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Abstract— Collaborative spectrum sensing among secondary
users (SUs) in cognitive networks is shown to yield a significant
performance improvement. However, there exists an inherent
trade off between the gains in terms of probability of detection
of the primary user (PU) and the costs in terms of false alarm
probability. In this paper, we study the impact of this trade
off on the topology and the dynamics of an ad hoc network
of SUs seeking to reduce the interference on the PU through
collaborative sensing. Moreover, while existing literature mainly
focused on centralized solutions for collaborative sensing, we pro-
pose distributed collaboration strategies through game theory. We
model the problem as a non-transferable coalitional game, and
propose a distributed algorithm for coalition formation through
simple merge and split rules. Through the proposed algorithm,
SUs can autonomously collaborate and self-organize into disjoint
independent coalitions, while maximizing their detection proba-
bility taking into account the cooperation costs (in terms of false
alarm). We study the stability of the resulting network structure,
and show that a maximum number of SUs per formed coalition
exists for the proposed utility model. Through simulations, we
compare the performance of the proposed distributed solution
with respect to a centralized solution that minimizes the average
missing probability per SU. Simulation results show that the
proposed algorithm allows a reduction of up to 86.54% of the
average missing probability per SU (probability of missing the
detection of the PU) relatively to the non-cooperative case, while
maintaining a certain false alarm level. The results also show
how the proposed algorithm autonomously adapts the network
topology to environmental changes such as mobility.

I. INTRODUCTION

In recent years, there has been an exponential growth

in wireless services, yielding a huge demand on the radio

spectrum. However, the spectrum resources are scarce and

most of them have been already licensed to existing operators.

Governmental agencies such as the Federal Communications

Commission (FCC) in the United States have performed

thorough studies that showed that the actual licensed spectrum

remains unoccupied for large periods of time [1]. In order to

efficiently exploit these spectrum holes, cognitive radio (CR)

has been proposed [2]. By monitoring and adapting to the

environment, CRs (secondary users) can share the spectrum

with the licensed users (primary users), operating whenever

the primary user (PU) is not using the spectrum. Implementing

such flexible CRs faces several challenges. For instance, CRs

must constantly sense the spectrum in order to detect the

presence of the PU and use the spectrum holes without causing
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harmful interference to the PU. Hence, efficient spectrum

sensing constitutes a major challenge in cognitive networks.

For sensing the presence of the PU, the secondary users

(SUs) must be able to detect the signal of the PU. Different

kinds of detectors can be used for spectrum sensing such as

matched filter detectors, energy detectors or cyclostationary

detectors [3]. However, the performance of spectrum sensing

can be significantly affected by the degradation of the PU

signal due to path loss or shadowing (hidden terminal). It

has been shown that, through collaboration among SUs, the

effects of this hidden terminal problem can be reduced and the

probability of detecting the PU can be improved [4–6]. For

instance, in [4] the SUs collaborate by sharing their sensing

decisions through a centralized fusion center in the network.

This centralized entity combines the sensing bits from the

SUs using the OR-rule for data fusion and makes a final PU

detection decision. A similar centralized approach is used in

[5] using different decision-combining methods.The authors

in [6] propose spatial diversity techniques for improving the

performance of collaborative spectrum sensing by combatting

the error probability due to fading on the reporting channel

between the SUs and the central fusion center. Hence, existing

literature mainly focused on the performance assessment of

collaborative spectrum sensing in the presence of a centralized

fusion center. However, in practice, the SUs may belong to

different service providers and they need to interact with

each other for collaboration without relying on a centralized

fusion center. Moreover, a centralized approach can lead to a

significant overhead and an increased complexity.

The main contribution of this paper is to devise distributed

collaboration strategies for SUs in an ad hoc cognitive net-

work. Another major contribution of this work is to study

the impact on the network topology of the inherent trade off

that exists between the collaborative spectrum sensing gains

in terms of detection probability and the cooperation costs

in terms of false alarm probability. This trade off can be

pictured as a trade off between reducing the interference on

the PU (increasing the detection probability) while maintaining

a good spectrum utilization (reducing the false alarm proba-

bility). For distributed collaboration, we model the problem

as a non-transferable coalitional game and we propose a

distributed algorithm for coalition formation based on simple

merge and split rules. Through the proposed algorithm, each

SU autonomously decides to form or break a coalition for

maximizing its utility in terms of detection probability while

accounting for a false alarm cost. We show that, due to the
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cost for cooperation, independent disjoint coalitions will form

in the network. We study the stability of the resulting coalition

structure and show that a maximum coalition size exists for

the proposed utility model. Through simulations, we assess the

performance of the proposed algorithm relatively to the non-

cooperative case, we compare it with a centralized solution and

we show how the proposed algorithm autonomously adapts the

network topology to environmental changes such as mobility.

The rest of this paper is organized as follows: Section II

presents the system model. In Section III, we present the

proposed coalitional game and prove different properties while

in Section IV we devise a distributed algorithm for coalition

formation. Simulation results are presented and analyzed in

Section V. Finally, conclusions are drawn in Section VI.

II. SYSTEM MODEL

Consider an ad hoc network consisting of N = {1, . . . , N}
transmit-receive pairs of SUs and a single PU. Since the

focus is on spectrum sensing, we are only interested in the

transmitter part of each of the N SUs. In a non-cooperative

approach, each of the N SUs continuously senses the spectrum

in order to detect the presence of the PU. For detecting the

PU, we use energy detectors which are one of the main

practical signal detectors in cognitive radio networks [4–6].

In such a non-cooperative setting, assuming Rayleigh fading,

the detection probability and the false alarm probability of a

SU i are, respectively, given by [4], [7]
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where m is the time bandwidth product, λ is the energy

detection threshold assumed the same for all SUs without

loss of generality as in [4–6], Γ(., .) is the incomplete gamma

function, Γ(.) is the gamma function and γ̄i is the average

SNR of the received signal from the PU to SU given by

γ̄i,PU =
PP U hP U,i

σ2 with PPU the transmit power of the PU, σ2

the noise variance and hPU,i = κ/dµ
PU,i the path loss between

the PU and SU i; κ being the path loss constant, µ the path

loss exponent and dPU,i the distance between the PU and

SU i. It is important to note that the non-cooperative false

alarm probability expression depends solely on the detection

threshold λ and does not depend on the SU’s location; hence

we dropped the subscript i in (2). Finally, an important metric

that we will thoroughly use is the missing probability for a SU

i, which is defined as the probability of missing the detection

of a PU and given by

Pm,i = 1 − Pd,i. (3)

For instance, reducing the missing probability directly maps

to reducing the interference on the PU and increasing the

Fig. 1. An illustrative example of coalition formation for collaborative
spectrum sensing among SUs.

probability of detection. In order to minimize their missing

probabilities, the SUs will interact for forming coalitions of

collaborating SUs. Within each coalition S ⊆ N , an SU

selected as coalition head, collects the sensing bits from the

coalition’s SUs and acts as a fusion center in order to make

a coalition-based decision on the presence or absence of the

PU. This can be seen as having the centralized collaborative

sensing of [4], [6] applied at the level of each coalition with

the coalition head being the fusion center to which all the

coalition members report. For combining the sensing bits and

making the final detection decision, the coalition head will

use the decision fusion OR-rule such as in [4], [6]. Within

each coalition we take into account the probability of error

due to the fading on the reporting channel between the SUs

of a coalition and the coalition head [6]. Inside a coalition S,

assuming BPSK modulation in Rayleigh fading environments,

the probability of reporting error between a SU i ∈ S and the

coalition head k ∈ S is given by

Pe,i,k =
1

2

(

1 −

√

γ̄i,k

2 + γ̄i,k

)

, (4)

where γ̄i,k =
Pihi,k

σ2 is the average SNR between SU i and the

coalition head k inside coalition S with Pi the transmit power

of SU i, σ2 the gaussian noise and hi,k = κ
d

µ

i,k

the path loss

between SU i and coalition head k. Any SU can be selected as

a coalition head within a coalition. However, for the remainder

of this paper, we will adopt the following assumption without

loss of generality

Assumption 1: Within a coalition S, the SU k ∈ S having

the lowest non-cooperative missing probability Pm,k is chosen

as coalition head. Hence, the coalition head k of a coalition

S is given by k = arg min
i∈S

Pm,i with Pm,i given by (3).

The driver behind Assumption 1 is that the SU having the

lowest missing probability (best detection probability) within

a coalition should not risk sending his local sensing bit over

the fading reporting channel; and thus it will serve as a fusion

center for the other SUs in the coalition. By collaborative
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sensing, the missing and false alarm probabilities of a coalition

S having coalition head k are, respectively, given by [6]

Qm,S =
∏

i∈S

[Pm,i(1 − Pe,i,k) + (1 − Pm,i)Pe,i,k], (5)

Qf,S = 1 −
∏

i∈S

[(1 − Pf )(1 − Pe,i,k) + PfPe,i,k], (6)

where Pm,i, Pf and Pe,i,k are respectively given by (3), (2)

and (4) for an SU i ∈ S and coalition head k ∈ S.

It is clear from (5) and (6) that as the number of SUs per

coalition increases, the missing probability will decrease while

the probability of false alarm will increase. This is a crucial

trade off in collaborative spectrum sensing that can have a

major impact on the collaboration strategies of each SU. Thus,

our objective is to derive distributed strategies allowing the

SUs to collaborate while accounting for this trade off. An

example of the sought network structure is shown in Fig.1.

III. COLLABORATIVE SPECTRUM SENSING AS

COALITIONAL GAME

In this section, we model the problem of collaborative

spectrum sensing as a coalitional game and we prove and

discuss its key properties.

A. Centralized Approach

A centralized approach can be used in order to find the

optimal coalition structure that allows the SUs to maximize

their benefit from collaborative spectrum sensing, such as

in Fig.1. For instance, we seek a centralized solution that

minimizes the average missing probability (maximizes the

average detection probability) per SU subject to a false alarm

probability constraint per SU. In a centralized approach, we

assume the existence of a centralized entity in the network

that is able to gather information on the SUs such as their

individual missing probabilities or their location. In brief,

the centralized entity must be able to know all the required

parameters for computing the probabilities in (5) and (6) in

order to find the optimal structure. However, prior to deriving

such an optimal centralized solution, the following property

must be pinpointed within each coalition

Property 1: The missing and false alarm probabilities of

any SU i ∈ S are given by the missing and false alarm

probabilities of the coalition S in (5) and (6) respectively.

Proof: Within each coalition S the SUs report their

sensing bits to the coalition head. In its turn the coalition

head of S combines the sensing bits using decision fusion

and makes a final decision on the presence or absence of the

PU. Thus, SUs belonging to a coalition S will transmit or not

based on the final coalition head decision. Consequently, the

missing and false alarm probabilities of any SU i ∈ S are

the missing and false alarm probabilities of the coalition S to

which i belongs as given by in (5) and (6) respectively.

As a consequence of Property 1 the required false alarm

probability constraint per SU directly maps to a false alarm

probability constraint per coalition. Therefore, denoting B as

the set of all partitions of N , the centralized approach seeks

to solve the following optimization problem

min
P∈B

∑

S∈P |S| · Qm,S

N
, (7)

s.t. Qf,S ≤ α ∀ S ∈ P,

where |.| represents the cardinality of a set operator and S is a

coalition belonging to the partition P . Clearly, the centralized

optimization problem seeks to find the optimal partition P∗ ∈
B that minimizes the average missing probability per SU,

subject to a false alarm constraint per SU (coalition).

However, it is shown in [8] that finding the optimal coalition

structure for solving an optimization problem such as in (7) is

an NP-complete problem. This is mainly due to the fact that

the number of possible coalition structures (partitions), given

by the Bell number, grows exponentially with the number of

SUs N . Moreover, the complexity increases further due to the

fact that the expressions of Qm,S and Qf,S given by (5) and

(6) depend on the optimization parameter P . For this purpose,

deriving a distributed solution enabling the SUs to benefit

from collaborative spectrum sensing with a low complexity

is desirable. The above formulated centralized approach will

be used as a benchmark for the distributed solution in the

simulations; for reasonably small networks.

B. Game Formulation and Properties

For the purpose of deriving a distributed algorithm that

can minimize the missing probability per SU, we refer to

cooperative game theory [9] which provides a set of analytical

tools suitable for such algorithms. For instance, the proposed

collaborative sensing problem can be modeled as a (N , v)
coalitional game [9] where N is the set of players (the SUs)

and v is the utility function or value of a coalition.

The value v(S) of a coalition S ⊆ N must capture the trade

off between the probability of detection and the probability

of false alarm. For this purpose, v(S) must be an increasing

function of the detection probability Qd,S = 1−Qm,S within

coalition S and a decreasing function of the false alarm

probability Qf,S . A suitable utility function is given by

v(S) = Qd,S − C(Qf,S) = (1 − Qm,S) − C(Qf,S), (8)

where Qm,S is the missing probability of coalition S given

by (5) and C(Qf,S) is a cost function of the false alarm

probability within coalition S given by (6).

First of all, we provide the following definition from [9]

and subsequently prove an interesting property pertaining to

the proposed game model.

Definition 1: A coalitional game (N , v) is said to have

a transferable utility if the value v(S) can be arbitrarily

apportioned between the coalition’s players. Otherwise, the

coalitional game has a non-transferable utility and each player

will have its own utility within coalition S.

Property 2: In the proposed collaborative sensing game,

the utility of a coalition S is equal to the utility of each SU

in the coalition, i.e. v(S) = φi(S) ∀ i ∈ S where φi(S)
denotes the utility of SU i when i belongs to a coalition S.



4
Consequently, the proposed (N , v) coalitional game model has

a non-transferable utility.

Proof: The value of a coalition in the proposed game is

given by (8) and is a function of Qm,S and Qf,S . As shown

in Property 1, the missing probabilities for each SU i in S are

also given by Qm,S and Qf,S and thus the payoff of each SU

i ∈ S is given by φi(S) = v(S). Consequently, the value of

a coalition v(S) cannot be arbitrarily apportioned among the

users of a coalition; and the proposed coalitional game has

non-transferable utility.

In general, coalitional game based problems seek to char-

acterize the properties and stability of the grand coalition

of all players since it is generally assumed that the grand

coalition maximizes the utilities of the players [9]. In our

case, although collaborative spectrum sensing improves the

detection probability for the SUs; the cost in terms of false

alarm limits this gain. Therefore, for the proposed (N , v)
coalitional game we have

Property 3: For the proposed (N , v) coalitional game, the

grand coalition of all the SUs does not always form due to the

collaboration false alarm costs; and thus disjoint independent

coalitions will form in the network.

Proof: By inspecting Qm,S in (5) and through the results

shown in [4], [6] it is clear that as the number of SUs in

a coalition increase Qm,S decreases and the performance in

terms of detection probability improves. Hence, when no cost

for collaboration exists, the grand coalition of all SUs is the

optimal structure for maximizing the detection probability.

However, when the number of SUs in a coalition S increases, it

is shown in [4], [6] through (5) that the false alarm probability

increases. Therefore, for the proposed collaborative spectrum

sensing model with cost for collaboration, the grand coalition

of all SUs will, in general, not form due to the false alarm

cost as taken into consideration in (8).

In a nutshell, we have a non-transferable (N , v) coalitional

game where the grand coalition of does not form. Before

deriving a distributed algorithm for forming coalitions among

SUs, we will delve into the details of the cost function in (8).

C. Cost Function

Any well designed cost function C(Qf,S) in (8) must satisfy

several requirements needed for adequately modeling the false

alarm cost. On one hand, C(Qf,S) must be an increasing

function of Qf,S with the increase slope becoming steeper as

Qf,S increases. On the other hand, the cost function C(Qf,S)
must impose a maximum tolerable false alarm probability, i.e.

an upper bound constraint on the false alarm, that cannot be

exceeded by any SU in a manner similar to the centralized

problem in (7) (due to Property 1, imposing a false alarm

constraint on the coalition maps to a constraint per SU).

A well suited cost function satisfying the above require-

ments is the logarithmic barrier penalty function given by [10]

C(Qf,S) =

{

−α2 · log (1 − (
Qf,S

α
)2), if Qf,S < α,

+∞, if Qf,S ≥ α,
(9)

where α is a false alarm constraint per coalition (i.e. per

SU). The cost function in (9) allows to incur a penalty

which is increasing with the false alarm probability. Moreover,

it imposes a maximum false alarm probability per SU. In

addition, as the false alarm probability gets closer to α the

cost for collaboration increases steeply, requiring a significant

improvement in detection probability if the SUs wish to

collaborate as per (8). Also, it is interesting to note that

the proposed cost function depends on both distance and

the number of SUs in the coalition, through the false alarm

probability Qf,S (the distance lies within the probability of

error). Hence, the cost for collaboration increases with the

number of SUs in the coalition as well as when the distance

between the coalition’s SUs increases.

IV. DISTRIBUTED COALITION FORMATION ALGORITHM

In this section, we propose a distributed coalition formation

algorithm and we discuss its key properties.

A. Coalition Formation Concepts

Coalition formation has been a topic of high interest in game

theory [8], [11–14]. The goal is to find algorithms for charac-

terizing the coalitional structures that form in a network where

the grand coalition is not optimal. For instance, a generic

framework for coalition formation is presented in [13–15]

whereby coalitions form and break through two simple merge-

and-split rules. This framework can be used to construct

a distributed coalition formation algorithm for collaborative

sensing, but first, we define the following concepts [13], [14].

Definition 2: A collection of coalitions, denoted S, is

defined as the set S = {S1, . . . , Sl} of mutually disjoint

coalitions Si ⊂ N . If the collection spans all the players of

N ; that is
⋃l

j=1 Sj = N , the collection is a partition of N .

Definition 3: A preference operator or comparison relation

⊲ is defined for comparing two collections R = {R1, . . . , Rl}
and S = {S1, . . . , Sm} that are partitions of the same subset

A ⊆ N (i.e. same players in R and S). Thus, R⊲ S implies

that the way R partitions A is preferred to the way S partitions

A based on a criterion to be defined next.

Various criteria (referred to as orders) can be used as

comparison relations between collections or partitions [13],

[14]. These orders are divided into two main categories:

coalition value orders and individual value orders. Coalition

value orders compare two collections (or partitions) using

the value of the coalitions inside these collections such as

in the utilitarian order where R ⊲ S implies
∑l

i=1 v(Ri) >
∑p

i=1 v(Si). Individual value orders perform the comparison

using the actual player utilities and not the coalition value.

For such orders, two collections R and S are seen as sets

of player utilities of the same length L (number of players).

The players’ utilities are either the payoffs after division

of the value of the coalitions in a collection (transferable

utility) or the actual utilities of the players belonging to the

coalitions in a collection (non-transferable utility). Due to the

non-transferable nature of the proposed (N , v) collaborative

sensing game (Property 2), an individual value order must
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be used as a comparison relation ⊲. An important example

of individual value orders is the Pareto order. Denote for a

collection R = {R1, . . . , Rl}, the utility of a player j in

a coalition Ri ∈ R by φj(R) = φj(Rj) = v(Rj) (as per

Property 2); hence, the Pareto order is defined as follows

R ⊲ S ⇐⇒ {φj(R) ≥ φj(S) ∀ j ∈ R,S}

with at least one strict inequality (>) for a player k. (10)

Due to the non-transferable nature of the proposed collabora-

tive sensing model, the Pareto order is an adequate preference

relation. Having defined the various concepts, we construct a

distributed coalition formation algorithm in the next section.

B. Coalition Formation Algorithm

For autonomous coalition formation in cognitive radio net-

works, we propose a distributed algorithm based on two simple

rules denoted as “merge” and “split” that allow to modify a

partition T of the SUs set N as follows [13]

Definition 4: Merge Rule - Merge any set of coalitions

{S1, . . . , Sl} where {
⋃l

j=1 Sj} ⊲ {S1, . . . , Sl}, therefore,

{S1, . . . , Sl} → {
⋃l

j=1 Sj}. (each Si is a coalition in T ).

Definition 5: Split Rule - Split any coalition
⋃l

j=1 Sj

where {S1, . . . , Sl} ⊲ {
⋃l

j=1 Sj}, thus, {
⋃l

j=1 Sj} →
{S1, . . . , Sl}. (each Si is a coalition in T ).

Using the above rules, multiple coalitions can merge into a

larger coalition if merging yields a preferred collection based

on the selected order ⊲. Similarly, a coalition would split

into smaller coalitions if splitting yields a preferred collection.

When ⊲ is the Pareto order, coalitions will merge (split) only if

at least one SU is able to strictly improve its individual utility

through this merge (split) without decreasing the other SUs’

utilities. By using the merge-and-split rules combined with

the Pareto order, a distributed coalition formation algorithm

suited for collaborative spectrum sensing can be constructed.

First and foremost, the appeal of forming coalitions using

merge-and-split stems from the fact that it has been shown

in [13] and [14] that any arbitrary iteration of merge-and-split

operations terminates. Moreover, each merge or split decision

can be taken in a distributed manner by each individual SU or

by each already formed coalition. Subsequently, a merge-and-

split coalition algorithm can adequately model the distributed

interactions among the SUs of a cognitive network that are

seeking to collaborate in the sensing process.

In consequence, for the proposed collaborative sensing

game, we construct a coalition formation algorithm based on

merge-and-split and divided into three phases: local sensing,

adaptive coalition formation and coalition sensing. In the local

sensing phase, each individual SU computes its own local PU

detection bit; based on the received PU signal. In the adaptive

coalition formation phase, the SUs (or existing coalitions of

SUs) interact in order to assess whether to share their sensing

results with nearby coalitions. For this purpose, an iteration

of sequential merge-and-split rules occurs in the network,

whereby each coalition decides to merge (or split) depending

on the utility improvement that merging (or splitting) yields.

In this phase, as time evolves and SUs (or the PU) move, the

SUs can autonomously self-organize and adapt the network’s

topology through new merge-and-split iterations with each

coalition taking the decision to merge (or split) subject to

satisfying the merge (or split) rule through Pareto order (10).

In the final coalition sensing phase, once the network topology

converges following merge-and-split, SUs that belong to the

same coalition report their local sensing bits to their coalition

head. The coalition head subsequently uses decision fusion

OR-rule to make a final decision on the presence or the

absence of the PU. This decision is then reported by the

coalition heads to all the SUs within their respective coalitions.

Each round of the 3 phases of the proposed algorithm starts

from an initial network partition T = {T1, . . . , Tl} of N .

During the adaptive coalition formation phase any random

coalition (individual SU) can start with the merge process.

For implementation purposes, assume that the coalition Ti ∈ T
which has the highest utility in the initial partition T starts the

merge by attempting to collaborate with a nearby coalition. On

one hand, if merging occurs, a new coalition T̃i is formed and,

in its turn, coalition T̃i will attempt to merge with a nearby

SU that can improve its utility. On the other hand, if Ti is

unable to merge with the firstly discovered partner, it tries to

find other coalitions that have a mutual benefit in merging. The

search ends by a final merged coalition T final
i composed of Ti

and one or several of coalitions in its vicinity (T final
i = Ti,

if no merge occurred). The algorithm is repeated for the

remaining Ti ∈ T until all the coalitions have made their

merge decisions, resulting in a final partition F . Following the

merge process, the coalitions in the resulting partition F are

next subject to split operations, if any is possible. An iteration

consisting of multiple successive merge-and-split operations is

repeated until it terminates. It must stressed that the decisions

to merge or split can be taken in a distributed way without

relying on any centralized entity as each SU or coalition can

make its own decision for merging or splitting. Table I shows

a summary of one round of the proposed algorithm.

For the proposed merge-and-split algorithm, an upper bound

on the maximum coalition size is imposed by the proposed

utility and cost models in (8) and (9) as follows

Theorem 1: For the proposed collaborative sensing model,

any coalition structure resulting from the distributed coalition

formation algorithm will have coalitions limited in size to a

maximum of Mmax = log (1−α)
log (1−Pf ) SUs.

Proof: For forming coalitions, the proposed algorithm

requires an improvement in the utility of the SUs through

Pareto order. However, the benefit from collaboration is limited

by the false alarm probability cost modeled by the barrier

function (9). A minimum false alarm cost in a coalition S with

coalition head k ∈ S exists whenever the reporting channel is

perfect, i.e., exhibiting no error, hence Pe,i,k = 0 ∀i ∈ S.

In this perfect case, the false alarm probability in a perfect

coalition Sp is given by

Qf,Sp
= 1 −

∏

i∈Sp

(1 − Pf ) = 1 − (1 − Pf )|Sp|, (11)



6TABLE I
ONE ROUND OF THE PROPOSED COLLABORATIVE SENSING ALGORITHM

Initial State

The network is partitioned by T = {T1, . . . , Tk} (At the beginning
of all time T = N = {1, . . . , N} with non-cooperative SUs).

Three phases in each round of the coalition formation algorithm

Phase 1 - Local Sensing:

Each individual SU computes its local PU signal sensing bit.

Phase 2 - Adaptive coalition formation:

In this phase, coalition formation using merge-and-split occurs.

repeat

a) F = Merge(T ); coalitions in T decide to merge
based on the merge algorithm explained in Section IV-B.
b) T = Split(F ); coalitions in F decide to split based on
the Pareto order.

until merge-and-split terminates.

Phase 3 - Coalition Sensing:

a) Each SU reports its sensing bit to the coalition head.

b) The coalition head of each coalition makes a final decision on

the absence or presence of he PU using decision fusion OR-rule.

c) The SUs in a coalition abide by the final decision made by the

coalition head.

The above phases are repeated throughout the network operation.

In Phase 2, through distributed merge-and-split decisions, the SUs
can autonomously adapt the network topology to environmental
changes such as mobility.

where |Sp| is the number of SUs in the perfect coalition Sp.

A perfect coalition Sp where the reporting channels inside are

perfect (i.e. SUs are grouped very close to each other) can

accommodate the largest number of SUs relatively to other

coalitions. Hence, we can use this perfect coalition to find an

upper bound on the maximum number of SUs per coalition.

For instance, the log barrier function in (9) tends to infinity

whenever the false alarm probability constraint per coalition

is reached which implies an upper bound on the maximum

number of SUs per coalition if Qf,Sp
≥ α, yielding by (11)

|Sp| ≤
log (1 − α)

log (1 − Pf )
= Mmax . (12)

It is interesting to note that the maximum size of a coalition

Mmax depends mainly on two parameters: the false alarm

constraint α and the non-cooperative false alarm Pf . For

instance, larger false alarm constraints allow larger coalitions,

as the maximum tolerable cost limit for collaboration is

increased. Moreover, as the non-cooperative false alarm Pf

decreases, the possibilities for collaboration are larger since

the increase of the false alarm due to coalition size becomes

smaller as per (6). It must be noted that the dependence of

Mmax on Pf yields a direct dependence of Mmax on the

energy detection threshold λ as per (2). Finally, it is interesting

to see that the upper bound on the coalition size does not

depend on the location of the SUs in the network nor on the

actual number of SUs in the network. Hence, having more

SUs in the network for a fixed α and Pf does not increase the

upper bound on coalition size.

C. Stability

The result of the proposed algorithm in Table I is a

network partition composed of disjoint independent coalitions

of SUs. The stability of this resulting network structure can be

investigated using the concept of a defection function D [13].

Definition 6: A defection function D is a function which

associates with each partition T of N a group of collections

in N . A partition T = {T1, . . . , Tl} of N is D-stable if no

group of players is interested in leaving T when the players

who leave can only form the collections allowed by D.

Two important defection functions must be characterized

[13–15]. First, the Dhp(T ) function (denoted Dhp) which

associates with each partition T of N the group of all

partitions of N that the players can form through merge-

and-split operations applied to T . This function allows any

group of players to leave the partition T of N through merge-

and-split operations to create another partition in N . Second,

the Dc(T ) function (denoted Dc) which associates with each

partition T of N the family of all collections in N . This

function allows any group of players to leave the partition T
of N through any operation and create an arbitrary collection

in N . Two forms of stability stem from these definitions: Dhp

stability and a stronger Dc stability. A partition T is Dhp-

stable, if no players in T are interested in leaving T through

merge-and-split to form other partitions in N ; while a partition

T is Dc-stable, if no players in T are interested in leaving T
through any operation (not necessary merge or split) to form

other collections in N .

Characterizing any type of D-stability for a partition de-

pends on various properties of its coalitions. For instance, a

partition T = {T1, . . . , Tl} is Dhp-stable, if the following two

necessary and sufficient conditions are met [15], [13] (⋫ is

the non-preference operator)

1) For each i ∈ {1, . . . , m} and for each partition

{R1, . . . , Rm} of Ti ∈ T we have {R1, . . . , Rm} ⋫ Ti;

2) For each S ⊆ {1, . . . , l} we have
⋃

i∈S Ti ⋫ {Ti|i ∈ S},

Theorem 2: Every partition resulting from our proposed

coalition formation algorithm is Dhp-stable.

Proof: Assume T = {T1, . . . , Tl} is the partition result-

ing from our algorithm in Table I. If for any i ∈ {1, . . . , l}
and for any partition {R1, . . . , Rm} of Ti ∈ T we assume that

{R1, . . . , Rm}⊲ Ti then the partition T can still be modified

by applying a split rule on Ti contradicting with the fact that

T resulted from a termination of the merge-and-split iteration;

therefore {S1, . . . , Sm} ⋫ Ti (first Dhp stability condition

verified). A similar reasoning is applicable in order to prove

that T verifies the second condition; since otherwise a merge

rule would still be applicable.

With regards to Dc stability, the work in [13–15] proved that

a Dc-stable partition has the following properties:

1) If it exists, a Dc-stable partition is the unique outcome

of any arbitrary iteration of merge-and-split and is a

Dhp-stable partition.

2) A Dc-stable partition T is a unique ⊲-maximal partition,

that is for all partitions T ′ 6= T of N , T ⊲T ′. In the case

where ⊲ represents the Pareto order, this implies that

the Dc-stable partition T is the partition that presents a

Pareto optimal utility distribution for all the players.
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Non−cooperative sensing
Proposed distributed coalition formation
Centralized solution

The solution of the centralized approach
is mathematically untractable beyond 
N = 7 SUs

Fig. 2. Average missing probabilities (average over locations of SUs and non-
cooperative false alarm range Pf ∈]0, α[ ) vs. number of SUs.

However, the existence of a Dc-stable partition is not always

guaranteed [13]. The Dc-stable partition T = {T1, . . . , Tl} of

the whole space N exists if a partition of N that verifies the

following two necessary and sufficient conditions exists [13]:

1) For each i ∈ {1, . . . , l} and each pair of disjoint

coalitions S1 and S2 such that {S1 ∪S2} ⊆ Ti we have

{S1 ∪ S2} ⊲ {S1, S2}.

2) For the partition T = {T1, . . . , Tl} a coalition G ⊂
N formed of players belonging to different Ti ∈ T
is T -incompatible if for no i ∈ {1, . . . , l} we have

G ⊂ Ti. Dc-stability requires that for all T -incompatible

coalitions {G}[T ]⊲{G} where {G}[T ] = {G∩Ti ∀ i ∈
{1, . . . , l}} is the projection of coalition G on T .

If no partition of N can satisfy these conditions, then no Dc-

stable partitions of N exists. Nevertheless, we have

Lemma 1: For the proposed (N , v) collaborative sensing

coalitional game, the proposed algorithm of Table I converges

to the optimal Dc-stable partition, if such a partition exists.

Otherwise, the proposed algorithm yields a final network

partition that is Dhp-stable.

Proof: The proof is an immediate consequence of The-

orem 2 and the fact that the Dc-stable partition is a unique

outcome of any arbitrary merge-and-split iteration which is

the case with any partition resulting from our algorithm.

Moreover, for the proposed game, the existence of the Dc-

stable partition cannot be always guaranteed. For instance,

for verifying the first condition for existence of the Dc-stable

partition, the SUs belonging to partitions of each coalitions

must verify the Pareto order through their utility given by

(8). Similarly, for verifying the second condition of Dc sta-

bility, SUs belonging to all T -incompatible coalitions in the

network must verify the Pareto order. Consequently, finding a

geometrical closed-form condition for the existence of such a

partition is not feasible as it depends on the location of the

SUs and the PU through the individual missing and false alarm

probabilities in the utility expression (8). Hence, the existence
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Non−cooperative sensing
Proposed distributed coalition formation
Centralized solution

The solution of the centralized approach
is mathematically untractable beyond
N = 7 SUs

Fig. 3. Average false alarm probabilities (average over locations of SUs and
non-cooperative false alarm range Pf ∈]0, α[ ) vs. number of SUs.

of the Dc-stable partition is closely tied to the location of the

SUs and the PU which both can be random parameters in

practical networks. However, the proposed algorithm will al-

ways guarantee convergence to this optimal Dc-stable partition

when it exists as stated in Lemma 1. Whenever a Dc-stable

partition does not exist, the coalition structure resulting from

the proposed algorithm will be Dhp-stable (no coalition or SU

is able to merge or split any further).

V. SIMULATION RESULTS AND ANALYSIS

For simulations, the following network is set up: The PU is

placed at the origin of a square of 3 km ×3 km with the SUs

randomly deployed around the PU. We set the time bandwidth

product m = 5 [4–6], the PU transmit power PPU = 100 mW,

the SU transmit power Pi = 10 mW ∀i ∈ N and the noise

level σ2 = −90 dBm. For path loss, we set µ = 3 and κ = 1.

The maximum constraint on the false alarm is taken as α = 0.1
as recommended by the IEEE 802.22 standard [16].

In Figures 2 and 3 we show, respectively, the average

missing probabilities and the average false alarm probabilities

achieved per SU for different network sizes. These probabili-

ties are averaged over random locations of the SUs as well as a

range of energy detection thresholds λ that does not violate the

false alarm constraint; which in turn, maps into an average over

the non-cooperative false alarm range Pf ∈]0, α[ (obviously,

for Pf > α no cooperation is possible). In Fig. 2, we show that

the proposed algorithm yields a significant improvement in the

average missing probability reaching up to 86.54% reduction

(at N = 30) compared to the non-cooperative case. This

advantage is increasing with the network size N . However,

there exists a gap in the performance of the proposed algorithm

and that of the optimal centralized solution. This gap stems

mainly from the fact that the log barrier function used in

the distributed algorithm (9) increases the cost drastically

when the false alarm probability is in the vicinity of α. This

increased cost makes it harder for coalitions with false alarm

levels close to α to collaborate in the distributed approach

as they require a large missing probability improvement to
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Fig. 4. Average missing probabilities per SU vs. non-cooperative false alarm
Pf (or energy detection threshold λ).

compensate the cost in their utility (8) so that a Pareto order

merge or split becomes possible. However, albeit the proposed

cost function yields a performance gap in terms of missing

probability, it forces a false alarm for the distributed case

smaller than that of the centralized solution as seen in Fig. 3.

Moreover, Fig. 3 shows that the achieved average false

alarm by the proposed distributed solution outperforms that of

the centralized solution but is still outperformed by the non-

cooperative case. Thus, while the centralized solution achieves

a better missing probability; the proposed distributed algo-

rithm compensates this performance gap through the average

achieved false alarm. In summary, Fig. 2 and Fig. 3 clearly

show the performance trade off that exists between the gains

achieved by collaborative spectrum sensing in terms of average

missing probability and the corresponding cost in terms of

average false alarm probability.

In Fig. 4 we show the average missing probabilities per

SU for different energy detection thresholds λ expressed by

the feasible range of non-cooperative false alarm probabilities

Pf ∈]0, α[ for N = 7. In this figure, we show that as

the non-cooperative Pf decreases the performance advantage

of collaborative spectrum sensing for both the centralized

and distributed solutions increases (except for very small Pf

where the advantage in terms of missing probability reaches

its maximum). The performance gap between centralized

and distributed is once again compensated by a false alarm

advantage for the distributed solution as already seen and

explained in Fig. 3 for N = 7. Finally, in this figure, it must

be noted that as Pf approaches α = 0.1 the advantage for

collaborative spectrum sensing diminishes drastically as the

network converges towards the non-cooperative case.

In Fig. 5 we show a snapshot of the network structure

resulting from the proposed distributed algorithm (dashed blue

line) as well as the centralized approach (solid red line) for

N = 7 randomly placed SUs and a non-cooperative false

alarm Pf = 0.01. We notice that the structures resulting

from both approaches are almost comparable; with nearby SUs
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Fig. 5. Final coalition structure from both distributed (dashed blue line) and
centralized (solid red line) collaborative spectrum sensing for a network of
N = 7 SUs.

forming collaborative coalitions for improving their missing

probabilities. However, for the distributed solution, SU 4 is

part of coalition S1 = {1, 2, 4, 6} while for the centralized

approach SU 4 is part of coalition {3, 4, 5}. This difference in

the network structure is due to the fact that, in the distributed

case, SU 4 acts selfishly while aiming at improving its own

utility. In fact, by merging with {3, 5} SU 4 achieves a utility

of φ4({3, 5}) = 0.9859 with a missing probability of 0.0024
whereas by merging with {1, 2, 6} SU 4 achieves a utility

of φ4({1, 2, 4, 6}) = 0.9957 with a missing probability of

0.00099. Thus, when acting autonomously in a distributed

manner, SU 4 prefers to merge with {1, 2, 6} rather than with

{3, 5} regardless of the optimal structure for the network as a

whole. In brief, Fig. 5 shows how the cognitive network struc-

tures itself for both centralized and distributed approaches.

Furthermore, in Fig. 6 we show how our distributed algo-

rithm in Table I handles mobility during Phase 2 (adaptive

coalition formation). For this purpose, after the network struc-

ture in Fig. 5 has formed, we allow SU 1 to move horizontally

along the positive x-axis while other SUs are immobile. In

Fig. 6, at the beginning, the utilities of SUs {1, 2, 4, 6} are

similar since they belong to the same coalition. These utilities

decrease as SU 1 distances itself from {2, 4, 6}. After moving

0.8 km SUs {1, 6} split from coalition {1, 2, 4, 6} by Pareto

order as φ1({1, 6}) = 0.9906 > φ1({1, 2, 4, 6}) = 0.99,

φ6({1, 6}) = 0.9906 > φ6({1, 2, 4, 6}) = 0.99, φ2({2, 4}) =
0.991 > φ2({1, 2, 4, 6}) = 0.99 and φ4({2, 4}) = 0.991 >
φ4({1, 2, 4, 6} = 0.99) (this small advantage from splitting

increases as SU 1 moves further). As SU 1 distances itself

further from the PU, its utility and that of its partner SU 6

decrease. Subsequently, as SU 1 moves 1.4 km it finds it

beneficial to split from {1, 6} and merge with SU 7. Through

this merge, SU 1 and SU 7 improve their utilities. Meanwhile,

SU 6 rejoins SUs {2, 4} forming a 3-SU coalition {2, 4, 6}
while increasing the utilities of all three SUs. In a nutshell,
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SU 1 splits from {1,6} and
forms coalition {1,7} while
SU 6 merges with {2,4} and
forms {2,4,6}
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{2,4} and {1,6} as SU 1 moves

Fig. 6. Self-adaptation of the network’s topology to mobility through merge-
and-split as SU 1 moves horizontally on the positive x-axis.

this figure illustrates how adaptive coalition formation through

merge and split operates in a mobile cognitive radio network.

Similar results can be seen whenever all SUs are mobile or

even the PU is mobile but they are omitted for space limitation.

Finally, in Fig. 7, for a network of N = 30 SUs, we

evaluate the sizes of the coalitions resulting from our dis-

tributed algorithm and compare them with the the upper bound

Mmax derived in Theorem 1. First and foremost, as the non-

cooperative Pf increases, both the maximum and the average

size of the formed coalitions decrease converging towards the

non-cooperative case as Pf reaches the constraint α = 0.1.

Through this result, we can clearly see the limitations that the

detection-false alarm probabilities trade off for collaborative

sensing imposes on the coalition size and network topology.

Moreover, in this figure, we show that, albeit the upper bound

on coalition size Mmax increases drastically as Pf becomes

smaller, the average maximum coalition size achieved by the

proposed algorithm does not exceed 4 SUs per coalition for the

given network with N = 30. This result shows that, in general,

the network topology is composed of a large number of small

coalitions rather than a small number of large coalitions, even

when Pf is small and the collaboration possibilities are large.

VI. CONCLUSIONS

In this paper, we proposed a novel distributed algorithm

for collaborative spectrum sensing in cognitive radio network.

We modeled the collaborative sensing problem as a coalitional

game with non-transferable utility and we derived a distributed

algorithm for coalition formation. The proposed coalition

formation algorithm is based on two simple rules of merge-

and-split that enable SUs in a cognitive network to cooperate

for improving their detection probability while taking into

account the cost in terms of false alarm probability. We char-

acterized the network structure resulting from the proposed

algorithm, studied its stability and showed that a maximum

number of SUs per coalition exists for the proposed utility

model. Simulation results showed that the proposed distributed

algorithm reduces the average missing probability per SU up
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Fig. 7. Maximum and average coalition size vs. non-cooperative false alarm
Pf (or energy detection threshold) for the distributed solution.

to 86.54% compared to the non-cooperative case. The results

also show how, through the proposed algorithm, the SUs can

autonomously adapt the network structure to environmental

changes such as mobility. Finally, through simulations we

compared the performance of the proposed algorithm with that

of an optimal centralized solution.
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