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MIMO RADAR MODELING THROUGH RANDOM VANDERMONDE MATRICES

A MIMO radar system is conveniently modeled via random matrices, and its optimal design strongly relies on spectral properties of the matrix exploited to build the model itself. We offer a way to model a High Resolution Radar (HRR) detection in the MIMO case, based on recent results on the asymptotic spectral analysis of random Vandermonde matrices with entries lying on the unit circle. Achievability of compact-form expressions for the design parameters sought for in the multiple-transmitter-multiple-receiver case is investigated, and together with the results of such a starting analysis, some open mathematical questions that arise from the new model formulation are listed and discussed.

INTRODUCTION

The seminal idea of Woodward and Davies of applying information theory to radar systems analysis [START_REF] Woodward | A theory of radar information[END_REF][START_REF] Woodward | Probability and information theory with applications to radar Pergamon[END_REF] has been only rarely exploited in radar waveform design [START_REF] Rendas | Ambiguity in Radar and Sonar[END_REF], [4, and references therein]; more precisely, joint information-and estimation-theoretic criteria are adopted in several works by the same authors (see, e.g. [START_REF] Yang | MIMO radar waveform design based on mutual information and minimum meansquare error estimation[END_REF][START_REF] Yang | Minimax Robust MIMO Radar Waveform Design[END_REF]) to optimally shape the transmitted waveform from a multiple-antenna equipped radar transmitter which aims at detecting an extended target at high resolution. The receiver too is assumed to be equipped with multiple antennas, and the model applies to both mono-or bi-static scenario.

The main finding of the abovementioned works is the dependence of the parameters of interest in the waveform design strategy on the spectrum of the Gram matrix associated to the (random) matrix modeling the input-output relationship between the transmitted waveform from each sensor and the target echo 1 at any receive antenna. For sake of simplicity, we will refer hereinafter to the input-output matrix as the channel matrix as in any linear framework for MIMO wireless communication analysis.

Stationarity assumptions in [START_REF] Yang | MIMO radar waveform design based on mutual information and minimum meansquare error estimation[END_REF] yields to a Toeplitz [START_REF] Gray | Toeplitz and Circulant Matrices: A Review[END_REF] structure for the blocks of the channel matrix modeling the signal reflection on the target from a single transmit antenna to a single receive antenna. This feature of the channel matrix, when taking into account also the unknown reflection angle from each of the elementary scatterers, allows, as noticed in [START_REF] Alfano | Asymptotics of Multi-fold Vandermonde Matrices with Applications to Communications and Radar Problems[END_REF], to model the Gram matrix associated to the channel matrix as random Vandermonde. Spectral properties of such kind of matrices have been only recently investigated in some works2 [START_REF] Alfano | Asymptotics of Multi-fold Vandermonde Matrices with Applications to Communications and Radar Problems[END_REF][START_REF] Ryan | Asymptotic Behaviour of Random Vandermonde Matrices with Entries on the Unit Circle[END_REF][START_REF] Nordio | Reconstruction of multidimensional signals from irregular noisy samples[END_REF] under different assumptions on the entries distribution (especially on their dependence) and on the matrix aspect-ratio convergence properties.

While the works appeared on the line of [START_REF] Yang | MIMO radar waveform design based on mutual information and minimum meansquare error estimation[END_REF] have shed light on the connection between large system properties and waveform design, we aim with this contribution at investigating the performance-side impact of the Vandermonde modeling for MIMO radar, as well as at stressing some open problems in Vandermonde matrices spectrum characterization arising from the MIMO detection setting itself and that have not yet been encountered when dealing with random Vandermonde determinants in other applications like finance, cognitive radio, security and, in general, wireless communications issues (for a list of references on each subject, please refer to [START_REF] Ryan | Asymptotic Behaviour of Random Vandermonde Matrices with Entries on the Unit Circle[END_REF], where a comprehensive analysis of the Vandermonde modeling state-of-the-art is provided).

The paper is structured as follows: Section 2, contains some essential background material on (large) random Vandermonde matrices spectral properties. Section 3 reports the model for a MIMO HRR system in terms of Vandermonde matrices, while Section 4 discusses the available results on the MIMO HRR system matrices and open issues. Conclusions are given in Section 5.

MATHEMATICAL BACKGROUND

This section addresses some essential definitions in random matrix theory that will be useful in the following, as well as the exploited notation. Throughout the paper, matrices are denoted by uppercase boldface letters, vectors by lowercase boldface; E[•] denotes the statistical expectation, (•) † indicates the conjugate transpose operator, | • | and Tr(•), respectively, the determinant and the trace of a square matrix, and || • || for the euclidean norm. Definition 2.1 Let us consider an N × N Hermitian matrix A. The averaged empirical cumulative distribution function of the eigenvalues (also referred to as the averaged empirical spectral distribution (ESD)) of A is defined as

F N A (λ ) = 1 N N ∑ i=1 E [1{λ i (A) ≤ λ }] ,
where λ 1 (A), . . . , λ N (A) are the eigenvalues of A and 1{•} is the indicator function. If F N A (•) converges as N → ∞, then the corresponding limit (asymptotic ESD, AESD) is denoted by F A (•). The corresponding asymptotic probability density function is denoted by f A (•).

Definition 2.2

The aspect-ratio of a N × L random matrix is the number β = lim K,L→+∞ K L , provided the limit is finite. Definition 2.3 [START_REF] Tulino | Random matrices and wireless communications[END_REF] The η-transform of the random matrix A is defined as

η A (γ) = E 1 1 + γλ (1)
where γ is a scalar and λ is a random variable distributed as the asymptotic eigenvalues of A.

By denoting with E[λ p ] the p-th asymptotic moment of A, η A (γ) can be regarded as a generating function for the asymptotic moments of A, i.e. [START_REF] Tulino | Random matrices and wireless communications[END_REF],

η A (γ) = ∞ ∑ p=0 (-γ) p E[λ p ], (2) 
whenever the moments of A exist and the series in (2) converges.

The η-transform, introduced in [START_REF] Tulino | Random matrices and wireless communications[END_REF], is intimately related to other integral transforms defined over the spectrum of a random matrix. For a detailed discussion on the links between such transforms and the R and S transforms usually exploited in free probability, the reader is referred to [START_REF] Tulino | Random matrices and wireless communications[END_REF]Ch. 2]. Recently, in [START_REF] Tulino | Capacity of the Gaussian Erasure Channel[END_REF] some more general results appeared on the connection between the η-transform and other functions of the asymptotic moments of a random matrix under quite generic assumptions.

The random matrix we will mainly concerned with throughout the paper are the Vandermonde ones, that are classified as follows: Definition 2. [START_REF] Yang | MIMO radar waveform design based on mutual information and minimum meansquare error estimation[END_REF] We define Vandermonde matrix an N × L matrix V whose (k, ℓ)-th entry can be expressed as x k-1 ℓ [START_REF] Horn | Matrix Analysis[END_REF]. Definition 2.5 An N d × L matrix V, with complex exponential entries lying on the unit circle, is a d-fold Vandermonde matrix if its generic entry can be written as

V ν(ℓ),q = 1 √ N d e -2πiℓ T f (x q ) . (3) 
where ℓ = [ℓ 1 , . . . , ℓ d ] T is a vector of integers, ℓ m = 0, . . . , N -1, m = 1, . . . , d, the function f is evaluated component-wise on the random vectors x q , and the function

ν(ℓ) = d ∑ m=1 N m-1 ℓ m , (4) 
maps the vector ℓ onto a scalar index. According to [START_REF] Ryan | Asymptotic Behaviour of Random Vandermonde Matrices with Entries on the Unit Circle[END_REF], we will refer to the quantity 2π f (x q ) as the phase distributions of the Vandermonde matrix at hand. Notice that for a d-fold Vandermonde matrix the phase is a vector while for d = 1 the phase is a scalar quantity.

Notice that the assumption of the entries lying on the unit circle is crucial to the asymptotic convergence of the spectrum and will be retained through the paper. When d = 1, we will refer to (3) as a random Vandermonde matrix. Notice further that, due to the previous definitions, we will have β = L N for a Vandermonde matrix and β = L N d for the d-fold version.

The application we are interested in leads us to consider the function f = sin(x q ).

SYSTEM MODEL

HRR is often exploited in military applications for detecting extended targets. To address the problem of detection through HRR, several mathematical tools have been proposed in the literature. One of the simplest, but effective, approaches is to resort to random matrix theory and exploit a linear model involving Vandermonde matrices. Recall that the echo from an extended target which is resolvable in L elementary scatterers can be viewed as the impulse response of a linear filter of length ν, where L = ν +1. Let us assume that the transmitted signal has length N. Then, by considering a (mono or bistatic) scenario for HRR detection, the received signal can be written as [4, and refs. therein

] r = VP 1/2 s + n (5) 
where E[tr{P}] = 1 and V is a N × L Vandermonde matrix with generic entry3 (V) n,q = exp(-2πin sin θ q )/ √ N, θ q is the angle of arrival of the echo reflected on the q-th elementary scatterer constituting the target, and s is the target impulse response of length L. The diagonal matrix P accounts for the (eventually) different power levels of the echoes coming from each of the L scatterers constituting the overall extended target, which is usually assumed to have a Gaussian vector impulse response [START_REF] Yang | MIMO radar waveform design based on mutual information and minimum meansquare error estimation[END_REF]. When dealing with the MIMO case, the channel matrix turns out to be a d-fold Vandermonde, where d is the number of antennas deployed at the receiver. This way, the generic entry of V will depend, as in the multiuser multiantenna case with line of sight contribution [START_REF] Alfano | Asymptotics of Multi-fold Vandermonde Matrices with Applications to Communications and Radar Problems[END_REF], [9, Sec. V], on the vector of the arrival angles on each of the d receiving antennas, for each echo reflected from the q-th elementary scatterer.

For the linear model in [START_REF] Yang | Minimax Robust MIMO Radar Waveform Design[END_REF], the Mean Square Error (MSE) on the LMMSE estimate of s, normalized over the size L of s, is obtained as [START_REF] Verdú | Multiuser detection[END_REF] MSE = tr (γVPV

† + I) -1 (6) 
For large systems, we also define the asymptotic MSE as

MSE ∞ = lim M,N→+∞ β MSE = E 1 1 + γλ ( 7 
)
where λ is a random variable distributed as the asymptotic eigenvalues of VPV † [START_REF] Nordio | Reconstruction of multidimensional signals from irregular noisy samples[END_REF].

From ( 1) and ( 7), we can note that the expression of MSE ∞ can be written through the η-transform as

MSE ∞ = η HH † (γ) (8) 
In the following, particular emphasis will be on the asymptotic moments, from which the η-transform evaluation can be carried out.

MODEL ANALYSIS

Mirroring the MMSE design criterion of [START_REF] Yang | MIMO radar waveform design based on mutual information and minimum meansquare error estimation[END_REF], we aim at providing compact expressions for the MSE in the target impulse response parameter estimation, based on recent findings on large random Vandermonde matrices spectra. Throughout the Section, E[λ p d ] will denote the p-th moment of a d-fold random matrix; as a consequence, we will denote as E[λ p ∞ ] the p-th asymptotic moment.

Performance discussion

Notice first that, if we were detecting the target over a very narrow angle spread, sin(θ q ) ≈ θ q , then, asymptotically in the number of the receive antennas, results in ( [START_REF] Nordio | Reconstruction of multidimensional signals from irregular noisy samples[END_REF][START_REF] Alfano | Asymptotics of Multi-fold Vandermonde Matrices with Applications to Communications and Radar Problems[END_REF]) apply, respectively, for the case of P = I and P = I. Specifically, when d grows large, the p-th asymptotic moments of VV † coincides with that of the Marcenko-Pastur law [10, Lemma 6.1] and is given by

E[λ p ∞ ] = p ∑ k=1 T (p, k)β p-k (9) 
while those of VPV with P = I are given by the well-known Bai-Yin formula [11, and references therein], namely 4

E[λ p ∞ ]→ p ∑ k=1 β k ∑ p 1 +•••+p k =p p 1 ≤•••≤p k p! (p -k + 1)! f (p 1 , . . . , p k ) E[P p 1 ] • • • E[P p k ], (10) 
as proven in [7, Theorem 4.2] 5 . In [START_REF] Nordio | Reconstruction of multidimensional signals from irregular noisy samples[END_REF], P is a nonnegative random variable whose distribution is given by the asymptotic spectral distribution of P. As a consequence, the sought-for η-transform is given by that of the Marcenko-Pastur law [11, Formula 2.52] in the case of equal-power echoes, and by [START_REF] Tulino | Random matrices and wireless communications[END_REF]Theorem 2.39] when the scattered echoes have different powers.

It is worth to stress that, as numerically verified already in [START_REF] Nordio | Reconstruction of multidimensional signals from irregular noisy samples[END_REF][START_REF] Alfano | Asymptotics of Multi-fold Vandermonde Matrices with Applications to Communications and Radar Problems[END_REF], the speed of convergence toward the asymptotic moments expression with respect to d is quite fast; indeed, already d > 3 does offer a satisfactorily agreement between theoretical and simulated curves, thus the model may offer good prediction properties in a real-world scenario even for a moderate number of radar receive antennas.

The case of widely spread, tough not uniformly distributed over the interval (0, 2π), detection angle θ i , for each elementary scatterer, would lead to a different model whose spectral behavior has not yet been analyzed as d grows large.

Indeed, in some settings the phases distribution turns out to be not uniform; however, it is quite likely it still is continuous.

Under these more general assumptions on the phase distributions, the expression of E[λ p 1 ] is known and is given by [START_REF] Ryan | Asymptotic Behaviour of Random Vandermonde Matrices with Entries on the Unit Circle[END_REF]Formula (12)], while no results are yet available for d > 1. 4 Herein, following [START_REF] Tulino | Random matrices and wireless communications[END_REF], we suppose a vector of k integers p 1 , . . . , p k is partitioned into n equivalence classes under the equivalence relation a = b, and the cardinalities of the equivalence classes are given by f 1 , . . . , f n , then we can define the following function: 5 For the details of the proof, the reader is referred to [START_REF] Alfano | Quadratic forms on multi-fold Vandermonde matrices[END_REF].

f (p 1 , . . . , p k ) f 1 ! • • • f n !. For example, f (1, 1, 4, 2, 1, 2) = 3! • 2! • 1!

Open issues

Interestingly, the d-fold Vandermonde matrix with uniformly distributed phases has an asymptotic law whose moments converge to those of the Marcenko-Pastur one, and this issue has not yet been investigated in a generic case. The approach we propose to investigate the MSE behavior in such a more general setting is to go through some very recent results on Vandermonde matrices with generic (continuous) phase distribution and exploit the inherent links between the asymptotic Vandermonde moments and those of classical spectrum law in random matrix theory.

Notice that the moments of the spectrum of a Gram matrix of the type VV † when V has continuous, non-uniform phase distributions, are bounded from below by the corresponding moments of a Gram matrix with uniform phase distributions [9, Proposition 5] whose values, in turn, lay between the Marcenko-Pastur and the Poisson distribution moments [START_REF] Ryan | Asymptotic Behaviour of Random Vandermonde Matrices with Entries on the Unit Circle[END_REF].

Below, we propose then two alternative roadmaps in order to provide expressions for the MSE in HRR MIMO radar detection for a generic phase distribution of the channel matrix entries: 1. Series truncation We intend to rely on inequalities relationships between moments; the steps to be followed would be • Consider a generic continuous phase distribution;

• Exploit [9, Corollary 2 and Proposition 5] to lower bound the moments; • Provide an upper bound to (at least some) of the moments of the non-uniform phases matrix at hand; • Compare the truncated series of the η-transform obtained in the two cases with the outcomes of a numerical simulation to perform a sensitivity analysis of the bounds to the system parameters and to the order of the highest estimated moment.

Asymptotic analysis and support estimation

• Borrow the proof strategy from [START_REF] Nordio | Reconstruction of multidimensional signals from irregular noisy samples[END_REF] in order to provide as compact as possible expressions for the pth moment of a random, d-fold Vandermonde matrix with non-uniformly distributed phases, as d grows large. • Investigate the compactness of the support of the limiting spectral distribution for such a V so as to exploit any further available result linking moments and integral transforms.

CONCLUSION

A model for MIMO HRR detection, based on recent results on the asymptotic spectral analysis of random Vandermonde matrices, has been proposed and discussed. Some compactform expressions for the design parameters are provided, and together with the results of such a starting analysis, open mathematical questions that arise from a MSE analysis strategy are listed and discussed.
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It is worth to note that in[9, Appendix F] a useful connection between Vandermonde moments evaluation and the analysis on random Toeplitz carried on in[START_REF] Bryc | Spectral measure of large random Hankel, Markov and Toeplitz matrices[END_REF] has been pointed out too.

In this case, n = 0, . . . , N -1, and q = 0, . . . , ν