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Abstract— We study the compound multi-input multi-output
(MIMO) broadcast channel with confidential messages (BCC),
where one transmitter sends a common message to two receivers
and two confidential messages respectively to each receiver. The
channel state may take one of a finite set of states, and the
transmitter knows the state set but does not know the realization
of the state. We study achievable rates with perfect secrecy in
the high SNR regime by characterizing an achievable secrecy
degree of freedom (s.d.o.f.) region for two models, the Gaussian
MIMO-BCC and the ergodic fading multi-input single-output
(MISO)-BCC without a common message. We show that by
exploiting an additional temporal dimension due to state variation
in the ergodic fading model, the achievable s.d.o.f. region can be
significantly improved compared to the Gaussian model with a
constant state, although at the price of a larger delay.

I. INTRODUCTION

In most practical scenarios, perfect channel state informa-

tion at transmitter (CSIT) may not be available due to time-

varying nature of wireless channels (in particular for fast

fading channels) and limited resources for channel estimation.

However, many wireless applications must guarantee secure

and reliable communication in the presence of the channel

uncertainty. In this paper, we consider such a scenario in

the context of the multi-input multi-output (MIMO) broadcast

channel, in which a transmitter equipped with multi-antennas

wishes to send one common message to two receivers and

two confidential messages respectively to the two receivers.

The channel uncertainty at the transmitter is modeled as a

compound channel, i.e., the channel to two receivers may take

one state from a finite set of states. The transmitter knows

the state set, but does not know the realization of the channel

state. The transmitter needs to send all messages reliably while

keeping each confidential message perfectly secret from the

non-intended receiver, no matter which channel state occurs.

We note that the compound MIMO broadcast channel with

confidential messages (BCC) is not yet fully understood.

This can be expected from two special cases studied in [1]

and [2]. One the one hand, it is well known that without

secrecy constraints the capacity region of the MIMO-BC under

general CSIT is unknown. Moreover, even the d.o.f. region

of the compound MIMO-BC is not fully known despite the

recent progress [1]. On the other hand, although the secrecy

capacity region of the two-user MISO-BCC has recently been

characterized [2], the secrecy capacity of a general MIMO-

BCC remains open.

In this paper, we study achievable secrecy degree of freedom

(s.d.o.f.) regions of the MIMO-BCC, which characterize the

behavior of an achievable secrecy rate region in the high

signal-to-noise (SNR) regime. We consider two compound

MIMO-BCC models. The first model is the Gaussian com-

pound MIMO-BCC, in which the channel remains in the same

state during the entire transmission. We assume that each

terminal is equipped with multiple antennas and the transmitter

sends one common message as well as two confidential

messages to two receivers. We propose a beamforming scheme

to obtain an achievable s.d.o.f., and characterize the impact

of the number of antennas and the number of channel states

on this region. We show that with M transmit antennas, Nk

receive antennas and Jk states for k = 1, 2, a positive s.d.o.f.

is ensured to both receivers only if the number of transmit

antennas is sufficiently large, i.e. M > max(J1N1, J2N2).
The second model we study is the ergodic fading compound

multi-input single-output (MISO)-BCC, where the channel

remains in one state for a block duration and then changes

independently from one block to another. We model the

channel state at each block as a set of random variables uni-

formly distributed over a finite set. Applying the variable-rate

transmission strategy proposed for the ergodic fading wiretap

channel with partial CSIT [3], we characterize an achievable

s.d.o.f. region. It is shown that time variation of the channel

(which introduces an additional temporal dimension) enables

to improve the s.d.o.f. region compared to the Gaussian model

with constant channel state, although the second model applies

only to delay-tolerant applications.

We note that the compound MIMO-BCC yields a number of

previously studied models as special cases. For the special case

of perfect CSIT, the secrecy capacity region of the two-user

MISO-BCC has been recently characterized in [2]. A more

general two-user MIMO-BCC is considered in [4], where the

secrecy capacity region of the MIMO-BCC with one common

message and one confidential message is characterized. For

the frequency-selective BCC modeled as a special Toeplitz

structure of the MIMO-BCC, the s.d.o.f. region is analyzed

in [5]. All above studies do not address the compound nature

of the channel. For the special case of only one confidential

message, the capacity of the degraded MIMO compound

wiretap channel is characterized and an achievable s.d.o.f.

of the MIMO compound wiretap channel is derived in [6].

The s.d.o.f. of the compound wiretap parallel channels is
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considered in [7], [8].

The paper is organized as follows. In Sections II and III,

we study the Gaussian MIMO-BCC and the ergodic fading

MISO-BCC, respectively. Section IV concludes the paper.

In this paper, we adopt the following notations. We let

[x]+ = max{0, x} and C(x) = log(1 + x). We use xn to

denote the sequence (x1, . . . ,xn), and use u, v, w,x,y to de-

note the realization of the random variables U, V,W,X, Y . We

use |A|,AH , tr(A) to denote the determinant, the hermitian

transpose, and the trace of a matrix A, respectively.

II. GAUSSIAN COMPOUND MIMO-BCC

A. Model and Definitions

We consider the MIMO-BCC, where the transmitter sends

the confidential messages W1,W2 to receivers 1 and 2 as well

as a common message W0 to both receivers. The transmitter,

and receivers 1 and 2 are equipped with M, N1, N2 antennas,

respectively. The transmitter knows a discrete set of possible

channel states, and each receiver has perfect CSI. The channel

output of receiver k in state j at each channel use is given by

yk,j = H
j
kx + ν

j
k, j = 1, . . . , Jk, k = 1, 2 (1)

where Jk denotes the number of possible channel states of

receiver k, H
j
k ∈ C

Nk×M
is the channel matrix of user k in

state j, ν
j
k ∼ NC(0, I) is an additive white Gaussian noise

(AWGN) and is independent and identically distributed (i.i.d.)

over k and j, and the covariance Sx of the input vector x

satisfies the power constraint tr(Sx) ≤ P . For the channel

matrices, we have the following assumption.

Assumption 2.1: Any M rows taken from the matrices

H1
1, . . . ,H

J1

1 ,H1
2, . . . ,H

J2

2 has rank M .

Definition 1: A (2nR0 , 2nR1 , 2nR2 , n) block code for the

Gaussian compound MIMO-BCC consists of following:

• Three message sets : Wi = {1, . . . , 2nRi} and Wi is

uniformly distributed over Wi for i = 0, 1, 2.

• A stochastic encoder that maps a message set

(w0, w1, w2) ∈ (W0,W1, W2) into a codeword xn.

• Two decoders : decoder k maps a received sequence yn
k,j

into (ŵ
(k,j)
0 , ŵk

(j)) ∈ (W0, Wk) for j = 1, . . . , Jk and

k = 1, 2.

A rate tuple (R0, R1, R2) is achievable if for any ǫ > 0,

there exists a (2nR0 , 2nR1 , 2nR2 , n) block code such that the

average error probability of receivers 1 and 2 at state (j, l)
satisfy

P
(n)
e,1,j ≤ ǫ, P

(n)
e,2,l ≤ ǫ,

and

nR1 − H(W1|Y
n
2,l) ≤ nǫ, nR2 − H(W2|Y

n
1,j) ≤ nǫ (2)

for any j = 1, . . . , J1, l = 1, . . . , J2. Note that (2) requires

perfect secrecy for the confidential messages at the non-

intended receiver.

We further define the degree of freedom (d.o.f.) of the

common message and the secrecy degree of freedom of the

confidential messages as

r0 = lim
P→∞

R0(P )

log(P )
, rk = lim

P→∞

Rk(P )

log(P )
, k = 1, 2.

B. Secrecy Degree of Freedom Region

An achievable secrecy rate region for the discrete memory-

less broadcast channel with one common and two confidential

messages was given in [9]. We can extend this result to the

corresponding compound channel studied in this paper and

obtain an achievable secrecy rate region given by

0 ≤ R0 ≤ min
k,j

I(U ; Yk,j) (3)

0 ≤ R1 ≤ min
j,l

[I(V1; Y1,j |U) − I(V1; Y2,l, V2|U)]

0 ≤ R2 ≤ min
j,l

[I(V2; Y2,l|U) − I(V2; Y1,j , V1|U)]

over all possible joint distributions of (U, V1, V2, X) satisfying

U → (V1, V2) → X → (Y1,j , Y2,l),∀j, l. (4)

Based on the preceding region, we obtain the following

theorem on an achievable s.d.o.f. region..

Theorem 1: Consider the Gaussian compound MIMO-BCC

with M transmit antennas, Nk receive antennas and Jk channel

states at receiver k for k = 1, 2. If J1N1 < M and J2N2 <
M , an achievable s.d.o.f. region is a union of (r0, r1, r2) that

satisfies

r1 ≤ min(N1,M − J2N2)

r2 ≤ min(N2,M − J1N1)

r0 + r1 ≤ N1

r0 + r2 ≤ N2 (5)

Proof: (Outline) We apply a simple linear beamforming

strategy to provide an achievable s.d.o.f. region. We first prove

a useful lemma.

Lemma 1: For 0 ≤ r1 ≤ min(N1, M − J2N2) and

0 ≤ r2 ≤ min(N2,M − J1N1), there exist v1
k, . . . ,vrk

k

for k = 1, 2, each with dimension M that form a matrix

Vk = [v1
k · · ·v

rk

k ], such that

H
j
kVk′ = 0 for k′ 6= k, j = 1, . . . , Jk (6)

and rank(Hj
kVk) = rk for j = 1, . . . , Jk.

The proof of Lemma 1 is omitted due to space limitations.

Based on V1 and V2 given in Lemma 1, for the given 0 ≤
r1 ≤ min(N1,M−J2N2) and 0 ≤ r2 ≤ min(N2,M−J1N1),
we let v1

0, . . . ,v
K
0 be orthnormal vectors in the null space of

[V1,V2], where K = M − rank[V1V2]. Hence, if we let

V0 = [v1
0, . . . ,v

K
0 ], then VH

0 [V1,V2] = 0.

We form the transmit vector at each channel use by Gaussian

superposition coding

x = V0u0 + V1u1 + V2u2 (7)

where u0,u1,u2 are mutually independent with i.i.d. entries

uk,i ∼ NC(0, pk,i) for any k, i with uk,i denoting the i-th
element of uk.
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From (6), the received signals are given by

y
j
1 = H

j
1(V0u0 + V1u1) + n

j
1, j = 1, . . . , J1 (8)

yl
2 = Hl

2(V0u0 + V2u2) + nl
2, l = 1, . . . , J2 (9)

By letting U = V0u0, Vk = U + Vkuk, X = V1 + V2, we
obtain

I(U ; Yk,j) = log
|I + H

j

k(V0diag(p0)V
H
0 + Vkdiag(pk)VH

k )Hj

k

H
|

|I + H
j

kVkdiag(pk)VH
k H

j

k

H
|

(10)

I(Vk; Yk,j |U) = log |I + H
j

kVkdiag(pk)VH
k H

j

k

H
| (11)

In order to find the s.d.o.f., we consider equal power allocation

over all beamforming directions. we first notice that the pre-log

factor of log |I + PA| is determined by rank(A) as P → ∞.

From Lemma 1, we obtain

rank(Hj
1V1V

H
1 H

j
1

H
) = rank(Hj

1V1) = r1

rank(Hj
2V2V

H
2 H

j
2

H
) = r2.

We then obtain

r0 = rank
“

H
j
1(V0V

H
0 + V1V

H
1 )Hj

1

H
”

− rank(Hj
1V1V

H
1 H

j
1

H
)

= N1 − r1

and similarly, r0 = N2 − r2, which concludes the proof.

By using the beamforming scheme similar to that for

Theorem 1, we obtain the following corollaries.

Corollary 2.1: For the Gaussian compound MIMO-BCC

with J1N1 < M and J2N2 ≥ M , an achievable s.d.o.f. region

includes (r0, r1, r2) that satisfies r1 = 0, r2 ≤ min(N2,M −
J1N1), and r0 ≤ min(N1, N2 − r2).

Corollary 2.2: For the Gaussian compound MIMO-BCC

with J1N1 ≥ M and J2N2 ≥ M , an achievable s.d.o.f. region

includes (r0, 0, 0) with r0 satisfying r0 ≤ min(M, N1, N2).
To gain insight into these results, we consider some special

cases. For the case of perfect CSIT (J1 = J2 = 1), the optimal

strategy in the high SNR regime is to transmit the confidential

message k in the null space of the channel matrix of the other

k′. This yields the s.d.o.f. r1 ≤ min(N1,M − N2), r2 ≤
min(N2,M−N1) for M > max(N1, N2). Clearly, the s.d.o.f.

of user k corresponds to the s.d.o.f. of the MIMO wiretap

channel [10] where the transmitter sends one confidential

message to receiver k in the presence of an eavesdropper

(user k′ 6= k). In addition, Theorem 1 states that if J1 =
J2 = 1 and the total number of receive antennas is large, i.e.,

N1 + N2 > M , we can achieve the sum d.o.f. M . This is

certainly optimal since the MIMO-BC achieves the sum d.o.f.

of min(M, N1 + N2) = M .

For the case with a single receive antenna at each receiver,

i.e., N1 = N2 = 1, and without common message, i.e., r0 = 0,

we have r1 ≤ min(1,M − J2) and r2 ≤ min(1,M − J1).
This result can be compared to the d.o.f. of the compound

MIMO-BC [1]. A positive s.d.o.f. tuple (1, 1) is achievable

if J1 < M and J2 < M . If the channel uncertainty of one

user increases, for example, J2 = M , the s.d.o.f. of user 1

collapses. Moreover, the s.d.o.f. of both users becomes zero

if J1 ≥ M,J2 ≥ M . We remark that secrecy constraints

significantly reduce d.o.f. and sometimes may yield pessimistic

results with respect to [1].

III. ERGODIC FADING COMPOUND MISO-BCC

A. Model and Definitions

We consider the MISO-BCC, where the transmitter with M
antennas sends the confidential messages W1,W2 respectively

to two receivers, each equipped with single antenna. We

consider the ergodic block fading model, in which the channel

remains in one state for a block of T channel uses and changes

to another channel state independently from one block to

another. We assume that the fading process is stationary and

ergodic over time. Hence, the channel state at block t is given

by the set of random variables (A1[t], A2[t],H[t]) ∈ A, where

A = {1, . . . , J1} × {1, . . . , J2} × {1, . . . , N} denotes the

space of fading states and each random variable is uniformly

distributed over its set. Under non-perfect CSIT, the transmitter

is assumed to know H[t] and J1J2 possible states at block

t but not the realization of A1[t] and A2[t], and receiver k
is assumed to know both H[t] and Ak[t]. At each block t,
the channel of user k is expressed by two random vectors

h
Ak[t]
k [H[t]], for which we denote h

Ak[t]
k [t] for the notational

simplicity. Finally, we assume that for each t, any M vectors

taken from {h1
1[t], . . . ,h

J1

1 [t],h1
2[t], . . . ,h

J2

2 [t]} has rank M .

For each channel use at block t, the ergodic fading com-

pound MISO-BCC is expressed by

yk[t] = h
j
k[t]

H
x[t] + νk[t], w.p. P (Ak[t] = j|H[t]) = 1

JK

, ∀j

for k = 1, 2 and t = 1, . . . , m, where w.p. denotes with

probability, νk[t] ∼ NC(0, 1) is an AWGN and i.i.d. over k, t,
and the input covariance Sx[t] of x[t] satisfies the long-term

power constraint 1
m

∑m

t=1 tr(Sx[t]) ≤ P . We let n = mT
denote the total number of symbols over m blocks. The

definition for the s.d.o.f. is the same as that in Section II-A.

B. Variable-Rate Transmission

We first note that as m → ∞, T → ∞, the ergodic

achievable secrecy rate region is given by the union of all

(R1, R2) such that [2],

0 ≤ R1 ≤ E[I(V1; Y1)] − E[I(V1; Y2, V2)]

0 ≤ R2 ≤ E[I(V2; Y2)] − E[I(V2; Y1, V1)] (12)

where the expectation is with regard to the fading space A and

the union is over all possible distributions V1, V2, X satisfying

(V1, V2) → X → (Y1, Y2). (13)

It can be seen that the ergodic secrecy rate of user k can be

expressed by

Rk ≤ E[I(Vk;Yk)] − E[I(Vk; Vk′)] − E[I(Vk; Yk′ |Vk′)] (14)

where the first two terms can be interpreted as the ergodic

Marton broadcast rate without secrecy constraint, and the last

term E[I(Vk; Yk′ |Vk′)] represents the information accumulated

at the non-intended receiver k′.
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We next adapt the variable-rate transmission proposed in

[3, Theorem 2] to the compound MISO-BCC. We focus on

the zero-forcing beamforming to provide an achievable s.d.o.f.

region. At each channel use of block t, the transmitter forms

the codeword

x[t] = x1[t] + x2[t] = v1[t]u1[t] + v2[t]u2[t] (15)

where vk[t] denotes a unit-norm beamforming vector of user

k (to be specified below) and uk[t] ∼ NC(0, pk[t]) is symbol

of user k, and u1[t], u2[t] are mutually independent. Clearly,

the Markov chain (13) is satisfied by letting Vk = vk[t]uk[t]
and X = V1 +V2 at each t. Following [3], we assume that the

transmitter sends the codeword xk[t] to user k at rate given

by

Rk,tx[t] = I(uk[t]; yk[t]) − I(uk[t];uk′ [t]) (16)

(a)
= I(uk[t]; yk[t])

=

Jk
∑

j=1

P (Ak[t] = j|H[t])I(uk[t]; yk[t]|Ak[t] = j)

where (a) follows from the independency between u1[t] and
u2[t]. This variable-rate strategy enables to limit the leaked
information at the non-intended receiver k′ at each block t
such that

I(uk[t]; yk′ [t]|uk′ [t])

=

J
k′

X

j=1

P (Ak′ [t] = j|H[t])I(uk[t]; yk′ [t]|uk′ [t], Ak′ [t] = j)

≤ Rk,tx[t] (17)

for k′ 6= k and k = 1, 2. By combining (16) and (17), the

averaged secrecy rate of user k over m blocks is given by

Rm
k =

1

m

m
∑

t=1

Rk,tx[t] −
1

m

m
∑

t=1

I(uk[t]; yk′ [t]|uk′ [t])

=
1

m

m
∑

t=1

Rk[t] (18)

where the secrecy rate of user k at block t is given by

Rk[t] = [Rk,tx[t] − I(uk[t]; yk′ [t]|uk′ [t])]+ (19)

We remark that similar to [3], the variable rate strategy avoids

the non-intended receiver k′ to accumulate the information on

symbol k over m blocks, whenever the channel condition is

better than the transmission rate of user k.

C. Secrecy Degree of Freedom Region

In the following, we provide the s.d.o.f. analysis for different

cases of (J1, J2).
Theorem 2: The two-user ergodic fading compound MISO-

BCC with J1 < M, J2 < M achieves the s.d.o.f. region

{(r1, r2) : r1 ≤ 1, r2 ≤ 1}.
Proof: At each block t, the transmitter forms x[t] given

in (15) by choosing v1[t] orthogonal to h1
2[t], . . . ,h

J2

2 [t] and

v2[t] orthogonal to h1
1[t], . . . ,h

J1

1 [t]. This yields the received

signals for k = 1, 2 given by

yk[t] = φj
k,k[t]uk[t] + νk[t], w.p. P (Ak[t] = j|H[t]) = 1

Jk

, ∀j

where φj
k,i[t] = h

j
k[t]

H
vi[t]. It can be shown that v1[t] and

v2[t] can be chosen such that φj
k,k[t] 6= 0. Since the ZF creates

two parallel channels for any pair (A1[t], A2[t]), the averaged

secrecy rate of user k over m blocks is readily given by

Rm
k ≤

1

mJk

m
∑

t=1

Jk
∑

j=1

C(pk[t]|φj
k,k[t]|2)

As m → ∞, the corner point (1, 0), (0, 1) is achieved by

allocating p1[t] = P,∀t, p2[t] = P,∀t, respectively, and the

rate point (1, 1) is achieved by equal power allocation p1[t] =
p2[t] = P/2 at each t. Time-sharing between three points

yields the region.

Theorem 3: The two-user ergodic fading compound MISO-

BCC with J1 < M, J2 ≥ M achieves the s.d.o.f. region (see

Fig.1) that includes (r1, r2) satisfying

r1 ≤
M − 1

J2
,

(

J2

M − 1
− 1

)

r1 + r2 ≤ 1 (20)

Proof: At each block t, the transmitter chooses v1[t]
orthogonal to the first M − 1 states1 h1

2[t], . . . ,h
M−1
2 [t] and

v2[t] orthogonal to h1
1[t], . . . ,h

J1

1 [t] to form the codeword (15)
at each t. This yields the receive signals

y1[t] = φ
j
1,1[t]u1[t] + ν1[t], w.p. P (A1[t] = j|H[t]) = 1

J1
, ∀j

y2[t] =

8

>

>

<

>

>

:

φ
j
2,2[t]u2[t] + ν2[t],

w.p. P (A2[t] = j|H[t]) = 1

J2
for j ≤ M − 1

φ
j
2,1[t]u1[t] + φ

j
2,2[t]u2[t] + ν2[t]

w.p. P (A2[t] = j|H[t]) = 1

J2
for M ≤ j ≤ J2

We remark that the increased channel uncertainty at user
2 (J2 ≥ M ) incurs two effects. First, it decreases the
transmission rate of user 2 due to interference from user 1.
Second, it decreases the secrecy rate of user 1 since user 2
observes u1[t] with probability J2−M+1

J2

, if Ak[t] is between
M and J2. We obtain the secrecy rates at block t given by

R1[t] ≤

2

4

1

J1

J1
X

j=1

C(p1[t]|φj
1,1[t]|2) −

1

J2

J2
X

j=M

C(p1[t]|φj
2,1[t]|

2)

3

5

+

R2[t] ≤
1

J2

M−1
X

j=1

C(p2[t]|φj
2,2[t]|2) +

1

J2

J2
X

j=M

C

 

p2[t]|φj
2,2[t]|2

1 + p1[t]|φj
2,1[t]|2

!

Plugging these expressions into (18) and letting m → ∞, the

corner point (0, 1), (M−1
J2

, 0) is achieved by letting p2[t] = P
and p1[t] = P for all t. Under equal power allocation p1[t] =

p2[t] = P
2 for all t,

(

M−1
J2

, M−1
J2

)

is achieved. Time-sharing

of these three points yields the region.

Theorem 4: Consider the two-user ergodic compound

MISO-BCC with J1 ≥ M,J2 ≥ M . We define the function

f(J1, J2) = M−1
J1

+ M−1
J2

− 1 − M−1
J1+J2

. If f(J1, J2) ≤ 0,

an achievable region is given by the time-sharing between

(M−1
J2

, 0) and (0, M−1
J1

). If f(J1, J2) > 0, an achievable

1The same result holds for any M −1 set taken from {h1
2
[t], . . . ,hJ2

2
[t]}.
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r1

r2

11
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f(J1,J2)<0 f(J1,J2)>0

J2

C

M−1

J1

M−1

J2

M−1

J1

M−1

Fig. 2. s.d.o.f. region for J1 ≥ M, J2 ≥ M

region (see Fig.2) is time-sharing between these two points

and (rs, rs) with rs = M−1
J1

+ M−1
J2

− 1.
Proof: Without loss of generality, the transmitter chooses

v1[t] orthogonal to h1
2[t], . . . ,h

M−1
2 [t] and v2[t] orthogonal

to h1
1[t], . . . ,h

M−1
1 [t] to form the codeword given in (15) at

block t. This yields the receive signals

yk[t] =

8

>

>

>

<

>

>

>

:

φ
j

k,k[t]uk[t] + νk[t],

w.p. P (Ak[t] = j|H[t]) = 1

Jk

for j ≤ M − 1

φ
j

k,k[t]uk[t] + φ
j

k,k′ [t]uk′ [t] + νk[t],

w.p. P (Ak[t] = j|H[t]) = 1

Jk

for M ≤ j ≤ Jk

for k = 1, 2. By taking into account the two effects caused by
the increased channel uncertainty mentioned above, we obtain
the secrecy rate of user k at block t is given by

Rk[t] =

2

4

1

Jk

M−1
X

j=1

C(pk[t]|φj

k,k
[t]|2) −

1

Jk′

J
k′
X

j=M

C(pk[t]|φj

k′,k
[t]|2)

+
1

Jk

Jk
X

j=M

C

0

@

pk[t]|φj

k,k
[t]|2

1 + pk′ [t]|φj

k,k′
[t]|2

1

A

3

5

+

for k = 1, 2. Plugging the above expression into (18) and

letting m → ∞, the corner point A =
(

M−1
J2

, 0
)

, B =
(

0, M−1
J1

)

is achieved by letting p1[t] = P, p2[t] = P, ∀t,

respectively. Under equal power allocation p1[t] = p2[t] =
P/2,∀t, we have two different behaviors according to the

value of f(J1, J2). Interestingly, if f(J1, J2) > 0, the s.d.o.f.

point C = (rs, rs) which dominates the line segment A B is

achieved, as shown in Fig.2. On the contrary, if f(J1, J2) ≤ 0,

the point (rs, rs) is below the line segment A B. This can be

easily verified by comparing rs and the intersection between

the line segment A B and r2 = r1.

We remark that an achievable s.d.o.f. with the ergodic model

gradually decreases as the uncertainty increases. Moreover,

the time variation of the channel state creates an additional

temporal dimension, and significantly improves the s.d.o.f.

with respect to the Gaussian model with constant channel state.

We provide a simple example to illustrate the difference be-

tween two models. Consider the compound MISO-BCC with

M = 7, J1 = J2 = 8. The ergodic model achieves (1/2, 1/2)
which dominates the time-sharing between the corner points

(3/4, 0) and (0, 3/4). The Gaussian model yields zero s.d.o.f.

for both users. This radical difference is because the number

of channel states over which perfect secrecy must be kept for

the Gaussian model equals the number of wiretappers, which

is not the case for the ergodic model.

IV. CONCLUSIONS

We have studied the two-user compound MIMO-BCC, for

which we have found that time variation of the channel state

provides an additional temporal dimension for the ergodic

model, which improves an achievable s.d.o.f. region compared

to the Gaussian model with a constant fading state, although at

the price of a larger delay. We note also that in contrast to the

compound MIMO-BC [1], the gain by multiletter approaches

(i.e. combining several time instances) is not expected here.

Finally, we conjecture that an achievable s.d.o.f. region pro-

vided in the paper is indeed the s.d.o.f. region and the proof

remains as a future investigation.
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