledhEat computer time to be evaluated.
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