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ABSTRACT

Random matrix and free probability theory have many

fruitful applications in many research areas, such as digital

communication, mathematical finance and nuclear physics.

In particular, the concept of free deconvolution can be used

to obtain the eigenvalue distributions of involved function-

als of random matrices. Historically, free deconvolution

has been applied in the asymptotic setting, i.e., when the

size of the matrices tends to infinity. However, the validity

of the asymptotic assumption is rarely met in practice.

In this paper, we analyze the additive and multiplicative

free deconvolution in the finite regime case when the

involved matrices are Gaussian. In particular, we propose

algorithmic methods to compute finite free deconvolution.

The two methods are based on the moments method and

the use of zonal polynomials.

I. INTRODUCTION

The aim of this paper is to study additive and mul-

tiplicative free deconvolution in the finite regime case.

The general idea of deconvolution relates to the following

problem ([5]):

Given A, B two m×m independent square hermitian (or

symmetric) random matrices:

1) Can one derive the eigenvalue distribution of A from

the ones of A + B and B. If feasible, this operation is

named additive free deconvolution,

2) Can one derive the eigenvalue distribution of A from

the ones of AB and B. If feasible, this operation is named

multiplicative free deconvolution.

In this paper, we discuss the work which will be conducted

during the thesis. In particular, we propose algorithmic

methods to compute these operations for finite size ma-

trices and discuss their limitations. Recently ([10], [12]),

a unified framework for free deconvolution was proposed

when m → ∞ and for some particular cases of matrices

A and B (for example, when A and B are free, or A is

a random Vandermonde matrix and B is diagonal). In the

asymptotic setting, the methods generally used to compute

free convolution/deconvolution are the moments method

and the Stieltjes transform method.

The moments method ([5]) gives relations between the

moments of the different matrices involved. For a given

m × m matrix A, the p-th moment of A is defined as:

t
m,p
A

=
1

m
E [trace(Ap)] =

∫

λpdρ(λ)

where dρ is the associated empirical mean measure defined

as: dρ = E
(

1
m

∑m

i=1 δ(λ − λi)
)

(λi are the eigenvalues

of A. Quite remarkably, when m → ∞, t
m,p
A

converges

almost surely to an analytical expression t
p
A

and depends

only on some specific parameters (maily the distribution

of the entries of A) of A
1. This enables to reduce the

dimensionality of the problem and simplifies the compu-

tation of convolution of measures. Note that this method

is analogue to computing moments of additive (or multi-

plicative) measures in the scalar case.

The Stieltjes transform method ([12]) provides an ana-

lytical transform in which probability measures of the

eigenvalues of matrices are easy to compute. The Stieltjes

transform of a probability measure µ is defined as

sµ(z) =

∫

1

λ − z
dFµ(λ),

where Fµ is the cumulative distribution function of µ. A

simple inversion formula for the Stieltjes transform exists

and is given by

fµ(λ) = lim
ω→=0+

1

π
Im[sµ(λ + jω)].

Here again, in many cases, one can compute an explicit

form of the probability measure µ associated to the eigen-

values of A which depends only on the distribution of

the entries of A. The Stieltjes transform is analogue to

the Fourier (Laplace) transform in the scalar case for

computing the distribution of the sum (or product) of

independent variables.

The goal of this paper is to generalize this framework in

the case when m is finite. As the problem is quite involved,

we focus in the particular case of Gaussian matrices.

1Note that in the following, when speaking of moments of matrices,
we refer to the moments of the associated measure.



II. MODELS

The models that we will consider in this paper are of

two types:

Model 1: The correlated noise model:

Y = R
1
2 S (1)

where the columns of the m× n matrix S are zero mean,

independent complex Gaussian vectors with covariance

matrix I and R is a m × m (deterministic) correlation

matrix.

In this model, we will be interested in the Gram matrix

YY
H associated to Y, given by

YY
H = R

1
2 SS

H
R

1
2 .

Multiplicative free deconvolution intends to express the

joint eigenvalue distribution of R based only on the joint

eigenvalue distribution of YY
H .

Model 2: The information plus noise model ([14]):

Y = M + R
1
2 S (2)

where M is a deterministic m×n matrix and the columns

of the m×n matrix S are zero mean, independent complex

Gaussian vectors with covariance matrix I.

In this model, we will be interested in the Gram matrix

YY
H associated to Y, defined as

YY
H = (M + R

1
2 S)(M + R

1
2 S)H .

The aim of additive free deconvolution is to express the

joint eigenvalue distribution of MM
H based only on the

joint eigenvalue distribution of YY
H and R.

III. ASYMPTOTIC CASE

In this section, we shall review some classical results

of free probability theory. The known literature about free

convolution/deconvolution deals with the case of large

random matrices when the dimensions go to infinity.

In the asymptotic setting, let us recall the results due

to Voiculescu ([15]): for An,Bn independent large

n × n hermitian (or symmetric) random matrices (both

of them having iid entries, or one of them having a

distribution which is invariant under conjugation by

any orthogonal matrix), if the eigenvalue distributions

of An,Bn converge, as n tends to infinity, to some

probability measures µ, ν, then the eigenvalue distribution

of An + Bn (AnBn) converges to a probability measure

which depends only on µA and µB, which is denoted by

µA⊞µB (µA⊠µB) and called the additive (multiplicative)

free convolution of µA and µB. The idea of having one

of the matrices which is unitarily invariant permits to have

an eigenvector structure which is ”deconnected” between

matrices. Therefore, the knowledge of the eigen-structure

of the involved matrices has no impact on the final result.

III-A. Asymptotic additive free deconvolution: Defini-

tion

Practically, and without going to the strict definition

provided in [15], the idea of additive free convolution stems

from the fact that:

t
p
A+B

= lim
m→∞

1

m
trace ((A + B)

p
) =

= f(t
(1)
A

, . . . , t
(p)
A

, t
(1)
B

, . . . , t
(p)
B

)

which means that we can express the moments of A + B

as a function of the moments of A and the moments of

B. Hence, when this happens, one is able by recursion to

express all the moments of A with respect only to the

moments of A+B and B. Since the distribution of A+B

depends only on the probability measure associated with

the moments of A and B, one can define on the set of

probability measures the following operation:

Additive Free Convolution: The additive free convolution

of a measure µ and a measure ν is the measure ρ such

that ρ = µ ⊞ ν.

Additive Free Deconvolution: The additive free

deconvolution of a measure ρ by a measure ν is (when it

exists) the only measure µ such that ρ = µ ⊟ ν.

III-B. Asymptotic multiplicative free deconvolution:

Definition

The multiplicative free convolution idea stems from the

fact that:

t
p
AB

= lim
m→∞

1

m
trace ((AB)

p
) =

= f(t
(1)
A

, . . . , t
(p)
A

, t
(1)
B

, . . . , t
(p)
B

)

which means that we can express the moments of AB as

a function of the moments of A and the moments of B.

Once again, since the distribution of AB depends only

on the probability measure associated with the moments

of A and B, one can define on the set of probability

measures the following operation:

Multiplicative Free Convolution The multiplicative

free convolution of a measure µ and a measure ν is the

measure ρ such that ρ = µ ⊠ ν.

Multiplicative Free Deconvolution The multiplicative

free deconvolution of a measure ρ and a measure ν is the

measure µ such that ρ = µ � ν.



In the next two sections, we will recall the main results

and the algorithmic methods used in the asymptotic case

to compute additive and multiplicative free deconvolution.

III-C. Moments method

In this section, let us describe the moments method.

Additive Case

The moments method is based on the relation between

the moments t
p
A

and the free cumulants d
p
A

of a matrix

A. They can be deduced one from each other as their

power series, that we denote by TA(z) =
∑

p≥1 t
p
A

zp and

DA(z) =
∑

p≥1 d
p
A

zp are linked by the following relation

DA(z(TA(z)) + 1)) = TA(z).

Hence, we have the relations for all p ≥ 0

t0
A

= 1

t
p
A

= d
p
A

+

n−1
∑

k=1









∑

p1, . . . , pk ≥ 0

p1 + · · · + pk = p

t
p1

A
. . . t

pk

A









.

The following characterization enables to compute easily

the additive free convolution using free cumulants.

Theorem 1: Given A and B free random matrices,

µA⊞B is the only law such that for all p ≥ 1

d
p

A⊞B
= d

p
A

+ d
p
B

(3)

Hence, the deconvolution µA+B⊟B of µA+B by µB is

characterized by the fact that for all p ≥ 1

d
p

(A+B)⊟B
= d

p
A+B

− d
p
B

. (4)

The implementation of additive free deconvolution is based

on the following steps: for the two matrices (A + B)
and B, we first compute the cumulants. Considering the

relation between the cumulants and the moments, we can

obtain information about the distribution of the eigenvalues

of A.

Multiplicative Case

The moments method, in the multiplicative case, is based

on the relation between the moments t
p
A

and the coef-

ficients l
p
A

of the S-transform of measure associated to

A. They can be deduced one from each other as their

power series, that we denote by TA(z) =
∑

p≥1 t
p
A

zp

and SA(z) =
∑

p≥1 l
p
A

zp−1, are linked by the following

relation

TA(z)SA(TA(z)) = z(1 + TA(z))).

Equivalently, we have the relations for all p ≥ 1

t1
A

l1
A

= 1

l
p
A

=

p+1
∑

k=1

lk
A

+









∑

p1, . . . , pk ≥ 1

p1 + · · · + pk = p + 1

t
p1

A
. . . t

pk

A









.

Hence, we can compute multiplicative free convolution by

the following characterization.

Theorem 2: Given A and B free random matrices, A⊠

B is the only law such that:

SA⊠B = SASB

The multiplicative free deconvolution µAB�B of µAB by

µB is characterized by the fact that for all p ≥ 1

l
p

(AB)�B
l1
B

= l
p
AB

−

p−1
∑

k=1

lk(AB)�B
l
p+1−k
B

. (5)

III-D. Stieltjes transform method

The aim of this section is to present the Stieltjes trans-

form method in the additive and in the multiplicative case

to compute free convolution/deconvolution.

Additive case: R-transform Let ρ be a probability

measure. The R-transform, denoted by Rρ, is defined by

Gρ

(

Rρ(z) + 1

z

)

= z,

where Gρ =
∫

t∈R

1
z−t

dρ(t) is the Cauchy transform. The

additive free convolution of the measures µA and µB can

be computed through the R-transform by the following

property:

RA⊞B = RA + RB.

In [6], it is proved how for any probability measure we

can recover G from RA⊞B. Hence, in our case, we can

compute the additive free deconvolution by recovering RA

from RA⊞B and RB. Unfortunately, from an algorithmic

point of view, one has to solve a polynomial equation,

which does not always have an explicit solution.

Multiplicative case: S-transform

The analytical method for the computation of free mul-

tiplicative convolution/deconvolution is the S-transform.

The S-transform S of a probability measure ρ (6= δ0) is

defined in C \ [0,∞) by

M

(

z

1 + z
S(z)

)

= z,

where M(z) =
∫

t∈R

zt
1−zt

dρ(t). The importance of the S-

transform comes from the following multiplicative prop-

erty:

SA⊠B = SASA,

which can be applied to compute free multiplicative con-

volution and deconvolution. Here again, let us recall that

this method works only in some limited cases, because the

S-transforms are almost never explicit.



IV. FINITE CASE

Our goal is to propose a pratical approach to compute

free deconvolution in the finite case. In the same vein,

we propose two approaches for computing the eigenvalue

distribution. The first is based on the invariant polynomials

and the computation of the zonal polynomials. The second

one is based on the moments method, whose difficulty

relies on the calculation of partitions.

IV-A. Definitions

Before introducing the tools for finite deconvolution, let

us first recall some definitions in the finite regime case.

Definition 1: Define the m× n matrix Y as in (1), the

m × m random matrix W = YY
H is a central complex

Wishart matrix with n degrees of freedom and covariance

matrix R, denoted by (W ∼ Wm(n,R)).
Definition 2: Define the m×m matrix Y as in (2), the

m×m random matrix W = YY
H is a noncentral complex

Wishart matrix with n degrees of freedom and noncentral-

ity matrix Ω = R
−1

M
H
M, (W ∼ Wm(n,Ω,R)).

IV-B. Zonal Polynomials

In this section, we look at the operation of convolution

through the zonal polynomials. The probability distribu-

tions of complex random matrices are often expressed

in terms of complex hypergeometric functions of ma-

trix arguments, which are defined by their expansions in

zonal polynomials ([8]). The complex zonal polynomials

([9]) are multivariate polynomials of the eigenvalues of

a hermitian matrix and their definition arise from group

representation theory ([8]).

Let κ = (k1, . . . , km) be a partition of the integer k such

as k1 ≥ k2 ≥ · · · ≥ km ≥ 0 and k1 + · · · + km = m.

The complex zonal polynomial2 of a complex matrix X ∈
C

m×m is defined [8] as

Cκ(X) = χ[κ](1)χ[κ](X) (6)

where χ[κ] is the dimension of the representation [κ] of

the symmetric group on k symbols given by

χ[κ](1) = k!

∏m
i<j(ki − kj − i + j)
∏m

i=1(ki + m − i)!
(7)

and χ[κ](X) is the character of the representation [κ] of

the linear group given as a symmetric function of the

eigenvalues µ1, . . . , µm of X by

χ[κ](X) =
det[µ

kj+m−j

i ]

det[µm−j
i ]

(8)

2In general, the complex and the real zonal polynomial are denoted,
respectively, by C̃κ(X) and Cκ(X). In this paper we use the notation
Cκ(X) for the complex zonal polynomials because we are not consid-
ering the real case.

In the finite case, free deconvoltion can be computed

using zonal polynomials. In fact, the eigenvalues densities

of complex noncentral Wishart matrices can be expressed

by zonal polynomials, introduced by Davis in ([1], [2]).

These polynomials are symmetric in the eigenvalues of a

complex matrix and have two matrix arguments, which

extend the single matrix argument of zonal polynomial,

i.e., we denote by C
κ,τ
φ (X,Y) homogeneous polynomials

of degree k and t in the elements of the m×m symmetric

complex matrices X and Y, where κ, τ and φ are ordered

partitions of the non negative integers k, t and f =
k + t, respectively, into not more than m parts. These

polynomials are called invariant beacuse they are invariant

under the simultaneous transformations

X → E
H
XE, Y → E

H
YE, E ∈ U(m).

In the following theorem ([9]), the joint density of the

eigenvalues of a complex noncentral Wishart matrix is

given in terms of zonal polynomials.

Theorem 3: Let n ≥ m be and consider the m × m

positive definite Hermitian matrix W ∼ Wm(n,Ω,R).
Then the joint density of the eigenvalues λ1 > λ2 > · · · >

λm > 0 of W is

f(Λ) =
πm(m−1)|R|−n

Γ̃m(n)Γ̃m(m)
etr(−Ω)

m
∏

k=1

λk
n−m

m
∏

k<l

λk − λl
2×

(9)

×

∞
∑

k,t=0

∑

κ,τ ;φ∈κ,τ

C
κ,τ
φ (−R

−1,ΩR
−1)Cκ,τ

φ (Λ,Λ)

k!t![n]τCφ(Im)

where [n]τ is the complex multivariate hypergeometric

coefficient defined as [n]τ =
∏m

i=1(n − i + 1)ti
with

(n)t = n(n + 1) . . . (n + t − 1) and Cκ(Im) is given by

Cφ(Im) = 22ff !

(

1

2
m

)

φ

×

×

∏r
i<j(2fi − 2fj − i + j)
∏r

i=1(2fi + m − i)!
(10)

with
(

1

2
m

)

φ

=

r
∏

i=1

(

1

2
(m − i + 1)

)

fi

(11)

where r are the nonzero parts of φ.

Hence, we observe from (9) that the operation of

deconvolution consists in deriving information about the

noncentrality matrix Ω in function of the eigenvalues of

the Wishart matrix considered. In order to do this, it is

necessary to express the invariant polynomials. This is not

a simple task ([4]) and can be related to the works of Davis

([2], [3]). There are some particular cases where this can

be done, typically:



a) R = I. In this case, (9) is given by

f(Λ) =
πm(m−1)etr(−M

H
M)

Γ̃m(n)Γ̃m(m)

m
∏

k=1

λk
n−m

m
∏

k<l

λk − λl
2

(12)

×

∞
∑

k,t=0

∑

κ,τ ;φ∈κ,τ

C
κ,τ
φ (−I,MH

M)Cκ,τ
φ (Λ,Λ)

k!t![n]τCφ(Im)

b) M = 0: in this case, (9) is given by

f(Λ) =
πm(m−1)|R|−n

Γ̃m(n)Γ̃m(m)

m
∏

k=1

λk
n−m

m
∏

k<l

λk − λl
2 (13)

×

∞
∑

k,t=0

∑

κ,τ ;φ∈κ,τ

C
κ,τ
φ (−R

−1,0)Cκ,τ
φ (Λ,Λ)

k!t![n]τCφ(Im)

The main difficulty of finite free deconvolution is related

to the implementation of these functions.

IV-C. Moments Method

In this section, we explain the moments method which

we propose to compute free deconvolution in the finite

case. For example, in the model (1), we need to compute

the moments of YY
H , given by

t
m,n,p
Y

=
1

m
E

[

trace

((

1

n
YY

H

)p)]

and relate these moments to those of R and S. Note that

this can be easilly done when R = I.

Suppose that Y is a m× n standard Gaussian matrix. We

can consider Sp the set of permutations of p elements

{1, 2, . . . , p}, ([11]). For π ∈ Sp, we denote by π̂ the

permutation in S2p defined by

π̂(2j − 1) = 2π−1(j), (j ∈ {1, 2, . . . , p}) (14)

π̂(2j) = 2π(j) − 1, (j ∈ {1, 2, . . . , p}). (15)

Let k(π̂) and l(π̂) be the number of equivalence classes

of ∼p consisting of even numbers and odd numbers,

respectively. Then, one can show that:

1

m
E

[

trace

((

1

n
YY

H

)p)]

=
1

mnp

∑

π∈Sp

nk(π̂)ml(π̂).

(16)

For example, the first fourth moments are given by

1

m
E

[

trace

(

1

n
YY

H

)]

= 1,

1

m
E

[

trace

(

(

1

n
YY

H

)2
)]

= c + 1,

1

m
E

[

trace

(

(

1

n
YY

H

)3
)]

= c2 + 3c + 1 +
1

n2
,

1

m
E

[

trace

(

(

1

n
YY

H

)4
)]

= c3+6c2+6c+1+
5(1 + c)

n2
,

where c = m
n

.

Future work in this Phd thesis will focus on the calcu-

lation of

1

m
E

[

trace

((

1

n
R

1
2 SS

H
R

1
2

)p)]

with respect to the eigenvalues of R. This will also be

extended to the information plus noise model.

V. CONCLUSION

In this paper, we have proposed to extend free decon-

volution to finite matrices. For this, we have proposed

two algorithmic methods: the moments method and the

invariant polynomials method. Each one of those meth-

ods present some difficulties with pratical implementation

problems. Typically, in the case of a Wishart matrix, such

result exists already. Although we focus, for tractability, on

the Gaussian complex law, the results could be extended to

the non complex case. Applications to the cognitive radio

context will be detailed at the end of the Phd.
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