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Abstract—In this paper, α-OFDM, a generalization of the
OFDM modulation, is proposed to enhance the outage capacity
of bursty transmissions. This new flexible modulation scheme
is easily implemented and only requires a symbol rotation of
angle α after the IDFT stage. The induced rotation slides the
DFT window and provides frequency diversity in block fading
channels. Interestingly, the results show a substantial gain in
terms of outage capacity and BER in comparison with classical
OFDM modulation schemes. The framework is extended to
multiuser/multi-antenna OFDM based standards. Simulations, in
the context of 3GPP LTE, called hereafterα-LTE, sustain our
theoretical claims.

I. I NTRODUCTION

With the recent growth of wireless communications and
the increasing demand for high transmission rates, Orthogonal
Frequency Division Multiplexing (OFDM) is being consid-
ered the modulation scheme of most of the future wireless
communication technologies. Many wireless standards [1]-
[3] have already rallied in favour of OFDM. One attractive
feature of OFDM is theflat fadingaspect of the channel that
facilitates the equalization process at the receiver side.This
property originates from thecyclic prefix(CP) addition prior
to signal transmission that allows to model the channel as a
circulant matrix in the time-domain [7]. As circulant matrices
are diagonalizable in the Fourier basis, the channel frequency
response is seen as a set of orthogonal flat fading subchannels.

In addition to their demand for high transmission rates,
recent wireless standards have also moved from the connected
circuit-switched to the burstypacket-switchedtransmission
mode. The main drawback of thepacket-switchedmode arises
when the transmission time is less than the channelcoherence
time [11], as the channel is then static over the communication
time. Indeed, for any target transmission rateR, there exists a
non-null probability that the channel is so ill-conditioned that
the resulting capacity is less thanR. This outage probability
is especially non negligible in OFDM when the channel delay
spread is small, or equivalently when the channelcoherence
bandwidth [11] is large. These observations have led to
consider methods which provide channeldiversity to protect
the transmitted symbols from deep channel fading. Among
those methods, [5] proposed a dynamic beamforming scheme
using multiple antennas, known as “dumb antennas”, which
induces fast channel variations in time. The relevant effect
of this method is to increase the channel diversity during
the transmission period. Recently, [6] introduced acompact

MIMO system which emulates many antennas from one single
virtually rotating antenna, thus producing an additional degree
of freedom. In [12],cyclic delay diversitywas shown to trade
space diversity for frequency diversity, thanks to different
transmission delays introduced on a set of transmit antennas.
However, all those methods require additional antennas to
provide channel diversity.

In the following work, we propose first a new single an-
tenna single user modulation scheme calledα-OFDM, which
exploits the full frequency diversity transmission band with
no additional complexity. The main idea is to transmit on
new carriers which have not been previously exploited. In
particular, we show thatα-OFDM allows to flexibly reuse
adjacent frequency bands by properly adjusting a rotation
parameter:α.

The work is then extended to the multi-user OFDMA (Mul-
tiple Access OFDM) case, where 3GPP-Long Term Evolution
(LTE) is used as benchmark comparison. Although bothα-
LTE and LTE with frequency hopping techniques seem to
be similar, theα-OFDM algorithm is more flexible and can
be adapted on a per-OFDM symbol rate without advanced
scheduling methods.

In both cases, theα-OFDM-based systems are compared
against their classical OFDM system counterparts in their
respective outage capacity and outage bit error rate (BER)
performances.

The rest of the paper unfolds as follows: in section II, we
study the mathematical extension of circulant matrices, which
is at the heart of theα-OFDM modulation schemes and we
introduce the novelα-OFDM modulation scheme. Practical
system-level schemes based onα-OFDM are then presented in
section III. The theoretical claims are validated by simulations
in section IV. We then introduce in section V some practical
applications and quantify the outage performance gain. In
particular we propose an extension for the 3GPP LTE standard,
calledα-LTE. Finally, conclusions are provided in section VI.

Notations: In the following, boldface lower and capital
case symbols represent vectors and matrices, respectively. The
transposition is denoted(·)T and the Hermitian transpose is
(·)H. The operatordiag(x) turns the vectorx into a diagonal
matrix. The symboldet(X) is the determinant of matrixX.
The symbol E[·] denotes expectation. The binary relation
symbol X|Y means thatY is divisible by X. The notation

x
F
→ y means thaty is the discrete Fourier transform ofx.



II. M ODEL

A. Mathematical Preliminaries

Definition 1: For z = ρeiα ∈ C, (ρ, α) ∈ R
+ × R, we call

an N × N matrix H (ρ, α)-circulant if it is of the form

H =































h0 0 . . . 0 ρeiαhL−1 . . . ρeiαh1

h1 h0
.. .

. . .
. ..

...
...

.. .
. . .

. .. ρeiαhL−1

hL−1
. . .

. . . 0

0
. . .

. . .
. ..

...
...

. . .
.. . h0 0

0 . . . 0 hL−1 . . . h1 h0































.

(1)
This is a matrix with first column[h0, . . . , hL−1, 0, . . . , 0]T,
and subsequent columns are successive cyclic shifts of this
column, with the upper triangular part of the matrix multiplied
by ρeiα.

Proposition 1: All N × N (ρ, α)-circulant matrices are
diagonalizable by the(ρ, α)-Fourier matrixFN,(ρ,α), with

FN,(ρ,α) = FN · diag
(

1, ρ
1

N eiα 1

N , . . . , ρ
N−1

N eiα N−1

N

)

(2)

Hence we denote

diag (φ0, . . . , φN−1) = FN,(ρ,α)HF−1
N,(ρ,α) (3)

where the diagonal elements are given by the(ρ, α)-DFT of
the first column ofH

[φ0, . . . , φN−1]
T = FN,(ρ,α)[h0, . . . , hL−1, 0, . . . , 0]T (4)

The proof of proposition 1 is provided in [13].

B. OFDM

Consider a regular OFDM transmission scheme. Denotes ∈
C

N the transmitted OFDM symbol,n ∈ C
N the additive white

Gaussian noise (AWGN) with entries of varianceE[|ni|
2] =

σ2 andH the circulant time-domain channel matrix. The time-
domain received signalr ∈ C

N reads

r = HFHs + n (5)

whereFN is rewrittenF for the sake of readability. Therefore
H is diagonalizable by the Fourier matrixF, with diagonal
elements the discrete Fourier transform of the first column
[h0, . . . , hL−1, 0, . . . , 0]T. This is simply obtained by multi-
plying r in (5) by F. The distribution of the noise does not
change, since a unitary transformation of a Gaussian vectoris
still a Gaussian vector. Thus,

F · r = diag (H(0), . . . ,H (N − 1)) s + n (6)

with H(·) the DFT of the first column ofH,

H (m) =
L−1
∑

j=0

hje
−2πij m

N (7)
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Fig. 1. α-OFDM transmission scheme

C. α-OFDM

The α-OFDM scheme consists in a first multiplication of
the time-domain symbols of the CP by the constantz = ρeiα

with ρ = 1. If ρ were chosen different from1, FN,(ρ,α) would
not be unitary, which would generate noise amplification at
the receiver side. Then the time-domain OFDM signal is
multiplied by the matrixdiag

(

1, e−iα/N , . . . , e−iα(N−1)/N
)

after the inverse DFT (IDFT) process in the OFDM trans-
mission chain. This is presented in figure 1. Thusα-OFDM
introduces only a minor change compared to OFDM. Note
that the classical OFDM modulation is the particularα-OFDM
scheme for whichα = 0.

Hence, the time-domain received signalr is

r = HFH

αs + n (8)

whereFα is a simplified notation forFN,(1,α) and H is α-
circulant (i.e.H is (1, α)-circulant).H can then be diagonal-
ized byFα.

Discarding the CP and multiplyingr by Fα at the receiver,
one has

Fα · r = diag (Φα (0) , . . . ,Φα (N − 1)) s + n (9)

with Φα(·) the α-DFT of the first column ofH:

Φα (m) =

L−1
∑

j=0

hje
−2πi j

N (m−
α
2π ) (10)

Note thatΦα(m) is a frequency shifted version ofH(m).
Thus α-OFDM introduces a fractionalfrequency shiftα/2π
to the channel{H(0), . . . ,H(L−1)}. Particularly, ifα/2π is
an integer, thenα-OFDM merely remaps the OFDM symbol
onto a circular-shifted version of the subcarriers.

III. O UTAGE CAPACITY ANALYSIS

A. Introduction

The transmission rates achievable in bursty communications
cannot be evaluated with Shannon’s formulation of the er-
godic capacity which involves infinite delay data transmission.



Rather, the transmission capabilities of a bursty system are
usually measured through the rate achievable(100 − q)% of
the time. This rateC0 is known as theq%-outage capacity and
verifiesP (C > C0) = (100 − q)/100, with C the Shannon’s
capacity [4] for fixed channels.

B. α-OFDM capacity

The normalized capacityC of a regular OFDM sys-
tem (also calledspectral efficiency) for the fixed channel
{H(0), . . . ,H(N − 1)} reads

C =
1

N

N−1
∑

m=0

log

(

1 +
|H (m)|

2

σ2

)

(11)

while the capacity forα-OFDM is

Cα =
1

N

N−1
∑

m=0

log

(

1 +
|Φα (m)|

2

σ2

)

(12)

Remind that the channelcoherence bandwidthof an OFDM
system is at least as large as the subcarrier spacing (otherwise
the channel delay spread would be longer than the OFDM
symbol duration). Therefore,Φα (m) ≃ H(

⌈

α
2π

⌉

N
) where

⌈x⌉N denotes the closest integer larger thanx modulo N .
From which we conclude thatC ≃ Cα. As a consequence,
α-OFDM does not bring any gain, either in terms of ergodic
or outage capacity.

Nonetheless, for various reasons, such as the introductionof
frequency guard bands or oversampling at the receiver, many
OFDM systems with a size-N DFT use a limited number of
subcarriersNu ≤ N to transmit data. Those are nameduseful
subcarriers. In such schemes, one has

C =
1

Nu

Nu−1
∑

m=0

log

(

1 +
|H (m)|

2

σ2

)

(13)

As for α-OFDM, the capacityCα is computed as

Cα =
1

Nu

Nu−1
∑

m=0

log

(

1 +
|Φα (m)|

2

σ2

)

(14)

The size of the bandwidth of both OFDM andα-OFDM
are the same but their location differs and thereforeC 6= Cα.
This capacity would only make sense if the frequency guard
bands are reusable and not protected, which is rarely the case
in single user OFDM systems. However, we shall see in the
subsequent sections that this apparent strong limitation can be
released in specific scenarios. In the remaining of this paper,
we therefore consider OFDM systems withN subcarriers
transmitting data overNu useful subcarriers whose locations
are subject to different contraints.

C. α-OFDM-based systems

1) α-OFDM#1: First consider a single-user OFDM system
with the N − Nu non-useful subcarriers gathered into a con-
tiguous subband, up to a circular rotation over the bandwidth.
This loose constraint allows to useα-OFDM for anyα ∈ R as
long as theNu useful subcarriers are gathered in a contiguous

band. We then naturally introduce theα-OFDM#1 scheme as
follows.

Let M ∈ N some integer constant.α-OFDM#1 assumes
that a particular set

M =

{

0, 2π
N

M
, . . . , 2π

N(M − 1)

M

}

(15)

of M values forα is a priori known both to the transmitter
and to the receiver. The symbolss are transmitted successively
using a(2πk/M)-OFDM modulation, withk ranging from1
to N , e.g. the first symbols(1) is sent using0-OFDM, then
s(2) is sent using(2πN/M)-OFDM etc. At the receiver side,
the correspondingα values are used to decode the received
symbols.

The capacityC#1 of the α-OFDM#1 scheme is

C#1 =
1

MNu

Nu−1
∑

m=0

∑

α∈M

log

(

1 +
|Φα (m)|

2

σ2

)

. (16)

2) α-OFDM#2: Assuming perfect channel state informa-
tion at the transmitter (CSIT), an improved scheme,α-
OFDM#2, can be derived fromα-OFDM#1, which selects
among theM values of M the one that maximizes the
instantaneous capacity. Its capacityC#2 reads

C#2 =
1

Nu
max
α∈M

Nu−1
∑

m=0

log

(

1 +
|Φα (m)|

2

σ2

)

. (17)

3) α-OFDM#3: Consider now that the protected unused
subcarriers can only be placed on the lowest frequency and
highest frequency sides of the bandwidth. Following the
same structure as theα-OFDM#1 scheme, we introduceα-
OFDM#3, based on a setM of M values forα which are
constrained byNu −N ≤ α

2π ≤ N −Nu. The introduction of
this particular scheme is relevant as the basis for some practical
applications studied in section V. The capacity formulation
C#3 is identical to equation (16) with the additional constraint
on the set of rotationsM. Therefore,maxM C#3(M) ≤
maxM C#1(M).

D. Capacity Gain

The effect of theα-OFDM#n schemes is to slide the OFDM
DFT window by different frequency shifts. This generates
channel diversity that is highly demanded in outage scenarios.
The following lemma shows that theper subcarrier fixed-
channel capacity limit ofα-OFDM#1, for anyNu < N , equals
theper subcarrierfixed-channel capacity of an OFDM system,
for Nu = N . The ratio between the totalα-OFDM#1 capacity
and the total OFDM capacity is thenNu/N for a proper choice
of M.

Lemma 1:Consider a single user OFDM system withNu

useful subcarriers andN total subcarriers without channel state
information at the transmitter (CSIT). Applyα-OFDM#1 with
a patternM of cardinal M like in (15) with the constraint
N |{M · gcd(N,Nu)}, gcd(x, y) being the greater common
divider of x and y. Assuming the channel coherence time is
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Fig. 2. α-OFDM#1 Outage Capacity in 3GPP-LTE EPA

more thanM times the OFDM symbol duration, the capacity
reads

C#1 =
1

N

N−1
∑

m=0

log

(

1 +

∣

∣H
(

m
N

)
∣

∣

2

σ2

)

(18)

For a proof of lemma 1, refer to [13].
The achievable outage capacity forα-OFDM#3 being less

than the outage capacity forα-OFDM#1, proposition 1 pro-
vides an upper bound on the achievable capacity forα-
OFDM#3.

IV. SIMULATION AND RESULTS

The 3GPP-LTE OFDM standard is considered in most
simulations. We present results for the1.4 MHz bandwidth
(Nu = 76,N = 128) and the 10MHz bandwidth (Nu =
602,N = 1024). In LTE, the null subcarriers on the bandwidth
sides do not correspond to guard bands but are due to oversam-
pling at the receiver; as a result, theN−Nu empty subcarriers
overlap the adjacent users’ bands. We will study the outage
capacity and BER gain assuming that we were allowed to slide
the spectrum over those bands while still sending data onNu

circularly consecutive subcarriers. Channels are modeledeither
as exponential decaying with mean zero and unit variance or
as LTE reference channels [9].

A. SISO case

Figure 2 compares the outage capacity gain ofα-OFDM#1
against plain OFDM in LTE EPA channels for a setM of
length M = 2 and M = 8. The bandwidth is1.4 MHz.
A strong SNR gain is provided byα-OFDM#1 already for
M = 2 (+1.1 dB), while growingM does not bring significant
improvement. This is explained by the fact thatM = 2 suffices
to transmit over all available subcarriers, providing already a
high diversity gain. Note also that this gain is dependent on
the channel length (it can be shown thatα-OFDM#1 in EVA
channels shows1.3 dB gain while in ETU it does not overtake
0.4 dB gain).
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Fig. 3. α-OFDM#1 BER

In terms of outage BER, corresponding gains are shown in
figure 3, which presents results obtained for BPSK signaling
and MMSE decoding over Rayleigh fading channels with
M = 2 or M chosen to optimize channel diversity. As
previously stated,M = 2 already provides a significant gain,
close to the limit with an ideal setM.

B. Single User with multiple antennas

Figure 4 depicts the gain ofα-OFDM schemes versus
OFDM in Rayleigh channels using multiple antennas at the
transmitter. It is observed that the usage of additional diversity
antennas can be partially or fully replaced byα-OFDM
schemes. Channel diversity from the space domain can then
be traded off with diversity in the time-domain thanks toα-
OFDM, at a minimal cost. However, particular care is required
to appreciate those results, as the performance gains heavily
depend on the outage percentageq as well as on the channel
delay spread. In mobile short-range wireless communication
schemes, bursty transmissions usingα-OFDM can be trans-
mitted at higher rates. This might efficiently replace additional
antennas, meant to provide spatial diversity.

C. Multi-cell systems

In multi-cell systems, inter-cell interference engendersout-
age situations whenever the terminal’s own cell shows bad
channel conditions while the channel to the interferer is
strong. Usingα-OFDM in its own cell, not only will the
terminal diversify its own channel but it will also face dif-
ferent interference patterns. Therefore, it is even less likely
to simultaneously be confronted to bad channel conditions
and strong interference over the consecutiveM α-OFDM
symbols. Figure 5 provides this analysis, in which a user
faces interference underSNR = 15 dB and varying signal
to interference ratio (SIR). The channel length is set toL = 3
while Nu = 601 and the DFT size isN = 1024. At high
SIR, one finds again theα-OFDM capacity gain observed in
figure 2. AroundSIR = 20 dB, a level for which interference
becomes a relevant factor, the outage gain due toα-OFDM#1
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is more than3 dB, which is twice the capacity gain obtained
in single-cell OFDM. As discussed in the previous section,
those gains are even larger if the considered outage is less
than 1% and is less for more frequency selective channels.

V. A PPLICATIONS

In this study, on the specific example of the1.4 MHz LTE
frequency band, we assumed that we were allowed to transmit
data on extra frequency bands on the bandwidth edges to
capitalize on channel diversity. This requires that those bands
are not in use. In the following we propose schemes for service
providers to overcome this problem by sacrificing a small part
of the total bandwidth.

A. α-LTE

In the LTE context, service providers are allowed to use up
to 20 MHz bandwidth that they can freely subdivide in several
chunks. Consider that one decides to cut off the available
bandwidth in16 chunks of1.25 MHz each. Those chunks are
composed of76 subcarriers which are oversampled to128 for
ease of computation at the transmitter and at the receiver. We
propose to sacrifice an amount of4 subcarriers per chunk that
then results in a4 × 16 = 64 free subcarriers in total. Those
64 subcarriers are gathered in two subbands of32 subcarriers,
placed on both sides of the20 MHz band. By synchronously
usingα-OFDM on every chunk for a maximum of16 users,
we can design a system ofNu = 76 − 4 = 72 effective
subcarriers per user over a totalN = 72+64 = 136 available
subcarriers. Indeed, the64 spared subcarriers are reusable to
every user by sliding their individual DFT windows.

Figure 7 illustrates a simplified version of the afore de-
scribed scheme, with4 chunks instead of16. In this particular
example, anM = 3 α-OFDM-based scheme is used that
synchronously exploits the left subcarriers of the dotted part
of each chunk, then the central subcarriers and finally the
right subcarriers in any three consecutive OFDM symbols
(s(3k), s(3k+1), s(3k+2)). Therefore, data will always be sent on
individual and non-overlapping bandwidths. In our particular
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Fig. 5. α-OFDM#1 with intercell interference

example, we use a136-DFT for a signal occupying the central
72-subcarrier band.

The gain of α-LTE lies in outage BER and also, at a
low-to-medium SNR, in outage capacity. Indeed, the lack of
4 subcarriers introduces a factor72/76 on the total outage
capacityC derivation that scales likeNu log(SNR) at high
SNR. But at low-to-medium SNR, the gain discussed in
section III appears and overtakes the loss in outage capacity
introduced by the lost4 subcarriers. The outage BER also
shows better performance than the former OFDM system,
which translates into a constant SNR gain at medium-to-high
SNR.

Figure 6 provides the simulation results obtained in 1%
outage capacity for a transmission through 3GPP-EVA chan-
nels with Nu = 72, N = 136 in the low-to-medium SNR
regime. For fair comparison, we plotted the outage capacity
cumulated over a bandwidth of76 subcarriers (therefore, when
Nu = 72, 4 subcarriers are left unused) that we normalize
by 76. As stated before, at low-to-medium SNR, a gain in
capacity is observed, despite the loss of 4 subcarriers. At high
SNR, we can observe that the classical OFDM fills the gap
with our improved method. The position of the crossing point
depends in particular on the channel delay spread and on the
channel coherence time. This is another compromise to take
into consideration for a precise utilization ofα-OFDM.

B. Ultra-Wide Band

3GPP LTE is not the only standard to allow its allocated
bandwidth to be divided into many OFDM systems. For
instance, UWB systems, that cannot manage very large DFT
computations, divide their allocated bandwidth into multiple
OFDM chunks.α-LTE can be generalized to systems of total
bandwidthW with N subcarriers, subdivided intoK subbands.
In classical OFDM, this results in chunks of sizeN/K and
therefore, without oversampling, to a DFT sizeN/K.

With α-OFDM, one can introduce a guard band ofG
subcarriers, to result intoK chunks of size(N − G)/K and
to an ((N−G)/K+G) DFT size. By making(N,K) grow to
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infinity with a constant ratio, the DFT size tends to (N/K+G)
while the number of useful subcarriers is fixed toN/K.

The loss in outage capacity per chunk at high SNR is then
fairly reduced while the gain in outage BER per chunk is kept
constant independently of(N,K). In this limit scenario,α-
OFDM does not require to sacrifice bandwidth but provides
diversity and outage capacity gain.

C. Cognitive Radios in Unlicensed Bands

Advanced techniques of channel sensing allow cognitive
radios [10] to figure out the spectral occupation of the
neighbouring frequencies. For bursty systems, it could be
convenient to reuse this free sensed bandwidthWe. By
increasing the rotation patternM accordingly, for instance
M = {0, 2πNWe/W}, it is possible to dynamically gain in
channel diversity. The terminal can be dynamically informed
of the mode to be used in a few bits through a dedicated
control channel.

VI. CONCLUSION

In this paper, flexible OFDM schemes based on theα-
OFDM concept are proposed.α-OFDM allows to exploit large
bandwidths to obtain outage gains for bursty OFDM systems.
α-OFDM requires a minor change compared to OFDM which
offers no capacity improvement in its actual form. Neverthe-
less,α-OFDM provides a way to exploit reusable frequency
bands and shows outage capacity improvement compared to
the classical OFDM modulation. In multicell scenarios,α-
OFDM can be exploited to mitigate intercell interference. Also
schemes based onα-OFDM can be used to efficiently replace
extra antennas at the transmitter. A large set of applications
is derived fromα-OFDM, such asα-LTE, a novel evolution
of LTE standard which shows performance gain in packet-
switched mode and short channel delay spread.α-OFDM
coupled to channel sensing methods also fits future cognitive
systems which smartly exploit the available bandwidth.
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