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A sequential Bayesian algorithm to

estimate a probability of failure

Emmanuel Vazquez, Julien Bect

SUPELEC, Gif-sur-Yvette, France
(e-mail: firstname.lastname@supelec.fr)

Abstract: This paper deals with the problem of estimating the probability of failure of a
system, in the challenging case where only an expensive-to-simulate model is available. In
this context, the budget for simulations is usually severely limited and therefore classical
Monte Carlo methods ought to be avoided. We present a new strategy to address this problem,
in the framework of sequential Bayesian planning. The method uses kriging to compute an
approximation of the probability of failure, and selects the next simulation to be conducted
so as to reduce the mean square error of estimation. By way of illustration, we estimate the
probability of failure of a control strategy in the presence of uncertainty about the parameters
of the plant.

1. INTRODUCTION

Uncertainty on the parameters of a system have to be
taken into account during its design to insure a desired
level of reliability. In particular, it is important to estimate
the probability of the system to work under abnormal or
dangerous operating conditions due to unknown random
dispersions of its parameters. The probability of failure
of a system is usually expressed as the probability of
the excursion set of a function of performance above a
fixed threshold. More precisely, let f be a measurable real
function defined over a probability space (X,X , PX) and
let u ∈ R be a threshold. The problem to be considered in
this paper is the estimation of the volume under PX of the
excursion set

A(f) := {x ∈ X : f(x) ≥ u} (1)

of the function f above the level u. In the context of
robust design, the volume α(f) := PX(A(f)) can be viewed
as the probability of failure of a system. Then, X plays
the role of an input or factor space, the probability PX

models the uncertainty on the inputs or the factors, and
f is some function of performance of the outputs of the
system, whose evaluation may involve complex and time-
consuming simulations or fabrications of prototypes. When
f is expensive-to-evaluate, the estimation of α(f) must be
carried out with a restricted number of evaluations of f ,
generally excluding the estimation of the probability of
excursion by a Monte Carlo approach. Indeed, consider
the empirical estimator

αm(f) :=
1

m

m∑

i=1

1{f(Xi)≥u} , (2)

where the Xis are independent random variables with
distribution PX. It is trivial that (2) converges to α(f)
almost surely when m increases, and that it is an unbiased

estimator of α(f), i.e. E[αm(f)] = α(f). Its mean square
error is

E
[
(αm(f) − α(f))2

]
=

1

m
α(f)

(
1 − α(f)

)
.

If the probability of failure α(f) is small, then the stan-
dard deviation of αm(f) is approximately (α(f)/m)1/2.
To achieve a given standard deviation δα(f) thus requires
approximately 1/(δ2α(f)) evaluations, which can be pro-
hibitively high if δ is small. Of course, many importance
sampling methods have been proposed to improve over
the basic Monte Carlo convergence rate. For instance,
methods based on cross-entropy (Rubinstein, 1999), or
subset sampling (Au and Beck, 2001). They will not be
considered here for the sake of brevity and because the
required number of function evaluations is still very high.

Methods to estimate a probability of failure that do not
require a large number of evaluations of f are usually
based on an approximation of the frontier ∂A(f) of A(f)
by a simple geometrical shape. Compared to Monte Carlo
methods, this class of methods does achieve a large re-
duction in the required number of system evaluations,
but the accuracy of the estimator depends on the actual
shape of ∂A(f) and its resemblance to the approximating
shape. The popular first-order reliability method (FORM)
uses an hyperplane as an approximation of ∂A(f) and the
second-order reliability method (SORM) uses a paraboloid
(see, e.g., Bjerager, 1990). Nevertheless, ∂A(f) may depart
significantly from such elementary shapes. In fact, this
class of methods does not provide statistically consistent
estimators of the probability of failure.

This paper presents a new approach. The method pro-
posed, which is outlined in Section 2, is in essence a
Bayesian sequential search algorithm similar in spirit to
Bayesian algorithms for global optimization (Zilinskas,
1992; Mockus, 1994) such as the Expected Improvement



algorithm (Schonlau and Welch, 1996) and the IAGO algo-
rithm Villemonteix et al. (to appear.). Here, we transpose
the main ideas and propose an algorithm to choose sequen-
tially the evaluations of f to produce a consistent and
rapidly converging estimation of α(f). This algorithm is
detailed in Section 3. Section 4 will illustrate the potential
evaluation savings of the methodology on a simple but
archetypal example, in which the probability of failure of
a control strategy of an uncertain plant is estimated.

2. SEQUENTIAL BAYESIAN SEARCH ALGORITHM

2.1 Sequential Bayesian optimal design

Let (Gn) be any given sequence of functions, Gn : (X× R)n

→ R+, such that Gn ((x1, f(x1)), . . . , (xn, f(xn))) yields
an approximation of α(f). Our goal is to choose locations
Xn = Xn(f) sequentially in such a way that the approxi-
mations

α̂n := Gn

(
(X1, f(X1)), . . . , (Xn, f(Xn))

)

will converge as fast as possible to the true value α(f). By
doing so, it is hoped that a reasonably good approximation
of α(f) will be obtained using a limited number of eval-
uations. Obviously, in such a procedure, the nth location
Xn = Xn(f) is only allowed to depend on the unknown
function f through the past evaluations f(Xi), 1 ≤ i < n.
For the sake of clarity, the explicit dependence on f will
be dropped in the rest of the paper.

We formulate the problem in the framework of sequential
Bayesian optimal design, where the information from the
past evaluations can be combined with prior information
on the system in order to take the “best” sequence of
decisions (in a sense to be defined later). Let F = R

X

be the space of all real functions X → R and denote by
U the cylinder σ-algebra on F . Prior information on the
unkown function f is taken into account in the Bayesian
approach under the form of a probability measure P

on (F,U). This amounts to considering f as a random
function, the distribution of which is given by the prior
probability P before evaluations are made, and by the
posterior probability P { · |Fn} after n evaluations, where
Fn is the σ-algebra generated by f(X1), . . . , f(Xn). For
each n ≥ 0, the location Xn+1 is assumed to be chosen
measurably from the past evaluations (in other words,
Xn+1 is an Fn-measurable random variable). It must be
pointed out that despite the semantic shift we are still
dealing with deterministic algorithms: randomness only
comes from the fact that we are now considering f as a
random function.

Given a cost function C : R+ × R+ → R and a budget
of N evaluations of f , a strategy X = (X1, . . . , XN)
is said to be optimal if it minimizes the Bayes risk
E (C (α(f), α̂N )) associated to the prior P. It is well
known (Berger, 1985) that, at least in principle, the
optimal strategy can be found using a form of dynamic
programming. In practice, finding the optimal strategy is
usually not feasible, especially in problems like the one at

hand where there is a continuum of possible states and
decisions at each stage n. In this paper we handle the
difficulty with the following suboptimal greedy strategy
(sometimes called a one-step look-ahead procedure) :

Xn = argmin
xn∈X

E
(
C (α(f), α̂n) | Fn−1

]
, (3)

for all n ∈ {1, . . . , N}, where the predictor α̂n is computed
using the past evaluations f(Xi), 1 ≤ i < n and the
uncertain outcome f(xn) of an evaluation at xn.

The reader is referred to Chaloner and Verdinelli (1995) for
a survey on both sequential and non-sequential Bayesian
experimental design (from a statistical point of view) and
to Pronzato (2008) for a survey on the connections between
the fields of design of experiments and automatic control.

2.2 Gaussian process priors and kriging

The proposed method will now be specified following the
Bayesian approach explained in subsection 2.1, using a
Gaussian process prior as the probability P. The idea
of modelling an unknown deterministic function f by a
stochastic process has originally been introduced in the
field of geostatistics (see Chilès and Delfiner, 1999, and
the references therein), and also plays a central role in the
design and analysis of “computer experiments” (see, e.g.,
Sacks et al., 1989; Currin et al., 1991; Welch et al., 1992).

The distribution P of a Gaussian process f is uniquely
determined by its mean m(x) := E[f(x)] and its covari-
ance function k(x, y) := E ((f(x) − m(x))(f(y) − m(y))).
Restricting our framework to Gaussian processes makes it
possible to deal with the conditional distributions P { · |Fn}
that appear in equation (3). Another benefit of using such
a prior is that the posterior mean

fn(x) := E
(
f(x) | Fn

)
, (4)

also called the kriging predictor of f(x), can easily be com-
puted using linear algebra (see, e.g., Chilès and Delfiner,
1999) and provides a cheap surrogate model for the true
function f . Computing the probability of failure α(fn)
of the surrogate model is a natural choice for the ap-
proximations Gn of subsection 2.1, which leads us to set
α̂n = α(fn). Another important benefit of using Gaussian
process priors is that the posterior variance σ2

n(x) is also
easily computed, which allows to provide prediction inter-
vals.

Practically, the probability α(fn) can be approximated by
a Monte Carlo estimator such as αm(fn), which requires
m evaluations of fn. Since the evaluation of the surrogate
model is much faster than the evaluation of the true model,
m can be chosen large enough to make αm(fn) − α(fn)
negligible with respect to α(fn) − α(f). Thus, we shall
only focus on the convergence of α(fn) to α(f) and assume
that α(fn) can be computed with the required accuracy in
a reasonable time.

Finally, choosing the quadratic cost function C(α, α′) =
(α−α′)2, the proposed strategy is to sequentially minimize
the mean square error of approximation:



Program 1

Xn = argmin
xn∈X

Υn(xn) := E
{
(α(f) − α(f̃n))2 | Fn−1

}
.

Here and subsequently, we denote by f̃n(x) the kriging
predictor of f(x) based on f(X1), . . . , f(Xn−1) and
f(xn). This strategy can be seen as an instance of the
so-called stepwise uncertainty reduction principle (Geman
and Jedynak, 1996; Villemonteix et al., to appear.). The
criterion Υn(xn) provides a measure of the expected ap-
proximation error if a new evaluation is performed at xn.
It depends of course on the past evaluations f(X1), . . . ,
f(Xn−1), since it is defined as a conditional expectation
with respect to Fn, but this depency is kept implicit for
simplicity of notation. It must be noted that the actual
result f(xn) of the additional evalution at xn is integrated
out by the conditional expectation with respect to Fn−1.

3. TOWARD A NUMERICALLY TRACTABLE
SEQUENTIAL ALGORITHM

This section presents a numerically tractable approxima-
tion of Program 1, proceeding in two steps. In the first step
an upper bound Υ′

n on the criterion Υn is derived. This
upper bound is simpler than Υn but still not in closed
form. In the second step we provide a computationally
efficient procedure to approximate Υ′

n, the result of which
is our final criterion Υ′′

n.

3.1 Upper bound on the criterion Υn

Using the chain rule for conditional expectations, observe
that Υn(xn) can also be written as

Υn(xn) = E

{
Γn(xn, f(xn))2

∣∣ Fn−1

}
, (5)

where the function Γn is defined by

Γn(xn, zn) := Ẽn

{(
α(f) − α(f̃n)

)2}1/2

.

For abbreviation, the notation Ẽn has been introduced to
denote the conditional expectation operator

Ẽn := E{ ·

∣∣ Fn−1, f(xn) = zn}.

Note that Equation (5) is simply a one-dimensional in-
tegral with respect to the value of f(xn). Unfortunately,
Γn(xn, zn) has no analytical expression. A numerical ap-
proximation could in principle be obtained using a Monte
Carlo approach, but would require a very large number
of conditional simulations (see Chilès and Delfiner, 1999,
chap. 7) of the random function f .

Instead, we choose to replace Γn(xn, zn) by an upper-
bound which will be easier to compute and minimize.
Remark that

α(f) − α(f̃n) =

∫

X

(
1f(x)>u − 1f̃n(x)>u

)
PX(dx).

An upper bound is then readily provided by the gen-
eralized Minkowski inequality (see, e.g., Vestrup, 2003,
section 10.7):

Γn(xn, zn) ≤ Γ′
n(xn, zn) :=

∫

X

υn(x; xn, zn)
1

2 PX(dx) ,

with

υn(x; xn, zn) := Ẽn

{
(1f(x)>u − 1f̃n(x)>u)2

}
.

Replacing Γn by Γ′
n in Program 1 yields the following

modified strategy:

Program 2

Xn = argmin
xn∈X

Υ′
n(xn) := E

{
Γ′

n(xn, f(xn))2
∣∣ Fn−1

}
.

This strategy is indeed simpler than the previous one,
since υn(x; xn, f(xn)) is given by

υn(x; xn, f(xn)) = Ψ

(∣∣∣∣∣
u − f̃n(x)

σ̃n(x)

∣∣∣∣∣

)
,

where Ψ is the complementary cumulative distribution
function of the normal distribution and σ̃n(x) the standard
deviation of f̃n(x) conditionally to Fn−1 and f(xn).

An informal interpretation of Program 2 is that Xn mini-
mizes, conditionally to the past evaluations, the expected
posterior error of prediction of 1f(x)>u by 1f̃n(x)>u, aver-

aged over X (using the distribution PX).

3.2 Approximation of the upper bound

In the following paragraphs, we show that an approximate
version of Program 2 can be solved with an acceptable
computational complexity.

A first approximation is required for the computation
of Γ′

n. Assuming that the distribution PX is easy to
sample from, we propose to use a simple Monte Carlo
approximation for the integral with respect to PX:

Γ′
n(xn, zn) ≈ Γ′′

n(xn, zn) :=
1

m

m∑

i=1

υn(Yi; xn, zn)1/2,

where (Yi)i≥1 is a sequence of independent and identically
distributed variables with common distribution PX.

Another approximation is required for the computation of

Υ′
n(xn) ≈ E

{
Γ′′

n(xn, f(xn))2
∣∣ Fn−1

}
. (6)

Using a tagged partition
{
(∆j

n, zj
n), 1 ≤ j ≤ Q

}
of R, we

replace the random variable f(xn) in the right-hand side
of (6) by the quantized variable ξn :=

∑
j zj

n 1f(xn)∈∆j
n
.

The proposed algorithm is thus

Program 3

Xn = argmin
xn∈X

Υ′′
n(xn) := E

{
Γ′′

n(xn, ξn)2
∣∣ Fn−1

}
.

Practically, the design criterion is computed as

Υ′′
n(xn) =

Q∑

j=1

Γ′′(xn, zj
n) P

{
f(xn) ∈ ∆j

n

∣∣ Fn−1

}
,

using the fact that f(xn) is normally distributed condition-
naly to Fn−1, with mean fn−1(xn) and variance σ2

n−1(xn).



4. NUMERICAL EXAMPLES

4.1 Illustration

This section provides a compendious one-dimensional il-
lustration of the algorithm. We wish to estimate α(f),
where f(x) is a given function defined over R, which is
endowed with the probability distribution PX = N (0, σ2),
σ = 0.4 (see Figure 1). After a few iterations, the unknown
function f has been sampled so that the probability of ex-
cursion P({f : f(x) > u} | Fn) is either 0 or 1 in the region
where the density of PX is high (as shown on Figure 1).
This example illustrates the effectiveness of the proposed
algorithm. Note that in practice, a parametrized covari-
ance has to be chosen for specifying P and its parameters
should be estimated from the data, using, for instance, a
maximum likelihood approach (e.g. Stein, 1999).
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Fig. 1. Top: threshold u = 1 (horizontal solid line);
function f (thin line); n=10 evaluations (squares) as
obtained by the proposed algorithm using m = 800
for the Monte Carlo integration and Q = 20 for
the tagged partition; kriging approximation fn (thick
line); 95% confidence intervals computed from the
kriging variance (dashed lines). Middle: probability of
excursion (solid line); probability density of PX (dot-
ted line). Bottom: graph of Υ′′(xi), i = 1, . . . , m =
800, the minimum of which indicates where the next
evaluation of f should be done (i.e., at approximately
0.75).

4.2 Probability of failure of a regulated system

A typical example for which our method is particularly
relevant is the estimation of a probability of failure of

a system described by partial differential equations with
complex boundary conditions and a few uncertain param-
eters.

We choose, however, to consider a much simpler illustra-
tive problem, for two reasons. First, it is possible, within
the space allowed, to give enough details to allow the
reader to use it and to compare the performance of our
approach with other methods not considered here. Sec-
ond, nothing is lost by considering such an example, as
the methodology would be strictly the same for a more
expensive-to-simulate model.

We consider a simple continuous-time dynamical system,
corresponding to a two-compartment model (Figure 2).

x1

x2

q1 q2

x3

u

Fig. 2. A two-compartment model.

The state variables q1 and q2 represent an amount of
material in each compartment, the positive real numbers
x1, x2, x3 correspond to exchange rates and u is the control
input of the system. The state vector is governed by the
ordinary differential equation(

q̇1

q̇2

)
=

(
−x1 − x3 x2

x1 −x2

)(
q1

q2

)
+ u

(
1
0

)
.

We assume that x3 is known and equal to 0.35. However,
we suppose that the parameters x1 and x2 are uncertain.
We model this uncertainty by a probability distribution
PX centered on (x1, x2) = (0.6, 0.15) (see Figure 3).

Our objective is to regulate the output variable q2, by
means of a proportional-integral controller, i.e. a linear
feedback corrector whose transfer function can be written
as

G(s) = K
a + s

s
.

The value of K and a of the corrector were chosen to
insure satisfactory phase and gain margins for (x1, x2) =
(0.6, 0.15). We obtained K = 0.93 and a = 0.23. To
measure the performance of the system, we consider the
settling time f(x1, x2) of the step response of system — the
response is considered to be settled when |q2 − limt→∞ q2|
becomes smaller than a fraction equal to 0.02 of its final
value. For instance, we have f(0.6, 0.15) = 10.95. We
would like to estimate the probability α(f) = PX(A(f))
of the excursion set

A(f) = {(x1, x2) ∈ R
2 : f(x1, x2) ≥ u = 12.5} ,

i.e. the probability that the system has a settling time
greater than 12.5, given the probability distribution PX

on the uncertain parameters. The result of our sequential
algorithm is presented on Figure 3. After n = 40 iterations,



the unknown settling-time function f has been sampled so
that the probability of excursion P({f : f(x1, x2) > u} |
Fn) is very close to either 0 or 1 in the region where the
density of PX is high.
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Fig. 3. Top: gray-level plot of the probability density
of PX along the parameters x1 and x2 of the two-
compartment model. The bright areas correspond to
high values of the density. Bottom: gray-level plot
of the probability of excursion conditioned on the
evaluations of the settling time, whose locations are
indicated by square dots. The solid line indicates the
frontier ∂A of the failure domain. One can see that
the probability of excursion is very close to either 0
or 1 in the region where the density of PX is high.

Remark: We intend to release the computer programs
corresponding to our algorithm in a near future.
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