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Kalman Temporal Differences: the deterministic case

Matthieu Geist, Olivier Pietquin and Gabriel Fricout

Abstract— This paper deals with value function and Q-
function approximation in deterministic Markovian decision
processes. A general statistical framework based on the Kalman
filtering paradigm is introduced. Its principle is to adopt a
parametric representation of the value function, to model the
associated parameter vector as a random variable and to
minimize the mean-squared error of the parameters conditioned
on past observed transitions. From this general framework,
which will be called Kalman Temporal Differences (KTD), and
using an approximation scheme called the unscented transform,
a family of algorithms is derived, namely KTD-V, KTD-SARSA
and KTD-Q, which aim respectively at estimating the value
function of a given policy, the Q-function of a given policy and
the optimal QQ-function. The proposed approach holds for linear
and nonlinear parameterization. This framework is discussed
and potential advantages and shortcomings are highlighted.

I. INTRODUCTION

HIS paper deals with value function and Q-function ap-

proximation in deterministic Markovian Decision Pro-
cess (MDP). An MDP is a tuple {S, A, T, R,~}, where S
is the state space, A the action space, 7' : S x A — S the
deterministic transition function, R : S x A x S — R the
bounded reward function, and ~ the discount factor. A policy
7 is a (here deterministic) mapping from states to actions,
S — A. The value function of a given policy is classically
defined as:

VF(S)ZE[ZViTi|80:S77T} )]
i=0

where 7; is the reward observed at time ¢. The Q)-function is
defined as:

o0
Q" (s,a) = E[>_~'rilso = s,a0 = a,7] ()
i=0
Reinforcement learning (RL) [1] aims at finding (through in-
teraction) the policy 7* which maximises the value function
for every state:
7 = argmax (V™) 3)

Two schemes (among others) can lead to the solution. First,
policy iteration implies to learn the value function of a given
policy, and then improve the policy, the new one being greedy
respectively to the learned value function. It implies to solve
the Bellman evaluation equation, which is given here for the
value function and the @-function, respectively:

V™(s) = R(s,7(s),s") + V7 (s'), Vs 4)
Q™ (s,a) = R(s,a,s") +vQ™(s',w(s")), ¥Vs,a  (5)
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Here and through the rest of the paper, s’ denotes the transit-
ing state, that is s’ = T'(s,7(s)) or s’ = T(s,a), depending
on the context. The second scheme, called value iteration,
aims directly at finding the optimal policy. It implies to solve
the Bellman optimality equation, which is given here for the
Q-function:

Q*(s,a) = R(s,a,s’) + 7 max Q*(s',b), Vs,a  (6)
€

The aim of this paper is to find an approximate solution of
the Bellman evaluation or optimality equations, for the value
function or the Q-function, when the state or action spaces
are too large for classical dynamic programming or rein-
forcement learning algorithms [2]. Moreover the proposed
algorithm is online, so as to keep this important RL feature.

To do so, Temporal Differences (TD) algorithms will be
considered. They form a class of methods which consist in
correcting the representation of the value (or @)-) function
according to the TD error made on it. Most of them can be
generically written as:

Oir1 = 0; + K;6; @)

In this expression, ; is the current representation of the value
function, 6,4, is an updated representation given an observed
transition, d; is the so-called temporal difference error, and
K is a gain indicating in which direction the representation
of the value function should be corrected. Each of these terms
will now be discussed.

If the state space S and the action space A are finite and
small enough, an exact description of the value function is
possible, and 6 will be a vector with as many components
as the state (-action) space (tabular representation). If these
spaces are too large, approximation is necessary. A classical
choice in RL is the linear parameterization, that is the value
function is approximated by:

Va(s) = Z%‘%‘(S) ®)

where (¢;)1<j<p is a set of basis functions, which should be
defined beforehand, and the weights w; are the parameters:

0= [wy,...,wp" ©)

Many function approximation algorithms require such a
representation to ensure convergence [3], or even to be appli-
cable [4]. Other representations are possible such as neural
networks where 6 contains the set of associated synaptic
weights. The proposed KTD framework is applicable to any
representation of the value (or Q-) function, as long as it can
be fully described by a finite set of p parameters.
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In (7), the term d; is the TD error. Suppose that at step
¢ a transition (s;, a;, Si+1,7;) is observed. For TD-like RL
algorithms, that is algorithms which aim at evaluating the
value function of a given policy 7, the TD error is:

6 =1 + Vo, (siv1) — Vo, (s4) (10)

For SARSA-like algorithms, that is algorithms which aim at
evaluating the @Q-function of a given policy 7, the TD error
is:

g :Ti+’YQ9i(5i+17ai+1) *Qei(si,ai) (11)

Finally, for ()-learning-like algorithms, that is algorithms
which aim at computing the optimal Q-function, the TD error
is:
0i = ri + ymax Qp, (si+1,0) — Qo,(si,a:)  (12)
The type of temporal difference which is used determines
which Bellman equation is to be solved (evaluation equation
for (10) and (11), optimality equation for (12)), and thus if
the algorithm belongs to the policy iteration or value iteration
family.
The term K; is a gain which is specific to each algorithm.
The most common are reviewed here. For TD, SARSA and
Q-learning (see [1] for example), the gain can be written as

13)

K; = ey

where «; is a classical learning rate in stochastic approxi-
mation theory, and should verify:

oo o0
E o; = 0o and E a? < o0
i=0 =0

and e; is a unitary vector which is zero everywhere except in
the component corresponding to the state s; (or to the state-
action (s;, a;)) which is equal to one (Kronecker function).
These algorithms have been modified to consider so-called
eligibility traces (see [1]), and the gain can then be written
as

(14)

2
Ki=a; Y \Ne, (15)
j=1

where ) is the eligibility factor. These algorithms have also
been extended to take into account approximate representa-
tion of the value function. According to [5] they are called
direct algorithms. Without eligibility traces, the gain can be
written as

K; = a;Vp,Vp, (si) (16)

where Vg, Vj, (s;) is the derivation following the parameter
vector of the parameterized value function in the current
state. The value function can be replaced straightforwardly
by the @Q-function in this gain. The direct algorithms have
also been extended to take into account eligibility traces,
which leads to the following gain:
i
Ki = Oy Z )\iijVQi‘A/gi (Sj)

Jj=1

a7

Another well known approach is the set of residual al-
gorithms [5], for which the gain is obtained through the
minimization of the Lo-norm of the Bellman residual (i.e.
the difference between the left side and the right side of the
Bellman equation):

K; = a;Ve, (Ve (i) — an,i(siﬂ))

The last approach we review is the Least-Squares Temporal
Differences (LSTD) algorithm [4], which is only defined for
linear parameterization (8) and for which the gain is defined
recursively:

(18)

B Ci—19(si)

L+ (¢(s:) = v9(si41))TCim19(s:)
C=Cr - Ci—19(s:)(#(s1) — v8(si41))" Cia
o 1+ (¢(si) = vé(si+1)) " Cim16(s:)
where ¢(s) is defined in (47). This algorithm has also been
extended to eligibility traces, see [6] for details.

The problem addressed in this paper can be stated as:
given a representation of the value function (or of the Q-
function) summarized by the parameter vector 6 and given a
temporal difference scheme (or equivalently given a Bellman
equation to be solved), what is the best gain K ? To answer
this question, a statistical point of view is adopted here
and the Kalman filtering framework [7] is followed. The
proposed approach can be linked to papers based on Gaussian
processes [8], least-squares [4] or Kalman filtering [9], [10].
This will be further discussed in Section VI. In the next
section the general Kalman Temporal Differences (KTD)
framework is presented. The following sections specialize
it to derive a family of algorithms for the value function and
the Q-function evaluation (KTD-V and KTD-SARSA), and
for the @Q-function optimization (KTD-Q). An approximat-
ing scheme, the so-called unscented transform [11], which
is necessary to handle nonlinear parameterization and the
Bellman optimality equation, is also presented. Eventually
some points are discussed and perspectives are presented.

K;

(19)

(20)

II. KTD: THE GENERAL CASE

In this section a very general point of view is adopted,
and practical algorithms will be derived later. For now, a
transition is generically noted as:

(Sz‘, 5i+1)
(Si, iy Sit1, ai+1)

(Si, Qj, 5i+1)

ti = 2D

given that the aim is the value function evaluation, the Q-
function evaluation or the Q-function optimization. Similarly,
for the same cases, the following shortcuts hold:

‘7«9(51) - ’Y‘A/e,-, (8i41)

9¢,(0:) = Qo, (56, a:) — 7Qo, (Six1, ai41) (22)
Qo, (s, ai) — ymaxpe a Qo, (Si+1,b)
Thus all TD schemes can be written generically as
0 = 1i — g4,(0:) (23)
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As said before, a statistical point of view is adopted.
The parameter vector #; is modeled as a random variable
following a random walk. The problem at sight can then be
stated in a so-called state-space formulation:

{0i+1 =0; +v;

24
ri = gt,(0:) + ni @9

This expression is fundamental for the proposed framework.
The first equation is the evolution equation, it specifies
that the parameter vector follows a random walk which
expectation corresponds to the optimal estimation of the
value function. The evolution noise v; is centered, white and
independent. Notice that this allows handling non-stationary
MDPs. The second equation is the observation equation, it
links the observed transition to the value (or Q-) function
through a Bellman equation. The observation noise n; is
supposed centered, white and independent. Notice that this
necessary assumption does not hold for stochastic MDPs
(see [12] for an expression of this noise in the stochastic
case), that is why deterministic transitions are supposed here.
This model noise arises from the fact that the solution of the
Bellman equation does not necessarily exists in the functional
space spanned by the set of parameter vectors.

The objective could be to estimate the parameter vector
which minimizes the expectation of the mean-squared error
conditioned on past observed rewards. The associated cost
can be written as:

J(él)zE[Hez—éZHQ‘le with T =T1,...,15 (25)
Generally speaking, the minimum mean square error

(MMSE) estimator is the conditional expectation:

argmin J(0;) = éili = E[0;|r1.]
0;

(26)

However, except in specific cases, this estimator is not
computable. Instead, the aim is here to find the best linear
estimator. It can be written in a form quite similar to
equation (7): R .

Oiji = 0;)i—1 + KTy (27
In equation (27), éiu is the estimate at time <, éi‘i,l =
E[0;|71.i—1] is the prediction of this estimate according to
past observed rewards r1.;—1, and for a random walk model
the following equality holds:

éz‘\z‘—1 = éi—1|i—1 (28)

The innovation
i =T — fm;l (29)

is the difference between the observed reward r; and its
prediction based on the previous estimate of the parameter
vector:

fi\i—l =F [Qti(gi)\ﬁ:z;l]

Note that the innovation #; is not exactly the temporal
difference defined in equation (23), which is a random
variable through its dependency to the random vector 6;. It
is its expectation conditioned on past observed data.

(30)

Using classical equalities, the cost function can be rewrit-
ten as:

T(0) = B [~ 6Ira.
= E [(0: 0:)7 (0 — ;).
= trace (E [(ei —0;)(6; — HAi)T|r1;iD
::traco(cov (ei—-éﬁrlﬂ))

A first step to the computation of the optimal gain is to
express the conditioned covariance over parameters as a
function of the gain K;. A few more notations are first
introduced (recall also the definition of the innovation (29)):

€1V

Oi)i = 0; — ém‘ and éi\ifl =0; — éi\ifl (32)
Py = cov (éi‘i|r1:¢) (33)
Py;_1 = cov (ém—ﬂﬁn‘—l) (34)
P, = cov (7|ri:i-1) (35)
Py, = E {éihﬁ—lfi‘rl:i—l} (36)

Using the postulated update of equation (27), and the various
estimators being unbiased, the covariance can be expanded:

P;; = cov (91; — éi\i|7'1:i)
= cov (91» — (éi\i—1 + Kﬁz’) |T1:i—1)
= cov (ém,l — Kﬁi\ﬁ:i—l)

Py = Pyi—1 — P, K] — K;P}, + K;P, K (37)

The optimal gain can thus be obtained by deriving the trace
of this matrix.
First note that the gradient being linear, for three matrices

of ad hoc dimensions A, B and C, B being symmetric, the
following algebraic identities hold:

V4 (trace (ABAT)) = 2AB (38)
Va (trace (ACT)) =Va (trace (C’AT)) =C 39)
and thus using equation (37) and previous identities:
Vk, (trace (P,-‘,-)) =0
& 2KP,, — 2P, =0
& K; =Py, Pt (40)
Using (37) and (40), the covariance matrix F; is
Py = Py — KiPr K (41)

Notice that no Gaussian assumption has been made to derive
these equations.

The most general KTD algorithm, which breaks down
in three stages, can now be derived. The first step consists
in computing predicted quantities ém—,l and P;j;_;. Recall
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that for a random walk model, equation (28) holds, and the
predicted covariance can also be computed analytically:

Pjji—1 = cov (91'\1'71|7"1:i71)

= cov (9i71|i71 + Ui—l\h:i—l)

=P 11i-1+ Py, _, (42)

where P,, | is the variance matrix of the evolution noise
(which is given).

The second step is to compute some statistics of interest.
It will be specialized for each algorithm of the next sections.
The first statistic to compute is the prediction 7;;_1 (30).
The second statistic to compute is the covariance between
the parameter vector and the innovation:

Py, = E [(91' — Oyi—1) (ri — fi|i71)|7'1:i—1} (43)

However, from the state-space model (24), r; = g4, (6;) + ni,
and the observation noise is centered and independent, so

Por, = E [(91 — 0i1i—1) (g, (0;) — 7A’i|i71)|7’1:i71} 44)

The last statistic to compute is the covariance of the inno-
vation, which can be written (using again the characteristics
of the observation noise):

P, =E [(7'1 - fiu—l)z\rl:zel]
=FE [(gtvz(ei) — Fiji—1 + nz‘)2|7“1:i—1]
= E [(91,(60:) = Fiji=1)|r1:i-1] + Po,

where P, is the variance of the observation noise (which is
also known).

The last step of the algorithm is the correction step.
It consists in computing the gain (40), correcting the pa-
rameter vector (27) and updating the associated covariance
matrix (41) accordingly. Notice that as the proposed method
is online, it must thus be initialized with some priors éo\o
and Fyjo. The proposed general framework is summarized
in Algorithm 1. The main difficulty in applying the KTD is
to compute the statistics of interest 7,1, Py, and Py, (for
which statistics ém_l and P;;_; are necessary), which will
be the subject of the next three sections.

(45)

III. KTD-V

This section focuses on evaluating the value function, that
is finding an approximate solution of the Bellman evaluation
equation (4). First the linear case is considered, which
allows deriving an analytical solution to statistics of inter-
est computation. An approximation scheme, the unscented
transform [11], is then introduced, which proves itself to be
useful for the nonlinear parameterization case.

A. Linear parameterization

In this section the linear parameterization of equation (8)
is adopted, which is shortened as:

Vo(s) = o(s)"0 (46)

Algorithm 1: General KTD algorithm

Initialization: priors é0|0 and Py ;
fori—1,2,... do

Observe transition ¢; and reward r; ;
Prediction step;

éz‘u—1 = éi—1|i—1;

Pyio1 =P qjio1 + Po_ys

Compute statistics of interest;

Fiji—1 = Elge, (0i)|r1:-1] 3

Py, = E [(91 - éi\z‘—l)(gti (0;) — fi)|r1:i71i|;
Py, = E [(g:,(65) = Fiji—1)?|r1:im1] + Py
Correction step;

K, = Py, P!

éi\i = éi\i—l + K (1 — F4ji—1) 3

Py, =Pyi—1 — K;P, K] ;

where the parameter vector is given in equation (9) and where
@(s) is a vector defined as:

3(s) = [61(5), -, dp(s)]"

The state-space formulation (24) can thus be rewritten as:

47)

Oiv1 =10; +v;
=T r (48)
ri = (0(8:) —vP(5i41))" Oi +n4
To shorten the equations, H; is defined as:
H; = ¢(si) —vp(sit1) (49)

As the observation equation is linear, the statistics of interest
can be derived analytically. The prediction is

Tiji—1 = E [g¢,(0:)|71:6-1]
= E [H]0;|r1.-1]
= H!'E[0;]r1.-1]
= Hl 01

7

(50)

The covariance between the parameter vector and the inno-
vation can also be computed analytically:

Py, = E [ém—l (gti (0:) — fili—l) \1”1:1—1}
=E {éi|i_1Hg0~i\i—1|7’l:ifl}
=F {éili—léﬁi_1‘7'1:i—l} H;
= Py H; D
The covariance of the innovation is derived analytically too:
P, =F {(Qti (0:) — fz'\zel)z |7"1:i71} + Pn,
=E |:(H1',T§i|il)2 |7‘1:i—1] + P,

=H]Py;_1H; + P,, (52)
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The gain can thus be defined algebraically and recursively:
Pyi_1H;

K =
HI'Py;_1H; + P,,

(33)

This gain shares similarities with the gain of the LSTD
algorithm [4] (equation (19)), which is not a surprise. The
LSTD is based on a least-squares minimization (however
with the introduction of instrumental variables in order to
handle stochastic transitions), and the Kalman filter can be
seen as a generalization of the least-squares method. This
gain also shares similarities with the one arising from a
parametric Gaussian process modelling of the value function
evaluation problem [8]. The KTD-V approach for linear
parameterization is summarized in Algorithm 2.

Algorithm 2: KTD-V: linear parameterization

Initialization: priors é0|0 and Fyo ;

for: —1,2,... do

Observe transition (s;, s;11) and reward r; ;
Ifredictiorg step;

9:’\171 = 91‘71\1'71;
Pyio1 =P g1+ Po, 43

Compute statistics of interest;
A T4 .
Tili—1 = H; 91\#1 5

Py, = Pyi—1Hy;
P., = H; Py_1H; + Py;
/*  where H; = ¢(s;) — vo(sit1) */

Correction step;

K; = Py, Pt ;

00 = Osi—1 + K (ri — Ppi—1) 3
Py = Pyji—y — K;P, K]

The next case to be addressed is the nonlinear param-
eterization of the value function. Basically, the issue of
computing the statistics of interest for the KTD can be stated
as the following problem: given the mean and covariance
of a random variable, how can the mean and covariance
of a nonlinear (and perhaps non derivable) mapping of
this random variable be computed ? The following section
presents the unscented transform, which is an approximation
scheme designed to handle such a problem.

B. The Unscented Transform

Let’s abstract a little bit from reinforcement learning and
Kalman filtering. Let X be a random vector, and let Y be
a mapping of X. The problem is to compute mean and
covariance of Y knowing the mapping and first and second
order moments of X. If the mapping is linear, the relation
between X and Y can be written as Y = AX where A is a
matrix of ad hoc dimension. In this case, required mean and
covariance can be analytically computed: E[Y] = AE[X]
and E[YYT] = AE[X XT]AT. This result has been used to
derive the KTD-V of Section III-A.

If the mapping is nonlinear, the relation between X and
Y can be generically written as:

X =f(Y) (54)

A first solution would be to approximate the nonlinear
mapping, that is to linearize it around the mean of the random
vector X . This leads to the following approximations of the
mean and covariance of Y:

EY] = f(E[X])
E[YY"] ~ (Vf (EIX]) BEIXX"](Vf (B[X]))"

(35)
(56)

This approach is the base of Extended Kalman Filtering
(EKF) [13], which has been extensively studied and used in
past decades. However it has some limitations. First it cannot
handle non-derivable nonlinearities, and thus cannot handle
the Bellman optimality equation (6) because of the max
operator. It requires to compute the gradient of the mapping
f, which can be quite difficult even if possible. It also
supposes that the nonlinear mapping is locally linearizable,
which is unfortunately not always the case and can lead to
quite bad approximation, as exemplified in [11].

The basic idea of unscented transform is that it is easier
to approximate an arbitrary random vector than an arbitrary
nonlinear function. Its principle is to sample deterministically
a set of so-called sigma-points from the expectation and the
covariance of X. The images of these points through the
nonlinear mapping f are then computed, and they are used
to approximate statistics of interest. It shares similarities with
Monte-Carlo methods, however here the sampling is deter-
ministic and requires less samples to be drawn, nonetheless
allowing a given accuracy [11].

The original unscented transform is now described more
formally (some variants have been introduced since, but the
basic principle is the same). Let n be the dimension of X.
A set of 2n + 1 sigma-points is computed as follows:

o =X j=0 (57)
acj:X+( (TL+I€)Px)‘ 1<j<n (58)
J
xj:X—(\/(nH)PX) n+1<j<2n (59
n—j
as well as associated weights:
1 .

where X is the mean of X, Py is its variance matrix, & is a
scaling factor which controls the accuracy of the unscented
transform [11], and (y/(n + k) Px); is the 5™ column of the
Cholesky decomposition of the matrix (n + x)Px. Then the
image through the mapping f is computed for each of these
sigma-points:

y; = flz)), (61)

The set of sigma-points and their images can finally be used
to compute first and second order moments of Y, and even

0<j<2n
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Pxvy, the covariance matrix between X and Y:

2n
Y= Z W;Yj (62)
j=0
2n
Py~ wi(y,—9) (- 9)" (63)
=0
’ 2n
zj— ) (y; —9)" (64)

Pxy =~ Y wj(
j=0

where Z = w9 = X. The unscented transform having been
presented, it is now possible to address the value function
evaluation problem with nonlinear parameterization.

C. Nonlinear parameterization

In this section a generic parameterization of the value
function Vg is considered: it can be a neural network [14],
a parametric kernel representation [12], or any function
representation of interest, as long as it can be described
by a finite set of p parameters. The general state-space
formulation (24) can thus be rewritten as:

Oiv1="0; +v;

ri = Vo, (8i) — vV, (8i41) + i
The problem is still to compute the statistics of interest,
which becomes tractable with the unscented transform. The
first thing to compute is the set of sigma-points from known
statistic 6;;_; and F;;_; as described in Section III-B, as
well as the associated weights:

O4i-1 = {91(‘2 1, 0<i< 217}

W:{wjv OSJSQP}

(65)

(66)
(67)

Then the images of the sigma-points are computed, using
the observation function of state-space model (65), which is
linked to the Bellman evaluation equation (4):

Ri\zel Z{ E‘JL) 1 Vém (51)

ili—1
Wi (si11), 05 <2} (69)

0iji—1

The sigma-points and their images being computed, the
statistics of interest can be approximated by:

Pl ~ Y wirll) (69)
7=0
d 2
j=0
p .
PHT,; ~ Zw] (95‘1) 1 éi|i71) (filjl)_l — 7A‘i|i,1) (71)
=0

As the unscented transform is no longer an approximation
for linear mapping, this formulation is still valid for value
function evaluation with linear function approximation. The
KTD-V with nonlinear function approximation is summa-
rized in Algorithm 3.

Algorithm 3: KTD-V: nonlinear parameterization

Initialization: priors é0|0 and Py ;
fori—1,2,... do

Observe transition (s;, s;+1) and reward r; ;
{’redictio;z Step;

91'\@'71 = 9i71|i71;
P11 =P qpi-1 + Po, 4

Sigma-points computation ;

Oiji—1 = {952,17 0<j< 217} ;
Vég.‘f‘)ﬂ(si) WV, (1)71(51’—0—1)7 0<j< 229};

Compute statistics 0(/_‘ interest,
Pijim1 = ?pow]flfl 1
Por, :ZJ OMJ(GEIJB L= Oy 1)(2 ilie1 ™

b= Z?ZO Wy (Ti|i—1 rm,l) + P

Correction step,

7‘,|7',—1);

K;= Py, P
91\1 *01\1 1+ K; (7‘2_721'\1'—1) ;
P‘Z_P‘Zfl KPT@K;T;

IV. KTD-SARSA

This section focuses on the (@-function evaluation of
a given policy. The associated algorithm is called KTD-
SARSA, which can be misleading. Indeed, generally speak-
ing, SARSA is a Q-function evaluation algorithm associated
with an optimistic policy iteration scheme. Here the focus
is on the @-function evaluation problem, and the control
part is left apart. For a general parameterization Qg, and
considering the Bellman evaluation equation (5), the state-
space model (24) can be rewritten as:

Oiy1 =0; +v;
Ty = Qei(si’ a;)

For a fixed policy, the value function evaluation on the
state space induced Markov chain is quite similar to the Q-
function evaluation on the state-action space induced Markov
chain. It is thus straightforward to extend Algorithms 2
and 3 to Q-function evaluation. Recall that for a linear
parameterization, the unscented transform leads to an exact
computation of statistics of interest, and thus in this case
Algorithm 3 is equivalent to Algorithm 2. That is why
only the sigma-point formulation of KTD-SARSA is derived
(Algorithm 4).

R (72)
—7Q0, (Si+1, Git1) + N

V. KTD-Q

This section focuses on the ()-function optimization, that is
on finding an approximate solution of the Bellman optimality
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Algorithm 4: KTD-SARSA

Algorithm 5: KTD-Q

Initialization: priors 0gq and Pyo ;
do

Observe transition (s;, a;, $;+1,a;+1) and reward r;;

for i — 1,2,...

{’redictior} Step;

91:\1:—1 = 9i—1\i—1;

Pijic1 =P qji—1 + Po, 3
Sigma-points computation ;

Oii—1 = 91(‘]2 » 0<5< 217} ;
W = {wj, 0<J<2P b
Ri|i—1 = z\z 1 Q@(J) (827(1 )

7@@@ (s aip), 0 S i< 229},

Compute statistics (Ef interest,

2p

Tili—1 = 225=0 WjiT;};—1>
9(])

Py, :Zj 0w ( ii-1 "
P..=>" (rz(lj?)_l
Correction step;

K; = Py, P:';

0i)i = O4i—1 + K; (Ti — 721'\1'—1) ;
- K;P,, Kl ;

z|z 1)( Z|Z 1 fi\zel);
2

2p .
j=0Wj r'L\'L—l) +Pnia

Py = Pyjia

Initialization: priors 6o and Py ;
do

Observe transition (s;, a;, $;+1) and reward r; ;

for i —1,2,...

Prediction Step;
91‘,\1‘,—1 = 9i—1|i—1;
Pyi1 =P qjic1+ Po_ys

Sigma-points computation ;

On1 = {00, 0<j<2p}:
W = {w;, O <j<2p };
Riji-1 = Z\z 1 Qem (si,ai) —

—1
Y MaXpe A Qé(f_) 1(5i+17b)7 0<j< 219};

Compute statistics cgf interest;

’f‘- . _ 2p J) .
ili—1 — j= Owjrl‘t 1°
Py, = Z] Ow](GEIJL) 1~ iz 1)( fif — Tli-1);
2
2
P =32 (Tz(fz)_l L|L_1) +Pni
Correction step;
K; = Py, P.";
Oi)i = 0;)i—1 + K; (Ti - fi\i—1) ;
Py = Py — KiP K5

equation (6). A general parameterization Qo is adopted. The
state-space model (24) can be specialized as follows:
Oiv1=0; +v;

{Ti = Qo, (i, a:)
Here linear and nonlinear parameterization are not distin-
guished, because of the max operator, which is inherent to
the Bellman optimality equation, and because of which the
observation equation of state-space model (73) is nonlinear.
This max operator is difficult to handle, especially because
of its non-derivability.

Hopefully, as it approximates the random variable rather
than the mapping, the unscented transform is a derivative free
approximation. Given the general KTD algorithm introduced
in Section II and the unscented transform described in
Section III-B, it is possible to derive KTD-Q, the KTD
algorithm for @)-function direct optimization. One has first to
compute the set of sigma-point associated with the parameter
vector, as in equations (66-67). Then the mapping of these
sigma-points through the observation equation of state-space
model (73), which contains the max operator, is computed:

Riji-1= { ng (s, ai)

ili—1
— 7 max Qo (si41,0),

ili—1

R (73)
— ymaxpea Qo, (Si+1,b) + 1

(4)
’Ll’L 1

0<j<w) (74
Then, as usual, the sigma-points and their images are used

to compute the statistics of interest, as in equations (69-71).
The proposed KTD-Q is summarized in Algorithm 5.
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VI. DISCUSSION AND PERSPECTIVES

A general Kalman-based function approximation scheme
for reinforcement learning in deterministic Markovian de-
cision processes has been introduced, and algorithms for
value function and @-function evaluation (policy iteration
scheme) and for )-function direct optimization (value itera-
tion scheme) have been derived from it. Experimental results
are not given here, however the KTD-Q algorithm has been
first introduced in [12] from a Bayesian perspective, and
related experiments are provided. Experimental results are
promising.

As announced in Section I, related approaches have been
proposed previously. In [8] a Gaussian process modelling of
reinforcement learning function approximation is proposed.
In the deterministic and parametric case, an algorithm which
is almost the same as the KTD-V with linear parameteriza-
tion is obtained (the only difference resides in the absence
of process noise). However it is derived from a different
point of view. As Kalman filtering is strongly linked to least-
squares minimization, our approach shares similarities with
the LSTD [4], however without taking into account instru-
mental variables concept. In [9] a Kalman filter designed
to handle fixed-point approximation in the case of linear
parameterization is introduced. It can be roughly seen as a
bootstrapping version of the proposed KTD-V. Instead of the
observation equation of state-space model (48), the following



observation equation is used:
i+ yB(8i41) Oi—1ji1 = d(s:) 70 +

In other words, the reward is not considered as the obser-
vation, but an approximation of the value function is used
to compute a “pseudo”’-observation, and the update of the
parameters is made so as to match the value function of
the current state to this pseudo-observation. In [10], a bank
of classical Kalman filters is used to learn the parameters
of a piecewise linear parameterization of the value function.
It can be roughly seen as a special case of the proposed
approach, however differences exist: not one filter but a bank
is used and the parameterization is piecewise linear, which
is exploited to develop specificities of the algorithm.

The proposed framework has some potential advantages.
First it does not suppose stationarity. An immediate ap-
plication is to handle non-stationary environments. But an
even more interesting one is the control case. The algorithm
LSTD is known to fail when combined with optimistic policy
iteration, because of the induced non-stationarities of this
specific learning and control scheme. Kalman filtering and
thus the proposed framework is designed to be robust to non-
stationarities (random walk model of the parameter vector).
This can be quite interesting for the control case, which has
not been treated in this paper (the focus was on learning the
value function or the Q-function, given observed transitions,
and not on how to choose action for a given state). Second,
the parameter vector is modelled as a random vector. As
a consequence, at each time step, the covariance of this
random vector is available. It can be propagated to the value
function (as it is clearly a function of the parameters), using
the unscented transform if necessary, in order to provide
local uncertainty information for the value at a given state.
This is exemplified in [15] for a simple regression problem.
This uncertainty propagation can be useful to handle the well
known dilemma between exploration and exploitation.

However, for now, the proposed framework presents a
major drawback. In the case of stochastic transitions, the
KTD can produce biased estimates of the parameters, or
even be unstable. The problem lies in the fact that the
KTD minimizes a squared Bellman residual (see [16] for the
demonstration of the minimized cost function with unscented
filtering and random walk evolution model):

(75)

L 2
Ji(0) =D Pyt (rj — a1, (9) (76)
j=1
The cost function which should be considered to truly
minimize the squared Bellman residual is

L(9) = Vo — TVp|? a7

where 7' is one of the Bellman operators (depending on
the Bellman equation to be solved and involving transition
probabilities). As noted in [17], J;(6) is a biased estimator
of L(#), the bias being a variance term which favorises
smooth value functions. The same problem arises in the
residual approach [5]. A solution could be to introduce an

auxiliary filter, in the same manner an auxiliary function has
been introduced in [17]. For now, the KTD can be applied
without modification to stochastic environments (see [12] for
a successful application of KTD-Q to a stochastic problem),
but it can become unstable, depending on the problem at
sight.

To finish with, a new Kalman-based function approxima-
tion scheme for reinforcement learning has been introduced.
Most interesting perspectives are to extend this framework
to the control case, for which the non-stationarity hypothesis
and the uncertainty propagation should be useful, and to han-
dle more rigorously stochastic transitions. It is also planned
to conduct more comparisons, theoretically and experimen-
tally, of the KTD to other related function approximation
schemes for reinforcement learning.
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