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Deployment Analysis of cooperative OFDM base stations

Gaoning He, Hamidou Tembine and Mérouane Debbah

Abstract— We study the resource allocation problem in Or-
thogonal Frequency Division Multiplexing (OFDM) systems as
a cooperative game. The goal is to maximize the overall system
rate considering fairness metrics among users. We propose
Nash bargaining solution (NBS) as a tool that achieves point(s)
on the Pareto frontier of the game theoretical rate region
under asymmetric conditions. Moreover, we provide a practical
stochastic algorithm that can converge to one of the fairness
points on the Pareto boundary. The numerical results show
that the NBS not only maintains fair resource allocation for all
users, but also provides a desirable spectral efficiency for the
OFDM system.

I. I NTRODUCTION

There has been a recent interest in small cells [1] where
people can access Internet over many “mini” base stations
(hot-spots). Typically in such a wireless network, multi-
ple “mini” base stations are settled to cover a small area
(e.g. airports, restaurants, military bases, hotels, hospitals,
libraries, supermarkets, etc.). In this paper, we assume that
these base stations are communicating simultaneously to sev-
eral receivers using OFDM (Orthogonal Frequency Division
Multiplexing) over a number of dedicated sub-channels. It
is well known that anN -carrier OFDM system [2] using
a cyclic prefix or zero-padding [3], [4] to prevent inter-
block interference is equivalent in the frequency domain to
N flat fading parallel transmission channels. This enables a
power allocation on a carrier basis. In such an interference-
limited multiuser communication environment, power control
becomes a central issue in the system design, since each
user’s performance depends not only on its own transmit
power, but also on the transmit power of all the other users.

In general, there are two ways to study the power al-
location problem depending on the system settings, i.e.
centralized approaches and decentralized approaches.

In centralized approaches, the problem (thanks to a central
scheduler) is considered as a global optimization problem
in order to maximize the overall achievable sum-rate (cor-
responding to the Shannon capacity [5] when single user
detecting is applied). From a single user point of view, given
other users’ states and power allocation strategies, it is a
classical convex optimization problem [6], whose solutionis
given by “water-filling” [7], [8], [9]. The multi-user version
of this problem is a non-convex optimization problem where
there may exist multiple local optimal points. Unfortunately
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it can be shown that this kind of problem is NP-hard [10]
and often difficult to solve efficiently for an exact global
optimum. Some efforts have been made in this direction
to achieve a reasonable trade-off between the global per-
formance and the computational complexity, as in [11]. As a
matter of fact, the major problem for the centralized approach
is that the system requires a central computing resource with
completeand probablyperfect knowledge of the channel
state information (CSI), involving feedback and overhead
communication whose load scales linearly with the number
of transmitters and receivers in the network. Due to fading
and high mobility, it becomes computationally expensive for
many current wireless systems to track the complete and
perfect CSI. Some other efforts have been made to find a
satisfying trade-off between the global performance and the
feedback load while maintaining a reasonable computational
complexity, e.g. communication with partial feedback [12].
However, the performance of centralized approaches is often
limited by the condition of communication environment and
the scaling laws.

Very different from centralized approaches, decentralized
approaches aim to share the global computing and operating
tasks to every entity in the network without setting an
organized center or authority. In this respect, game theory
[13] has been considered as a powerful mathematical tool to
analyze “optimal solution” in the competitive and coopera-
tive environments.

When the hot-spots belong to different network providers,
non-cooperative games appear to be a natural setting for
modeling the competition between providers in such net-
works. The central question here is whether a Nash equi-
librium (NE) exists (or under which conditions NE exists),
and if so, whether the system operates efficiently at the
NE. One of the earliest contributions in this direction is
the work of Yu et. al [14]. With a simplified two-user
interference channel model, they show that the existence and
uniqueness of Nash equilibrium is satisfied only under certain
conditions (depending on the channel crosstalk matrix). The
iterative water-filling (IWF) algorithm is proposed to find
an approximate solution by splitting the original problem
into several convex sub-problems, then iterating over them.
IWF is amenable to practical implementation without the
need for a centralized control. As a multiuser extension, [16]
shows that for arbitrary symmetric interference environments
and for certain asymmetric channel conditions, IWF can
converge to a competitive NE. A more general extension on
the channel gain matrix has been made in [17]. It shows that
a unique NE almost surely exists, if the channel gain matrix
is assumed to be “random”. Fortunately this assumption



is usually valid for wireless channels, due to independent
fadings. However, sustained by numerical results, [17] shows
that the inefficiency of non-cooperative game approaches can
be significant comparing to the centralized approaches, espe-
cially when the number of transmitters increases. Moreover,
the performance unbalance between users can be a serious
problem, since there is absolutely no control on the fairness
issue. Similar results can be found in [11], where the authors
show that the performance of IWF can be improved by
up to 380% in their centralized approach. Obviously the
efficiency of “competitive optimality” is not so inspiring
from an engineering point of view.

However, in many practical applications, the hot-spots be-
long to the same network provider. In this situation, providers
may prefer a full cooperation of the hot-spots with limited
signalings (due to the lack of a backbone infrastructure) in
order to obtain cooperative gains and further improve the
performance from NE. Therefore, it is natural to extend the
framework of non-cooperative games to cooperative games.
In this paper, we take into consideration the concept of the
NBS, as it provides a fair operation point for cooperative
communication systems. The NBS is a standard tool in
cooperative game theory, and is applied widely in network
resource allocation. For example, in [18], a criterion based
on NBS is applied to orthogonal frequency division multiple-
access (OFDMA) networks. This method generalizes the
proportional fairness and increases the efficiency of the
system. In [19], the ideas of max-min fairness, proportional
fairness and NBS have been applied to the Gaussian multiple
access channel (MAC) and the Gaussian broadcast channel
(BC). Algorithms have been designed to locate the fair point
in the capacity region. In [20], cooperative game is used to
provide preferred points on the boundary of the achievable
rate region for a simple2×2 interference channel. From their
simulation results, the cooperative solution NBS is shown to
significantly outperform the competitive NE.

The aim of this study is to design cooperative algorithms
to maximize the overall system rate considering fairness
between players, under the constraints of players’ minimal
rate requirements and maximal transmit powers.

The paper is organized as follows. In section II, we
describe the system model and the resource allocation
problem. In section III, we characterize asymmetric NBS
with its efficiency. Finally, numerical results are provided in
section IV followed by a conclusion in section V.

II. SYSTEM MODEL AND DESCRIPTION

In this section, we describe the system model considering
N independent parallel Gaussian channels withM trans-
mitters simultaneously communicating toN receivers. We
define theM transmitter set asM := {1, 2, . . . ,M} and the
N sub-channel set asN := {1, 2, . . . , N}. We assume that
each receiver is connected to several hot-spots (from whichit
decodes data) on a pre-assigned carrier. It can download in-
formation from several hot-spots simultaneously. Moreover,
all receivers detect signals in different bands (a carrier),

Fig. 1. The multi-user multi-carrier channel model

as shown in Fig. 1. For wireless communication systems,
typically we assume that the sub-channels have slow-fading
so that the channel fading coefficients are constant during the
period of each OFDM frame. Within a given OFDM frame,
let G ∈ R

M×N
+ be the channel gain matrix where the(m,n)

entry ofG is denoted asgm,n, the magnitude-squared of the
fading channel gain for the downlink channel from themth

base station (BS) to thenth MT. G can be modeled as a
random matrix chosen from a jointly Rayleigh distribution.
We also assume that each MT decodes the information from
each BS using single user detector, i.e. when MTn detects
BS m’s signal, it treats the signals from other base stations
as noise. Therefore, the signal to interference plus noise ratio
(SINR) from BSm to MT n is defined as

γm,n =
gm,npm,n

σ2 +
∑

j 6=m gj,npj,n
, ∀m ∀n (1)

whereσ2 models the white Gaussian noise variance on each
subcarriern, pm,n ≥ 0 represents the power transmitted by
the mth BS on thenth subcarrier, and the corresponding
maximum achievable rate (known as capacity) with simple
decoder at the receiver side is given by [7]

Rm,n = log (1 + γm,n) , ∀m ∀n (2)

Hence, the sum-rate for each BSm is

Rm =
N
∑

n=1

Rm,n =
N
∑

n=1

log (1 + γm,n) , ∀m (3)

which represents the intuitive “utility” in a non-cooperative
game setting [17]. The total transmit power of each BS is
restricted by a power constraint

N
∑

n=1

pm,n ≤ P̄m, ∀m (4)

for P̄m > 0, ∀m. Note that the non-cooperative setting of
(3) has been studied in [17]. However, here we focus on
the cooperative setting for which we introduce the Nash
Bargaining concept.
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Fig. 2. Illustration of Nash bargaining solution

III. A SYMMETRIC NASH BARGAINING

A. Nash Bargaining definition

The Nash bargaining is a natural framework that allows us
to define and design a fair assignment of rate between players
which will play the role ofbargainers. It is characterized
by a set of axioms that are appealing in defining fairness
or by a maximization of log-concave function on the set of
feasible sum-rates. We are interested in the NBS since it can
be seen as a natural extension of the proportional fairness
criterion which is probably the most popular fairness. Players
are faced with the problem to negotiate for a fair point in
the convex set of feasible rates. If no agreement can be
achieved by the players, the disagreement utilities (sum-rate)
is obtained (see Fig.2).

The standard Nash bargaining assumes that all players in
the cooperative game have the same priority. The symmetry
axiom ensures all players have the same priority. It assures
that the players will achieve the same NBS, if they have
the same feasible utility function set. The asymmetric Nash
bargaining is identical to the NBS except that thesymmetry
axiom is not satisfied.

For a set of playersN , a Nash bargaining game is defined
by a pair(Rmin

m ,F), whereF is a compact and convex set
which defines the feasible set of utilities of all the agents,
and (Rmin

m,n)m,n ∈ F is known as the disagreement point
which defines the amount of utility each player will get
if the bargaining process fails. Whenever the disagreement
situation can be decided by a non-cooperative game, it is
reasonable to assume that the disagreement rate solution is
given by a NE of the relevant non-cooperative game. When
the utility for playerm is given by the rateRm(p) in (3),
andp∗ is the power allocation matrix at the NE of the non-
cooperative game (which can be obtained by IWF [16]), then
Rmin

m can be taken as

Rmin
m = Rm(p∗) =

N
∑

n=1

log (1 + γm,n(p∗n)) , ∀m

the worse Nash equilibrium payoff in the non-cooperative
case, where vectorp∗n represents thenth column ofp∗. The
asymmetric bargaining solution(Rm)m ∈ F satisfies the
following conditions:

• Pareto optimality1.
• individual rationality2.
• Invariance to positive affine transformations.
• If the domainF is reduced to a subset of the domain

that contains the bargaining solution, then the bargain-
ing solution remains the same.

.

max
R,

Rm,n≥Rmin
m,n

M
∏

m=1

(

Rm − Rmin
m

)ωm (5)

subject to

F =



















∀n ∈ N ,
∀∅ 6= J ⊆ {1, 2, . . . , N} : J ∈ 2N \{}

Rm,n ≥ 0
∑

m∈J Rm,n ≤ log
(

1 +
∑

m∈J pm,ngm,n

σ2

)

whereωm ≥ 0 is the weight of “bargaining power” (which is
related to the relative abilities of players in a situation to exert
influence over each other) for playerm in the interaction.

Note that the outcome (rate set) of (5) may not be a
feasible “instantaneous” solution for the transmit power (4).
However, it is known that any point in the rate region can
be achieved by a simple time or frequency sharing strategy
[9]. We now focus on the problem of rate Nash bargaining.

B. Transformation to concave optimization problem

In order to find the rate NBS, we consider the non-concave
maximization problem (5), which can be actually transferred
to a convex optimization:

max
R∈F

Rm,n≥Rmin
m,n

∑

m∈M

ωm log(Rm − Rmin
m ) (6)

where the objective function is concave inR and the con-
straint spaceF is non-empty, convex and compact.

Hence, for a fixed value of disagreement point (for ex-
ample, the disagreement is equal to the worse Nash equilib-
rium payoff), theasymmetric Nash bargaining solutions, i.e.
RNBS =

{

RNBS
1 , . . . , RNBS

M

}

, can be found by solving the
following convex optimization problem:

RNBS = arg max
R∈F

Rm>Rmin
m

∑

m∈M

ωm log(Rm − Rmin
m ) (7)

Note that the uniqueness is only on the total rate in all the
subcarrier of each player. Rate per subcarrier needs not be
unique. Therefore, for each player, the bargaining solutions
over all the subcarriers will lead to the same utility. But
players may have different utilities. The reason of non-
uniqueness of the bargaining solution is that the function
Rm(·) is not injective.

We regularize the logarithm of the product (sometimes
referred toNash product) by substituting the logarithmic

1An allocation of payoffs is Pareto optimal or Pareto efficientif there is
no other feasible allocation that makes every player at leastas well off and
at least one player strictly better off.

2Each player has at least the disagreement payoff.



function with the following function, defined for allr ∈ R

by

φǫ(r) =

{

log(ǫ) + r−ǫ
ǫ if r ≤ ǫ

log(r) if r > ǫ

This regularization replaces the logarithm function by its
Taylor first order development for small rates. We then have a
regular function to maximize in all the feasible sum-rate set.
The following Lemma shows that this regularization gives
the same bargaining solutions.

Lemma III.1. For ǫ > 0 sufficiently small, equation (6) is
equivalent to the following expression :

max
R∈F

∑

m∈M

ωmφǫ(Rm − Rmin
m ) (8)

Proof: See in appendixA.
Note that the expression (8) in Lemma III.1 maximizes

over the entire setF of feasible and individual rational rate
profile. This result is crucial to gradient-based algorithms
to not have to account for scenarios where a BS currently
achieves a utility lower than the disagreement point, which
may happen before the algorithm converges. We will be able
to guarantee to each BS at least the worse Nash equilibrium
rate at any step of the adaptive algorithm.

C. Karush-Kuhn-Tucker optimality conditions

It is easy to verify that the sum-log function is concave
and the corresponding constraint set is convex. So, the
Karush-Kuhn-Tucker (KKT) condition of the optimization
is sufficient and necessary for the optimality [6]. To derive
the KKT conditions, form the Lagrangian functionL as:

L (R, λ) =
∑

m∈M

ωm log

(

∑

n∈N

Rm,n − Rmin
m

)

−
∑

J⊆M

∑

n∈N

λJ
n





∑

m∈ΩJ

Rm,n − R̄J
n





where R̄J
n represents the maximum sum-rate on subcarrier

n for the sub-group of playersJ , λJ
n ≥ 0 is the dual

variable for the associated sum-rate constraint, and the KKT
conditions are

ωm
∑

n∈N R⋆
m,n − Rmin

m

− βn = 0, ∀m ∀n (9)

λJ
n

(

∑

m∈J

R⋆
m,n − R̄J

n

)

= 0, ∀n ∀J (10)

where the optimal rate setR⋆ represents the sum-rate
bargaining solutionRNBS in (7), and we defineβn :=
∑

J ,m∈J ,J⊆M λJ
n . Note that two observations can be made

based on (9):

• First, all theβn have the same value, and we can define
β := β1 = β2 = . . . = βN .

• Second, it is easy to see thatβ > 0, sinceωm > 0, ∀m.

Proposition III.1. The Lagrangian multiplierλM
n is positive

for all n, and at the optimality point, the largest rate
constraint must be satisfied with equality, i.e.

∑

m∈M

R⋆
m,n = R̄M

n (11)

Proof: See in appendixB.
From KKT conditions we have the following linear equa-

tions
∑

m∈M

R⋆
m,n = R̄M

n , ∀n (12)

∑

n∈N

R⋆
m,n = Rmin

m + ωmβ−1, ∀m (13)

and the parameterβ can be calculated as

β−1 =
∑

n∈N

R̄M
n −

∑

m∈M

Rmin
m (14)

In general, equations (12), (13) haveMN + 1 variables
(which areβ and all theRm,n), but one only yieldsM +N
independent linear equations. This could simply imply that
the optimization problem has multiple solutions. From Equa-
tion (13), we find that each player’s sum-rate

∑

n∈N R⋆
m,n is

unique at a bargaining solution. This confirms the uniqueness
in sum-rate, but we may have multiple splitting rate solutions
over the subcarriers.

D. Pure Potential

The concept of potential games were proposed by Mon-
derer and Shapley in 1996. The idea is to find thepotential
functionsuch that the incentive of all players are mapped into
one global function, and the set of pure Nash equilibria can
be found by simply locating the local optima of the potential
function. In our problem, for a subgroup of playersJ ⊆ M,
we define function

v(J ) :=
∑

n∈N

log

(

1 +

∑

m∈J pm,ngm,n

σ2

)

(15)

the maximum sum-rate that the coalitionJ receives. Then
,v(∅) = 0 and the following inequalities holds:

v({m}) =
∑

n∈N

log
(

1 +
pm,ngm,n

σ2

)

≥ Rm (16)

For ∀m /∈ J , we define

∆vm,J := v(J ∪ {m}) − v(J )

=
∑

n∈N

log

(

1 +
pm,ngm,n+

∑

m′∈J pm′,ngm′,n

σ2

)

−
∑

n∈N

log

(

1 +

∑

m′∈J pm′,ngm′,n

σ2

)

=
∑

n∈N

log

(

1 +
pm,ngm,n

σ2 +
∑

m′∈J pm′,ngm′,n

)

≥ Rm. (17)



Hence, for anyJ ⊆ J ′, we have

∆vm,J ≥ ∆vm,J ′ (18)

Note that whenJ = M\{m}, the term∆vm,J is exactly
the sum-rate of mobilem, Rm. We say thatv is a pure
potential. To see the link with static continuous-kernel non-
cooperative potential games, consider the difference

∆Rm := Rm(pm, p−m) − Rm(qm, p−m)

=
∑

n∈N

log



σ2 +
∑

j∈M

pj,ngj,n



−

∑

n∈N

log



σ2 + qm,ngm,n +
∑

j∈M\{m}

pj,ngj,n





= w(pm, p−m) − w(qm, p−m) (19)

wherew(pm, p−m) = v(M),

w(qm, p−m)=
∑

n∈N

log

(

1+
qm,ngm,n+

∑

j∈M\{m} pj,ngj,n

σ2

)

Next, we derive some relations between the pure potential
and maximal feasible solutions (core). For J1 andJ2 two
subgroups of players, one has,

v(J1) + v(J2)

=
∑

n∈N

log

[(

1 +

∑

m∈J1
pm,ngm,n

σ2

)

(

1 +

∑

m∈J2
pm,ngm,n

σ2

)]

>
∑

n∈N

log

(

1 +

∑

m∈{J1∪J2}
pm,ngm,n

σ2

)

= v(J1 ∪ J2) (20)

This implies thatv is subadditive, i.e. v(J1∪J2) < v(J1)+
v(J2).

Using theses properties, the set of feasible utilities with
maximal value forM, i.e

∑

m∈M Rm = v(M), satisfies
∀J ⊂ M,

∑

m∈J Rm ≤ v(J ). This set is sometimes
referred to the core. We transform the inequalities that define
the core to a linear program (LP) problem:

(LP) :

{

max
∑

m Rm

s.t. R ∈ F
(21)

Then, the non-emptiness of the core is exactly equivalent
to the optimum value of the primal problem (21) (with
LP feature) is equal tov(M). The dual problem, through
Lagrangian multipliers, can be written as:

L(R, λ, µ)

=
∑

m

Rm−
∑

J

λJ

(

∑

m∈J

Rm − v(J )

)

+
∑

m∈M

µmRm

The primal problem (LP) can be interpreted as

max
R∈R

M
+

inf
λ≥0,

µ≥0

L (R, λ, µ)

and the dual problem (DP) is obtained by inverting the
“max” and “min”:

inf
λ≥0,

µ≥0

sup
R∈R

M
+

L(R, λ, µ)

sup
R∈R

M
+

L(R, λ, µ) =

{ ∑

J λJ v(J ) if
∑

J ,m∈J λJ = 1

+∞ otherwise

Thus,

(DP) :







min
∑

J λJ v(J )
s.t.

∑

J ,m∈J λJ = 1, ∀m ∈ J
λJ ≥ 0, ∀J ∈ 2M

E. Stochastic Algorithm for Nash Bargaining

In this part, we develop a recursive method of (8) to
compute a Nash bargaining solution. Denote

L(R, λ) =
∑

m

wmφǫ(Rm −Rmin
m )−λM

n (
∑

m∈M

Rm,n − R̄n)

A saddle point of the lagrangianL(·, ·) is the pair(R, λ)
satisfying

L(R′, λ) ≤ L(R, λ) ≤ L(R, λ′), ∀R′ ∀λ′

A necessary and sufficient condition forR = (Rm,n)m,n

to be a constrained minimum is that there is aλ with
nonnegative components such that(R, λ) is a saddle point
of L(R, λ). Let us now consider a recursive algorithm for
finding a saddle point. LetRt

m,n denote thetth estimates and
use the following form of the Robbins-Monro procedure. Let
C denote the hypercube

∏

m,n

[

Rmin
m,n, log

(

1 +
pm,ngm,n

σ2

)]

The multipliersλ are bounded because they are non-negative
and their sum is upper-bounded (see equation (14)) by

1
∑

n∈N log
(

1 +
∑

m∈M pm,ngm,n

σ2

)

From the KKT conditions, the constraint set can be reduced
to

C ∩

{

R,

M
∑

m=1

Rm,n ≤ R̄n, ∀n ∈ N

}

Denote

qn(R) = R̄n −
M
∑

m=1

Rm,n

The recursive algorithm is then given by

λt+1
n = max

(

0, λt
n + ǫtqn(Rt) + ǫtχt

n

)

Rt+1
n = projC

[

Rn,t + ǫt
(

LR(Rt, λt) + ξt
n

)]

where the vector

Rt
n =

[

Rt
1,n, . . . , Rt

M,n

]

LR(Rt, λt) =

[

∂

∂Rt
1n

L(·, λt), . . . ,
∂

∂Rt
M,n

L(·, λt)

]



projC denotes the projection operator over the hypercubeC,
ξt is the “noise” or “error” in the estimate ofL(R, λ) and
χt

n is the “noise” in the estimate ofqn. Using the regularized
function φǫ in the Lagrangian, we obtain a regular concave-
convex function to maximize on the sum-rates and minimize
on theλ. Using the methods in [15], the algorithm can be
shown to converge to a saddle point under some conditions
on the learning ratesǫt (

∑

t ǫt = +∞,
∑

t(ǫ
t)2 < +∞)

with a good approximation of the noises.

F. Strong Equilibria

Since the definition of Nash equilibrium only requires the
absence of any profitable unilateral deviations by any player.
A Nash equilibrium is not guaranteed to be invulnerable to
deviations by coalitions of players however. To study our
problem, we will introduce the concept of Strong equilibria,
proposed by Aumann in [21]. Note that the set of strong
equilibria is a subset of Nash equilibria (by taking coalition
of size one) and then any constrained strong equilibria is
Pareto optimal (by taking coalition of full size).

We first describe the constrained strategic gameG defined
as:

• The set of players isM.
• The set of rates of playerm is 0 ≤ Rm,n and
∑

n∈N R′
m,n ≤ R̄m such that in each subcarrier, any

subgroupJ of players are constrained to a common set

∑

n∈N

Rm,n ≤ log

(

1 +
∑

m∈J

pm,ngm,n

σ2

)

.
• If all the constraints are satisfied, each playerm receives

Rm otherwise they get zero.

A vector of rates is ak−strong equilibrium ofG if it is
feasible and no coalition of sizek can improve the sum-rate
of each of its members with the respect to the constraints in
F . A vector of sum-rates is a strong equilibrium if it is a
k−strong equilibrium for any sizek = 1, . . . ,M . A strong
equilibrium is then a splitting rate from which no coalition
(of any size) can deviate and improve the sum-rate of every
member of the coalition (group of the simultaneous moves),
while possibly lowering the sum-rate of players outside the
coalition group. This notion of strong equilibria is very
attractive because it is resilient against coalitions of players.
Most of the games do not admit any strong equilibrium.

Proposition III.2. The Nash bargaining solution for the
sum-rate problem is a strong equilibria forG.

Proof: See in appendixC.
Moreover, the gameG has many strong equilibria, which

will be described in Proposition III.3.

Proposition III.3. The set of strong equilibria ofG is
{

(R′
m,n)m,n ∈ F

∣

∣

∣

∣

∣

∑

n∈N

∑

m∈M

R′
m,n = v(M), R′

m,n ≥ Rm,n

}

Proof: See in appendixD.

Note that we may not have strong equilibria in a strategic
way in terms of transmission power. The following assertions
are equivalent:

• p∗ = (p∗m, p∗−m) is a feasible transmit power set which
gives a rate profile that satisfies (12) and (13).

• p∗ = (p∗m, p∗−m) is a strategic strong equilibrium.

G. Efficiency and benefit of Bargaining

We aim to measure the gap between the worse bargain-
ing solution by varying the disagreement valueRmin and
social optimum value (fully cooperative solution). Define
the efficiency of sum-rate bargaining as the minimum over
(Rmin,J ) of the ratio between the total sum-rate at the
bargaining solution and the maximum value for the potential
(15). It is easy to see that the ratio is less than one
in a sum-rate bargaining solution. The efficiency of sum-
rate bargaining is greater than the sum-rate of competitive
solutions (known as price of anarchy).

We introduce the benefit of bargaining (BoB) to measure
the gap (in percentage) between the worse bargaining solu-
tion and the worse competitive Nash equilibrium.

BoB =
total-sum-rateNBS − total-sum-rateNE

total-sum-rateNE

where total-sum-rate at NBS is defined as
∑

m∈M

RNBS
m

Since the worse competitive Nash equilibrium is an interior
point of the capacity region, there is a gap between this
point and the Pareto frontier. This means that the BoB in
sum-rate is at least non-negative.

IV. N UMERICAL ILLUSTRATIONS

In this section, we provide some numerical results to
demonstrate the advantage of NBS regarding theaverage
system performance. As a basis of comparison, the Nash
equilibrium and the social optima of the non-cooperative
games will be provided and denoted by “NE” and “Optima”,
respectively.

We consider a Wyna linear network with3 BSs
(transmitters) and2 MTs (receivers), as shown in Fig. 3.
The 3 BSs are equally spaced with distanced = 20 meters.
The location of MT1 is fixed at the middle of BS1 and
BS2. Let L2 be the horizontal distance between BS2 and
MT2, we let MT2 moves from the right border of BS2
(L2 = 1 meter far from BS2) to the middle between BS2
and BS3 (L2 = 10 meters far from BS2). The height of
each BS ishBS = 3 meters; the power constraint of each
BS is P̄ = 1; the variance of additive white Gaussian noise
is set toσ2 = 0.01; The propagation loss factor is three.
The system performance (spectral efficiency in Bits/Sec/Hz)
is averaged over104 realizations of frequency selective
fading channels. Fig. 4 shows the average system spectral
efficiency (SE) vs.L2 (in meters). The NBS outperforms
the NE and the Optima of the non-cooperative games.



Fig. 3. Illustration of simulation scenario
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Fig. 4. System spectral efficiency vs.L2

Fig. 5 shows the benefit of bargaining (BoB) vs.L2. Note
that by performing base stations cooperation through Nash
bargaining, the overall system performance is improved
around 23% (between16.5% and 28% when L2 varies
from 1 meter to 10 meters, respectively), comparing to
the Nash equilibrium in the non-cooperative game setting.
In Fig. 6, we compare the average spectral efficiency for
the three BSs when different game solutions are applied.
As expected, Nash bargaining provides a more “fair” and
efficient solution compared to the non-cooperative game
solutions: NE and Optima. By using NBS scheme, BS1 and
BS2 maintain the similar performance as in NE and Optima,
but BS3 obtains nearly doubled-performance compare to
NE and Optima schemes.

V. CONCLUSION AND FUTURE WORKS

In this paper we described the scenario of multiple
transmitters communicating with multiple receivers through
independent parallel sub-channels as a cooperative game.
We mainly study the Nash bargaining game by using
KKT conditions and pure potential. A recursive stochastic
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Fig. 6. Fairness for NBS, Optima and NE.

algorithm is proposed to converge to one point as a NBS on
the Pareto boundary. Finally, in our simulation results, we
show the NBS not only provides a fair power allocation for
players, but also outperform the system spectral efficiency
compare to NE and Optima solutions (without considering
fairness) of the non-cooperative games. Future works will
focus on coalition games and dynamic Nash bargaining.

APPENDIX

A. Proof of Lemma III.1

Proof: By definition of the disagreement outcome and
the feasible payoffs setF , suppose that there exists a feasible
rate profileR that component-wise dominatesRmin, then we
must haveRm > Rmin

m , ∀m, which implies the existence
of ǫm > 0 such thatRm − Rmin

m ≥ ǫm for all m. Let ǭ
be the minimum of the{ǫm}m∈M. Then, ǭ > 0 is strictly
positive. Let ǫ such that0 < ǫ < ǭ. The supremum over
F must be in the regionRm > Rmin

m + ǫ for all m. Thus,
∀m, φǫ(Rm−Rmin

m ) = log(Rm−Rmin
m ) and the constrained

maximization of
∑M

m=1
ωmφǫ(Rm − Rmin

m ) coincides with
∑M

m=1
ωm log(Rm − Rmin

m ). Now consider the case where



the rate profile satisfies the following: there exists a mobile
m for which the total rate over all the channelsR̄m is strictly
lower than the disagreement rate.Rmin

m + ǫ > R̄m. Then, we
show that this configuration cannot be a Nash bargaining
solution.

φǫ(R̄
′
m − Rmin

m ) = log(ǫ) +
R̄′

m − Rmin
m − ǫ

ǫ

and the termR̄′
m−Rmin

m −ǫ
ǫ is negative. Thus,

cc :=
∑

m′

ωm′φǫ(R̄
′
m′ − Rmin

m′ ) (22)

≤ ωm log(ǫ) +
∑

m′ 6=m

ωm′ log(R̄m′ − Rmin
m′ ) (23)

<
∑

m′

ωm′ log(Rm′ − Rmin
m′ ) (24)

Therefore,R̄ is never the maximizer of (6). Thus, for
R̄ to be a maximizer, it must satisfȳR′

m > Rm,min for
all m i.e ∀m, φǫ(Rm − Rmin

m ) = log(Rm − Rmin
m ) and

the constrained maximization of
∑M

m=1
ωmφǫ(Rm − Rmin

m )

over F coincides with
∑M

m=1
ωm log(Rm − Rmin

m ) over
F
⋂

{R, R̄m > Rmin
m }. This completes the proof.

B. Proof of Proposition III.1

Proof: We will use the proof by contradiction. First, let
us assumeλM

n = 0 is true, and we have the corresponding
sum-rate constraint

∑

m∈M

R⋆
m,n ≤ R̄M

n (25)

On the one hand, sinceλM
n = 0, there must exist at least

one player setJ (J 6= M) satisfyingλJ
n > 0, due to the

fact β > 0. This implies
∑

m∈J

R⋆
m,n = R̄J

n (26)

On the other hand, for the complementary player set ofJ ,
i.e.J c := M−J , the following constraint must be satisfied

∑

m∈J c

R⋆
m,n ≤ R̄J c

n (27)

From (26) and (27), we obtain
∑

m∈M

R⋆
m,n ≤ R̄J

n + R̄J c

n (28)

which is in contradication with (25), because of the subaddi-
tive property, i.e.R̄M

n = R̄J∪J c

n < R̄J
n + R̄J c

n (This proof
is provided in subsection III-D). Therefore,λM

n = 0 can not
be true. We must haveλM

n > 0 and (11) due to (10).

C. Proof of Proposition III.2

Proof: A sum-rate bargaining solution (Nash Bar-
gaining) R∗ is a Pareto optimal solution for the sum-
rate maximization. Hence,R satisfies

∑

m R∗
m = v(M).

Consider now that aJ of players deviate fromR∗ and form
a new coalition with ratesR′

J . The new rate profile is then
(R′

J , RJ c). If R′
J does not meet the capacity constraints,

the payoff of each player will be zero. In the capacity region
the total sum rate is constrained to the following inequality:

∑

m∈J

R′
m ≤ v(M) −

∑

m∈J c

R′
m =

∑

m∈J

Rm

So, the optimal deviation will have the equality
∑

m∈J

R′
m =

∑

m∈J

Rm

This means that if a sum-rate of one of the players inJ
increases, then there exists another player in the coalition J
for which the sum-rate decreases after deviating. Thus, the
coalition is non-profitable, and this holds for any coalition
J ⊆ M. We conclude that the bargaining solutions are
strong equilibria of the gameG.

D. Proof of Proposition III.3

Proof: First, remark that if the sum-rate profileR
is not in boundary surface of the capacity region, thenα
is not resilient by deviation by a single player. Hence,R
cannot be a coalition-proof equilibrium [22]. This says
that a necessary condition for a rate profile to be a strong
equilibrium for G is to be in the subset the maximal face
of the sum-rate capacity region. It is easy to see that
this last condition is also sufficient: ifk players deviate
simultaneously from the rate profileR and form a coalition
then, the sum-rate constraints of the new coalition is
bounded

∑

m∈J R′
m ≤ v(M) −

∑

m/∈J Rm. The players
in the coalition with a lower rateR′

m ≤ Rm do not
benefit to be member of the coalition (Shapley criterion of
membership of coalition does not hold), and this holds for
any J j M with cardinality ofJ ≥ 1. This completes the
proof.
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