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Operating Point Selection in Multiple Access Rate Regions

We study the selection of the rate allocation in multiple access channels (MAC). We consider MACs with different rate regions. Namely, we investigate the polytope rate regions, convex non-polytope rate regions, and non-convex rate regions. Different operating points of the rate region possess different properties in terms of efficiency, fairness, stability, etc. Our goal is to provide guidelines for the choice of an operating point using the above-mentioned criteria. We use two methodological approaches: fairness function approach leading to an optimal system operation point and game theoretic approach leading to an equilibrium point. In particular, we use games with correlated constraints. All fairness concepts and normalized Nash equilibrium produce the same rate allocation in the case of a MAC with polytope rate region. In the case of MACs with convex non-polytope and non-convex rate regions this property does not hold and behavior becomes much more various. In the case of some non convex rate regions the max-min fair allocation may even not exist.

I. INTRODUCTION

In this paper we consider capacity regions for different kind of multiple access channels (MAC). A capacity region consists of all n-tuples of achievable rates for a MAC with n users transmitting to a common destination. Typically, one has a very broad choice of achievable rates over the capacity region, however different operating points possess different properties in terms of efficiency, fairness, stability, etc. Our goal is to provide guidelines for the choice of an operating point using above-mentioned criteria. We classify MACs by geometrical characteristics of their capacity regions. Namely, we investigate the polytope capacity regions, convex nonpolytope capacity region and non-convex capacity regions. An example of MAC with a polytope capacity region is the General Time-Invariant Gaussian MAC [START_REF] Cover | Elements of Information Theory[END_REF]. Examples of MACs with a convex non-polytope capacity region are TDMA and FDMA MACs [START_REF] Cover | Elements of Information Theory[END_REF]. An example of MAC with a non-convex capacity region is the Collision channel without feedback [START_REF] Massey | The Collision Channel without Feedback[END_REF]. For the selection of the operating point we use two methodological approaches: game theoretic approach leading to an equilibrium point and fairness function approach leading to an optimal system operation point.

The fairness function approach can be applied to any kind of capacity region. It turns out that in the case of the polytope capacity region some specific optimal fair points coincide with the equilibrium points attained in some games. The latter allows one to use distributed algorithms to achieve those operating points.

In particular in the game theoretic framework we consider games with correlated constraints arising in MACs with polytope capacity regions. In constrained games, each player is faced with a constrained optimization problem rather than a simple non-constrained optimization; the constraints may be independent of actions of other players, in which case they are called "orthogonal constraints" [START_REF] Rosen | Existence and Uniqueuness of Equilibrium Points for Concave N -person games[END_REF]. A more complex situation arises when the actions available to one player depend on those used by the others. Such games are called games with correlated constraints [START_REF] Rosen | Existence and Uniqueuness of Equilibrium Points for Concave N -person games[END_REF]. These games exhibit various characteristics that are very different than those without constraints or with orthogonal constraints. A central feature in these games is that they often possess a large number of equilibria. Natural questions that arise concern selection of an equilibrium. Can we identify ones that are more fair or more stable than others? We study this type of selection criteria as well as other criteria related to decentralized implementations.

It turns out that in MAC with polytope capacity region the rate assignment corresponding to the α-fairness function optimization is the same for all values of the parameter α. It also coincides with the max-min fair allocation, which for this type of MAC, is the same as α-fair allocation when the parameter α goes to infinity. We prove that the α-fair allocation for the MAC with polytope capacity region also coincides with a unique normalized Nash equilibrium. We also show that in this case the maximization of the Jain's fairness index corresponds to maxmin fairness. The above properties are related to the particular polytope structure of the achievable rate region.

In the rest of the paper we investigate multiaccess channels whose achievable regions are not a polymatroid; we study cases in which they are convex but not polytopes, and cases in which they are not convex. We show how the geometric properties of the rate capacity alter the properties of rate assignments corresponding to various fairness concepts. In particular, we show that in the case of some non convex achievable rate regions the maxmin fair allocation may not exist.

II. POLYMATROID ACHIEVABLE RATE REGION

Consider n non-cooperative mobiles transmitting up-link to a base station. The square amplitude of the channel gain between mobile i and the base station is h i . The variance of the additive white Gaussian noise is denoted by σ 2 0 . We consider the setting in which the achievable rate region is given by the convex polytope C defined by the set of constraints:

i∈S R i ≤ ρ(S) ∀S ⊂ {1, ..., n} (1) 
where

ρ(S) = log 1 + i∈S P i h i σ 2 0 .
We assume that no mobile (player) can tolerate the losses that would occur if transmission rates were chosen outside the achievable region. This assumption places these games in the category of games with common constraints [START_REF] Rosen | Existence and Uniqueuness of Equilibrium Points for Concave N -person games[END_REF]. Each player wishes to maximize its own transmission rate, or more generally some strictly concave increasing function U i of its rate. This game has coupled constraints: the choice of strategies of a player depends on the strategies chosen by other players.

The equilibrium notion here, is that of finding a rate allocation vector R within C such that no mobile i can gain by deviating from R i to another S i for which (S i , R -i ) ∈ C (here R -i is the vector of strategies R j for j = i, where R j is the entry of R corresponding to player j). This equilibrium concept is a special case of the so-called "generalized equilibrium" or "social equilibrium". They have been introduced already in [START_REF] Arrow | Existence of an equilibrium for a competitive economy[END_REF], [START_REF] Debreu | A social equilibrium existence theorem[END_REF] (for more recent papers see [START_REF] Debreu | Existence of competitive equilibrium[END_REF], [START_REF] Facchinei | On generalized Nash games and variational inequalities[END_REF]).

As shown recently in [START_REF] Altman | Games with constraints with networking applications[END_REF], to define games with constraints it is not sufficient to know the utility and constraints of each given player. One should also specify how does a player value the fact that constraints of another player are satisfied or violated. Some extreme cases are (i) a player is indifferent to satisfaction of constraints of other players, (ii) common constraints: if a constraint is violated for one player then it is violated for all players. The equilibrium point selections at hand are modelled as games with common constraints. In particular, we shall study the properties of a subset of the equilibria of such games known as normalized equilibria introduced by Rosen [START_REF] Rosen | Existence and Uniqueuness of Equilibrium Points for Concave N -person games[END_REF]. They have properties that are quite appealing in terms of decentralized implementation, pricing and billing.

Games with coupled constraints along with the generalized equilibrium has been applied to many networking problems, see e.g. [START_REF] Altman | S-modular games and power control in wireless networks[END_REF], [START_REF] Altman | Constrained Markov Games: Nash Equilibria[END_REF], [START_REF] Altman | Games with constraints with networking applications[END_REF], [START_REF] Azouzi | Constrained traffic equilibrium in routing[END_REF].

It is straightforward to see that we have:

Lemma II.1. All rates satisfying

n i=1 R i = ρ(S)
, where S = {1, ..., n}, subject to [START_REF] Altman | S-modular games and power control in wireless networks[END_REF] are Nash equilibria and are Pareto-efficient. Any other point is not an equilibrium.

Remark II.1. The strategy of player i in our game consists of choosing the ith entry of a rate vector. A deviation of the ith player from a point in the achievable rate region to another one in that region affects only the rate of that player and not that of other ones.

In view of the large number of Nash equilibria we address next the problem of selecting one which has desirable properties: the normalized Nash equilibrium. The motivation for proposing that one is related to pricing and billing issues. Pricing We are interested in pricing mechanisms that induce equilibria strategies and that can be implemented in a scalable and decentralized way. Let λ i be the per packet price for mobile i and let λ be the vector whose ith entry is λ i . Then the payoff of mobile i with the additional pricing becomes

L λ i (R) := U i (R i ) + λ i ( n i=1 R i -ρ(S)). Define C := i∈S R i ≤ ρ(S), ∀S ⊂ {1, ..., n} \ S.
Consider now the following relaxed game. Find R * ∈ C such that for each i and R ∈ C,

L λ i (R * ) ≥ L λ i (R i , (R * ) (-i) ).
If it has a solution then L λ i (R * ) can be viewed as the Lagrangian that corresponds to the constrained optimization problem faced by mobile i when the other mobiles play (R * ) (-i) obtained by relaxing the single constraint i∈S R i ≤ ρ(S). From Karush-Kuhn-Tucker (KKT) Theorem we know that there exists a vector λ (whose entries are not necessarily equal) such that a rate vector R * is an equilibrium in the original game only if for each i, R * i maximises

L λ i (R i , (R * ) (-i) ) obtained by relaxing the single constraint i∈S R i ≤ ρ(S).
Thus, λ can be used to define a non-scalable pricing. It is non-scalable since the price per packet will depend on i.

Let x * be the vector whose ith component is given by the solution to

dU i (x) dx + λ i = 0. (2) 
If x * ∈ C then it is the unique equilibrium of the relaxed game.

Denote the solution by R * (λ).

Problem P1: Consider a constant λ and let λ be a vector of dimension n with all its entries λ. Then, we wish to find λ such that R * (λ) is an equilibrium of the original game.

If we find such a λ then it defines indeed a scalable distributed pricing since the billing can be performed per packet and can be implemented without any knowledge to which mobile the packet belongs to.

An equilibrium associated with some constant λ that solves Problem P1 is a special case of the normalized equilibrium concept introduced in [START_REF] Rosen | Existence and Uniqueuness of Equilibrium Points for Concave N -person games[END_REF].

Theorem II.1. There exists a unique normalizied equilibrium to the original problem associated with some λ as defined in Problem P1.

Proof: Define G to be the n dimensional square matrix whose ijth entry is ∂Li(R) 2 ∂Ri∂Rj . Then obviously, G + G T is strictly negative definite. The Theorem then follows from [START_REF] Rosen | Existence and Uniqueuness of Equilibrium Points for Concave N -person games[END_REF]Thm 4].

A. Equal utility functions and maxmin fair assignment

Fix λ as given in Theorem II.1. Assume that U i is the same for all i. Then the Lagrangians corresponding to each player i have all the same dependence on their argument:

L λ i (R) := U (R i ) + λ( n j=1 R j -ρ(S)).
Thus x * defined in equation ( 2) has the form (x, ..., x). Note that x does not depend on P i and h i , i = 1, ..., n.

Thus for any P i and h i such that x * ∈ C, the scalable pricing λ from Theorem II.1 yields a Pareto equilibrium which is fair in the sense that all users receive the same rates. This is a special case of the maxmin fairness which we define next.

Definition II.1. A rate allocation is called maxmin fair if we cannot increase the rate R i of user i without decreasing the rate R j for some user j with R j ≤ R i , while maintaining feasibility.

Next we show that (i) when maximizing the sum of utilities over C, the unique solution corresponds to the maxmin throughput assignment; and (ii) the normalized equilibrium is always maxmin fair, even if x * / ∈ C. In the latter case, the equilibrium will of course not be symmetric.

Figures 1 and2 are examples of achievable rate regions for the case of two users. Figure 1 exhibits a case where the maxmin fair rates are equal. In Figure 2 the point on the boundary (the segment S 1 parallel to the x-axis) for which the rates are equal is not Pareto optimal and therefore is not maxmin fair. The maxmin fair rate assignment is in that case the intersection between the segment S 1 and the diagonal segment.

Remark II.2. There are achievable rate regions of other access networks that have the following property Π Pareto : all the points on the boundaries other than those on the axis, are Pareto optimal. An example is given in Section III. Let x be the intersection of the diagonal segment with the Pareto frontier. By construction, all coordinates of x are equal. Since x is Pareto optimal, then for any direction i, the only way to increase x i is by decreasing x j for some j such that x j = x i . Hence, x is a max-min fair assignment. Thus when Π Pareto holds, the maxmin assignment always symmetric even if the data are not.

To establish the above mentioned results we shall use the majorization order and Schur concavity which we define next. 

Definition II.2. (Majorization and Schur-Concave Function [10])

d [i] (1) ≤ k i=1 d [i] (2), k = 1, ..., n -1,
and n i=1 d [i] (1) = n i=1 d [i] (2),
where The following result from [START_REF] Shum | Fair Rate Allocation in Some Gaussian Multiaccess Channels[END_REF] characterizes the maxmin fair rate assignement in terms of majorization.

d [i] (m) is a permutation of d i (m) satisfying d [1] (m) ≥ d [2] (m) ≥ ... ≥ d [n] (m), m = 1, 2. A function f : R n → R is Schur concave if d(1) ≺ d(2) implies f (d(1)) ≥ f (d(2)).
Theorem II.2. The maxmin fair rate assignment belongs to the dominant face S and is majorized by any other point on the dominant face.

We would like to note that there is an algorithm with O(n 2 ) complexity for determination of the maxmin fair rate assignment [START_REF] Shum | Fair Rate Allocation in Some Gaussian Multiaccess Channels[END_REF].

B. Other fairness concepts and their relation to the Normalized equilibrium

1) Global optimization: Consider the global optimization problem of maximizing the sum of the utilities n i=1 U (R i ) over the achievable rate region C. We relax the constraint i R i ≤ ρ(S) and write the Lagrangian

L λ (R) := i U (R i ) + λ( n j=1 R j -ρ(S)).
We can rewrite it as

L λ (R) := i ψ(R i ) where ψ(x) := U (x)+λx- ρ(S) n . (3) 
Using Lemma II.2 we conclude that L λ (R) is Schur concave. We conclude from Lemma II.2 the following:

Theorem II.3. The sum of utilities over the achievable rate region is maximized at the maxmin rate assignment.

Proof: According to Theorem II.2, the maxmin fair rate assignment is majorized by any other point on the dominant face. It therefore maximizes any Schur concave function on the dominant face. In particular, it maximizes L λ (R) for any λ since by Lemma II.2 we conclude that L λ (R) is Schur concave. This implies the Theorem since by Karush-Kuhn-Tucker (KKT) Theorem, there exists λ such that the sum of utilities is maximized by the rate assignment that maximizes the Lagrangian L λ (R). ⋄ 2) α-fairness: We next recall the concept of α-fairness and of general α-fairness. Mo and Walrand [START_REF] Mo | Fair End-to-End Window-based Congestion Control[END_REF] introduced the family of utility functions indexed by a real non-negative parameter α:

V α (x) = x 1-α 1 -α for α = 1.
Consider the problem of maximizing n i=1 V α (x i ) where (x 1 , ..., x n ) lies in a closed convex set X. It is shown in [START_REF] Mo | Fair End-to-End Window-based Congestion Control[END_REF] that the solution of the maximization problem converges to the maxmin fair assignment over X as α → ∞, it provides the harmonic fairness for α = 2, it converges to the proportional fair assignment as α → 1 and it provides the globally optimal assignment over X for α = 0. Now, instead of assigning fairly x ∈ X we can assign fairly some utility of x. We thus define

W α (x) = U (x) 1-α 1 -α and maximize n i=1 W α (x i ) over X.
The solution is called the generalized α-fairness [START_REF] Touati | Generalized Nash Bargaining Solution for bandwidth allocation[END_REF].

Corollary II.1. (i) For all α ≥ 0, the alpha-fair rate assignment coincides with the unique rate assignment. (ii) Consider some strictly concave increasing utility function U . For all α ≥ 0, the generalized alpha-fair rate assignment coincides with the unique maxmin rate assignment.

Proof: Both the α-utility V α as well as the generalized αutility W α are concave. It follows from Lemma II.2 that n i=1 V α (R i ) and n i=1 W α (R i ) are Schur concave. Since these are concave functions defined on a convex compact set, they have a solution (which is unique for all α > 0). The solution is thus the same for all α > 0 and is majorized by any other point on the dominant face of the rate region. In particular since this solution does not depend on α, it is the limit of the α-fair solutions as α → ∞ and therefore it follows from [START_REF] Mo | Fair End-to-End Window-based Congestion Control[END_REF] that the solution is maxmin fair. ⋄

Remark II.3. The proof of the Corollary provides an alternative proof to Theorem II.2.

Remark II.4. It may seem astonishing that all fairness concepts provide the same rate allocation. In fact, this is not the case in general fair assignment (see examples in [START_REF] Touati | Generalized Nash Bargaining Solution for bandwidth allocation[END_REF]) although the utilities V α and W α are always Schur concave. To understand this, note that both α-fair and generalized α-fair assignments are Pareto optimal. Whenever the Pareto optimal set has the property that the sum rates are constant then indeed any Schur concave function will have the same maximizer and thus all the fairness concepts would coincide. In the ensuing Sections III and IV we give examples of multiuser access channels where different fairness concepts result in different rate allocations.

3) Jain's fairness: We shall call a rate allocation Jain's fair if it maximizes the Jain's fairness index [START_REF] Jain | A Quantitative Measure of Fairness and Discrimination for Resource Allocation in Shared Systems[END_REF]:

J = ( n i=1 R i ) 2 n n i=1 R 2 i .
The Jain's fairness index ranges from 1/n (worst case) to 1 (best case).

Since the maxmin fair rate allocation minimizes

n i=1 R 2 i
[14], we conclude that the maxmin fair rate allocation is also the Jain's fair rate allocation.

4) The normalized equilibrium: We know from Theorem II.1 that there exists a unique normalized equilibrium R * to the original problem associated with some λ as defined in Problem P1. R * is thus such that for each i, its ith component maximizes

L λ i (R) := U (R i ) + λ( n j=1 R j -ρ(S)
). This implies that R * is the unique vector that maximizes

j U (R j ) + λ( n j=1 R j -ρ(S))
over C. This is the Lagrangian that corresponds to the global optimization problem. We conclude that R * is the globally optimal solution. Applying Theorem II.3 we conclude:

Theorem II.4. The unique normalized equilibrium is the maxmin fair assignment.

C. Differential services and weighted α-fairness

We next raise the question of providing differentiation between the mobiles. We do that by defining K priority classes. Let k(i) be the priority class corresponding to mobile i. We associate to class k priority some positive constant w k . Introduce the following problem.

Problem P2. Let λ be some constant and define the price per traffic of mobile i as λ i (w k ) = λ/w k if mobile i belongs to priority class k. We wish to find the constant λ such that λ i (w k(i) ) defines an equilibrium in our problem.

If such pricing exists then it is indeed scalable since billing is done not according to the exact identity of the source of each packet but according to the priority class of the transmitted packets.

An equilibrium obtained as in problem P2 indeed exists and is unique [START_REF] Rosen | Existence and Uniqueuness of Equilibrium Points for Concave N -person games[END_REF]. This is the general form of a normalized equilibrium. The choice of w k now allows to determine the rate that each priority class would get.

Furthermore, according to [START_REF] Rosen | Existence and Uniqueuness of Equilibrium Points for Concave N -person games[END_REF], finding normalized equilibrium is equivalent to the solution of the following optimization problem:

U (R) = n i=1 w k(i) U (R i ), (4) 
subject to constraints (1). In the important particular case when the optimal solution to (4) lies on the dominant face and the choice of utility function corresponds to α-fairness, we have explicit expressions for λ and for the optimal rates.

Theorem II.5. Let U (x) be α-fairness utility function. If the optimal rate allocation lies on the dominant face, the Lagrange multiplier and the optimal rates are given by

λ = n j=1 (w k(j) ) 1/α ρ( S) α , and 
R i = ρ( S) n j=1 (w k(j) ) 1/α (w k(i) ) 1/α . Proof:
The formulae of the theorem's statement are derived with the help of the Lagrangian

L = n i=1 w k(i) R 1-α i 1 -α + λ(ρ( S) - n i=1 R i ).
We note that if we take α = 1 the prices become proportional to the rates. In the case of α = 1 the utility function is logarithmic, which corresponds to the standard utility function for elastic traffic. This provides justification to price elastic traffic proportionally to required rates.

We also note that for any choice of weights we have that R i → ρ( S)/n as α → ∞ whenever the point (ρ( S)/n, ..., ρ( S)/n) belongs to the dominant face. In fact, since the case α → ∞ corresponds to the lexicographic optimization for any choice of weights, the following more general statement holds.

Theorem II.6. As α → ∞, the weighted α-fair rate allocation converges to maxmin fairness.

We would like to note that the lexicographic optimization and maxmin fairness concepts coincide for polymatroid capacity regions but can differ in the case of non-convex regions. We shall discuss this issue in more detail in the special section on non-convex capacity regions.

There are several kinds of multiple access systems whose capacity region is characterized by a polytope. Some examples are listed below:

• Multiple access systems with single transmit antennas at both sides and time invariant channel [START_REF] Cover | Elements of Information Theory[END_REF]. • Multiple access systems with single transmit and receive antennas and flat fading, when the channel state information is known only at the receiver but not at the transmitter [START_REF] Shamai | Information theoretic considerations for symmetric, cellular, multiple-access channels-Part I[END_REF].

• Multiple access systems with multiple transmit and receive antennas and unbiased flat fading, when the channel state information is known only at the receiver but not at the transmitter [START_REF] Rhee | On the capacity of multiuser wireless channels with multiple antennas[END_REF].

III. CONVEX NON-POLYTOPE ACHIEVABLE RATE REGION

Let us consider the Gaussian multiple access orthogonal channel. Classical example of orthogonal channels are TDMA and FDMA. In this case, the achievable rate region is given by

R i ≤ θ i ln 1 + P i h i θ i σ 2 ∀S ⊂ {1, ..., n} (5) 
where 0 ≤ K ı=1 θ i ≤ 1. Given P i and h i , i = 1...K the achievable rate region (5) is convex but it is not a polytope and it is strictly contained in [START_REF] Altman | S-modular games and power control in wireless networks[END_REF]. All points on the capacity region border are Pareto efficient and Nash equilibria. Therefore, here again we need to choose among many Pareto efficient points and Nash equilibria. We suggest to use α-fairness utility function to select a particular equilibrium point. In the following theorem we characterize the α-fair equilibrium selection.

Theorem III.1. The α-fair rate allocation in the Gaussian multiple access orthogonal channel, which maximizes the utility function

U (R) = n i=1 R 1-α i 1 -α ,
is unique for any value of the parameter α and is given by θ's which solve the following system of equations

θ i ln(1 + P i h i θ i σ 2 ) -α ln(1 + P i h i θ i σ 2 ) - P i h i θ i σ 2 + P i h i = λ 0 , (6) n i=1 
θ i = 1.

The above system has a solution in explicit form in the case of total rate maximization (α = 0):

θ * i = P i h i n k=1 P k h k . ( 7 
)
When α → ∞, the α-fair rate allocation provides maxmin fair rate allocation (R * 1 = R * 2 = ... = R * n ). Proof. The uniqueness of the α-fair rate allocation follows from the fact that we deal with the convex optimization problem. The equations [START_REF] Debreu | Existence of competitive equilibrium[END_REF] follow from the KKT conditions for the Lagrangian

L = n i=1 R 1-α i 1 -α +λ i θ i ln(1 + P i h i θ i σ 2 ) -R i +λ 0 1 - n i=1 θ i .
For the particular case α = 0, it follows from system (6) that

ln(1 + P i h i θ i σ 2 ) - P i h i θ i σ 2 + P i h i = ln(1 + P j h j θ j σ 2 ) - P j h j θ j σ 2 + P j h j , or ln(1 + P i h i θ i σ 2 ) -ln(1 + P j h j θ j σ 2 ) = P i h i θ i σ 2 + P i h i - P j h j θ j σ 2 + P j h j .
Now it is easy to see that the values of θ's provided by [START_REF] Azouzi | Constrained traffic equilibrium in routing[END_REF] make zero both sides of the above equation. Also, it is clear that the values of θ's provided by [START_REF] Azouzi | Constrained traffic equilibrium in routing[END_REF] satisfy the normalization condition. ⋄ Let us calculate the Jain's fairness index for the rate allocation corresponding to the total rate maximization

J = ( n i=1 R i ) 2 n n i=1 R 2 i = ( n i=1 P i h i ) 2 n n i=1 P 2 i h 2 i ≥ 1 n .
We note that the lower bound 1/n can be achieved and hence the allocation corresponding to the total rate maximization can be extremely unfair judging by the Jain's fairness index. Thus, the α-fairness concept provides a continuous spectrum of rate allocations from the possibly very unfair total rate maximization to the completely fair maxmin rate allocation.

It is easy to calculate the maximal total rate corresponding to the total rate maximization problem

n i=1 R * i = ln 1 + n i=1 P i h i σ 2 .
Multiple access systems which enable time-sharing of the coding schemes are in general characterized by a convex capacity region. Examples of multiple access channels having a convex non-polytope capacity region with non linear boundary surfaces are:

• Time invariant multiple access systems with multiple antennas and without intersymbol interference (ISI) [START_REF] Yu | Iterative Water-filling for Gaussian Vector Multiple Access Channels[END_REF]. • Time invariant multiple access channel with single [START_REF] Cheng | Gaussian Multiaccess Channels with ISI: Capacity Region and Multiuser Water-Filling[END_REF] or multiple antennas [START_REF] Yu | Iterative Water-filling for Gaussian Vector Multiple Access Channels[END_REF] and ISI. • Flat fading channel with channel state information known at the transmitter and the receiver and single [START_REF] Tse | Multiaccess Fading Channel-Part I: Polymadroid Structure, Optimal Resource Allocation and Throughput Capacity[END_REF] or multiple transmitting and receiving antennas. • In all previous cases with fading channels we considered the ergodic capacity regions, i.e. we assumed that the codewords have a duration such that the channel is ergodic in such time interval. However, it is possible to consider a second situation when codewords have a duration independent of the scale of the channel variation.

In general, the channel is not stationary and ergodic in the timeframe of a codeword. In such a case, it is possible to have reliable communications only if the channel is known at both ends. These kind of capacity region for multiple access channel with single transmit and receive antennas are investigated in [START_REF] Tse | Multiaccess Fading Channel-Part II: Delay Limited Capacity[END_REF] and the maximum achievable rates are referred to as delay limited capacities. The approach of Theorem III.1 equally applies to the above multiple access channels. In particular, in the case of any strictly convex capacity region, there is a unique α-fair rate allocation. We also note that in the present case, similarly to the polymatroid capacity region case, the Jain's fair allocation coincides with the maxmin fair allocation.

IV. NON-CONVEX ACHIEVABLE RATE REGION

Shannon pointed out in [START_REF] Shannon | Two Way Communication Channels[END_REF] that all capacity and zerocapacity regions are convex if it is possible to time-share the coding schemes applied to attain individual points of the region. However, time sharing is not applicable to all systems. When some system characteristic prevents the use of time sharing the capacity region is not necessarily convex. As an example, time sharing is not applicable if the system nodes do not share a common time reference.

We present below some examples of systems with nonconvex rate regions.

A. Collision Channel Without Feedback

The collision channel without feedback has been studied first in [START_REF] Massey | The Collision Channel without Feedback[END_REF]. The absence of a feedback channel does not enable synchronization for applying time sharing of the codebooks. The interested reader is referred to [START_REF] Massey | The Collision Channel without Feedback[END_REF] for a detailed description of the system. Shortly, we recall here that the two cases of slot-synchronized and asynchronous collision channel are investigated in [START_REF] Massey | The Collision Channel without Feedback[END_REF]. The source for each user is Q-ary symmetric, independent of the others and generating information at a rate of C i packet/slot. The duty factor p i of user i is the fraction of time during which user i is actually transmitting packets. Thus, the transmitting rate of the user when she is actually using the channel is Ci pi . The signals at the receiver is impaired, eventually, only by colliding signals but not by additive noise. The capacity region is the set of all source rates that are approachable in the sense that there exist coding schemes with rate Ci pi with enable reliable communications 1 .

Let C u,0 , C u , C s,0 , and C s be the zero and non zero capacity regions of asynchronous collision channels, and the zero and non zero capacity regions of the slot-synchronous collision channels, respectively. All these regions coincide and the boundary of the common capacity region C is the set of all points [START_REF] Massey | The Collision Channel without Feedback[END_REF] C = (C 1 , C 2 , . . . , C n ) such that

C i = p i n j=1 j =i (1 -p j ) (8) 
being p = (p 1 , . . . p n ) a probability vector whose elements are nonnegative and satisfying the constraint n i=1 p i = 1. Interestingly, C is not convex but its complement in the nonnegative orthant is convex [START_REF] Post | Convexity of the Non-achievable Rate Region for the Collision Channel without Feedback[END_REF]. Figure 3 shows the capacity region for the two users case.

In the next theorem we characterize the α-fair rate allocations for the non-convex capacity region described by [START_REF] Facchinei | On generalized Nash games and variational inequalities[END_REF].

Theorem IV.1. The α-fair rate allocation for the capacity region described by [START_REF] Facchinei | On generalized Nash games and variational inequalities[END_REF] has three distinct cases with respect to the value of α:

• Case α > α * : The α-fair rate allocation corresponds to the maxmin rate allocation. • Case α = α * : There are several α * -fair rate allocations.

Among α * -fair rate allocations one corresponds to the maxmin fair rate allocation. Moreover, if n = 2, any rate allocation on the capacity boundary is α * -fair. If n > 2, one α * -fair rate allocation corresponds to the maxmin fair allocation and the other α * -fair rate allocations correspond to total rate optimization and are given by the points R i = 1 and R j = 0 for j = i. • Case α < α * : The α-fair rate allocations correspond to total rate optimization and are given by the points R i = 1 and R j = 0 for j = i.

Fig. 1 .

 1 Fig. 1. Rate region: equal rates are maxmin fair

Lemma II. 2 .

 2 [10, Proposition C.1 on p. 64] Assume that a function g : R n → R can be written as the sum g(d) = n i=1 ψ(d i ) where ψ is a concave function from R to R. Then g is Schur concave.

The communications systems analyzed in the previous sections were characterized by the same source rate and transmission rate, while in this case the two quantity differs. To keep clear this feature, we adopt a different notation for the source rate in the collision channel and in the following recovery channel.

The threshold value α * is given by α * = (n -1) ln(n/(n -1)) ln(n) + (n -1) ln(n/(n -1))

.

Proof. To determine the threshold value α * , we equate the values of the α-fairness utility function evaluated at the maxmin fair point (1/n, ..., 1/n) and the corner point (1, 0, ..., 0). Namely, we need to solve the following equation with respect to α:

If n = 2, the boundary of the capacity region has an explicit form R

= 1 and the statement of the theorem for n = 2 follows immediately. If n > 2, we consider small perturbations around the maxmin fair point

and around the corner points

in order to conclude that we deal with isolated maxima. ⋄ Since the point p = (1/n, ..., 1/n) provides the maximal value to the Jain's fairness index, in the case of the nonconvex capacity region described by [START_REF] Facchinei | On generalized Nash games and variational inequalities[END_REF] the maxmin fairness coincides with the Jain's fairness in this example of multiple access channel with non convex capacity region.

The capacity of the slot-synchronized collision channel has been extended in [START_REF] Tinguely | The Collision Channel with Recovery[END_REF] to the case when a multiuser decoder is utilized at the receiver and the colliding messages can be recovered with probability q. This channel is referred to as recovery channel. The capacity of the n-user recovery channel with recovery probability q is the closure of all rate points (R 1 , R 2 , . . . , R n ) satisfying the following for all i = 1, . . . n :

where 0 ≤ p i ≤ 1.

In contrast to the previously investigated rate regions, the region (10) is neither convex, as the cases investigated in Section II and III, nor concave as for the collision channel without feedback. Examples of this capacity region are provided in [START_REF] Tinguely | The Collision Channel with Recovery[END_REF]. In the next theorem we characterize the α-fair rate allocations for the capacity region [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF].

Theorem IV.2. The α-fair rate allocation for the capacity region described by [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF] has three distinct cases with respect to the value of α:

• Case α > α * : The set S α + of the α-fair rate allocations contains the single point R 1 = . . . R n = q corresponding to the maxmin fair rate allocation. • Case: α < α * : The set S α -of the α-fair rate allocations contains n points corresponding to total rate optimization points, namely

The set S α * of the α-fair rate allocations contains contains n + 1 points. More specifically, S α * = S α + S α -. The threshold value α * is given by

Proof. We focus on the case q > 0 since for q = 0 the recovery channel reduces to the collision channel. All the extreme points for the optimization problem max

belonging to the rate region [START_REF] Marshall | Inequalities: Theory of Majorization and its Applications[END_REF] are obtained as solution of the KKT conditions for the Lagrangian

The points satisfying the KKT conditions belong to the union set S α -n i=0,i =1 K i where K i is the set of all distinct permutations of (q, . . . q i times , 0, . . . 0 n-i

). Potential maximum values for the utility function are reached in S α -where

1-α (the other sets correspond to obvious local maxima and minima). To determine the threshold value α * , we equate the values of the α-fairness utility function evaluated at S α -and S α + . Namely, α * is the solution of the following equation with respect to α:

⋄ With the allocation rate (q, q, . . . q) all users transmit continuously ignoring the presence of the interfering users and relying only on the multiuser decoding capabilities of the receiver. It could be surprising that there exists a single threshold for the parameter α which determines a transition from the set of the allocation rates S α-to the set S α+ while the points in K i are not α-fair allocations for any value of α. This phenomenon is due to system model adopted to describe the recovery channel. In fact, the recovery probability is assumed constant and independent of the number of colliding users. In practical systems the recovery probability q is a decreasing function of the system load, i.e. the number of active users in the system. Taking into account this aspect could induce a smoother transition from S α-to S α+ through the sets K i when the parameter α increases.

B. Implication on max-min fairness

Consider the utility region given in Figure 4. It has two points, A and B, which are both lexicographically maxima: the value of the smallest coordinate of any point in the region is maximized there; moreover among all points that maximize the smallest coordinate, points A and B also maximize the value of the largest coordinate. For the case where the achievable region is convex, lexicographic maxima are also maxmin fair. The region of Figure 4 however has no maxmin assignment! For example, at point A, any way to increase the assignment in the vertical axis direction results in a decrease in the assignment in the horizontal direction. We note that in this case the Jain's fair allocation is well defined (it is the intersection point of the central line pointed by (1/n, ..., 1/n) and the boundary of the capacity region) and is different from the lexicographic fair allocations.

The Figure 4 is taken from a rate region in interference channel with random access [START_REF] Simeone | A game-theoretic view on the interference channel with random access[END_REF]. To our knowledge, this is the first time that this phenomenon is identified in our context. A similar phenomenon has been discovered in the context of assignment of discrete objects, see [START_REF] Sarkar | Fair Bandwidth Allocation for Multicasting in Networks with Discrete Feasible Set[END_REF].

V. CONCLUSION

We have studied multiuser access channels in the context of non-cooperative games with correlated constraints. In the non-cooperative games with correlated constraints the actions available to one player depend on those used by the others. A typical feature in these games is that they often possess infinitely many equilibria. To select among the equilibria we have proposed to use the Normalized Nash equilibrium and different fairness concepts such as maxmin fairness, lexicographic fairness, α-fairness and Jain's fairness. We have considered three main types of multiuser access channels: polymatroid regions, convex non polytope regions, and non convex capacity regions. In the case of Gaussian multiple access channel (an example of a channel with polymatroid achievable rate region), the normalized Nash equilibrium and all fairness concepts select the same equilibrium. In the case of Gaussian multiple access orthogonal channel (an example of a channel with convex non-polytope achievable rate region) different fairness concepts can select different equilibria. We have characterized these equilibria. Finally, we have identified very interesting facts about channels with non-convex achievable rate regions. It turns out that in some channels with non-convex achievable rate regions the maxmin fair allocation might not even exist. An interesting future research direction is to study equilibria selection in the case of several base stations.