
ADAPTIVE TRANSMISSION FOR LOSSLESS IMAGE RECONSTRUCTION

Elisabeth Lahalle, Gilles Fleury, Rawad Zgheib

Department of Signal Processing and Electronic Systems, Supélec, Gif-sur-Yvette, France
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ABSTRACT

This paper deals with the problem of adaptive digital trans-

mission systems for lossless reconstruction. A new system,

based on the principle of non-uniform transmission, is pro-

posed. It uses a recently proposed algorithm for adaptive sta-

ble identification and robust reconstruction of AR processes

subject to missing data. This algorithm offers at the same time

an unbiased estimation of the model’s parameters and an op-

timal reconstruction in the least mean square sense. It is an

extension of the RLSL algorithm to the case of missing obser-

vations combined with a Kalman filter for the prediction. This

algorithm has been extended to 2D signals. The proposed

method has been applied for lossless image compression. It

has shown an improvement in bit rate transmission compared

to the JPEG2000 as well as the JPEG-LS standards.

Index Terms— adaptive, lossless, compression

1. INTRODUCTION

Lossless compression methods are important in many medi-

cal applications where large data set need to be transmitted

without any loss of information. Actually, some lesions risk

becoming undetectable due to the effects of lossy compres-

sion. General lossless compression coders are considered to

be composed of two main blocks: a data decorrelation block

and an entropy coder for the decorrelated data. Two main ten-

dencies may be noticed for the methods used for the decorre-

lation step: methods based on wavelet transforms and meth-

ods based on predictive coding. They have led to the main

compression standards : the JPEG2000 for the former group

of methods [1], the JPEG-LS for the latter [2]. Intensive at-

tention is paid to transform based compression methods with

many algorithms which perform well regarding the bit rate

such as SPIHT [3], QT [4], etc.

All these coders use a uniform transmission of the binary el-

ements to transmit. In a previous paper [5], the design of dig-

ital systems based upon non-uniform transmission of signal

samples was introduced. The idea behind is to avoid sending

a sample if it can be efficiently predicted, e.g. with a pre-

diction error smaller than the quantization one, thus reduc-

ing the average transmission bit rate and increasing the signal

to noise ratio (SNR). A speech coder based on the Adaptive

Pulse Code Modulation (ADPCM) principle and non-uniform

transmission of signals have already been proposed in [6]. It

uses the Least Mean Square (LMS)-like algorithm [7] for the

prediction of the samples that were not sent. However, this al-

gorithm converges toward biased estimations of the model’s

parameters and does not use an optimal predictor in the least

mean square sense. Recently, we proposed a Recursive Least

Square Lattice (RLSL) algorithm for adaptive stable identifi-

cation of non stationary Autoregressive (AR) processes sub-

ject to missing data, using a Kalman filter as a predictor [8].

This algorithm is fast, guarantees the stability of the model

identified and offers at the same time an optimal reconstruc-

tion error in the least mean square sense and an unbiased esti-

mation of the model’s parameters in addition to the fast adap-

tivity to the variations of the parameters in the case of non sta-

tionary processes. Non stationnary AR processes can model a

large number of signals in practical situations, such as images

in the bi-dimensional case [9]. A new lossless image coder

based on a non-uniform transmission principle is proposed:

it is based on an adaptation of the algorithm proposed in [8]

for optimal prediction and identification of 2D AR processes

subject to missing observations.

In the following, begin by presenting the non-uniform trans-

mission idea for lossless compression. In a second part, the

adaptive algorithm for reconstruction of AR processes with

missing observations [8] is described and extended to 2D AR

processes. Its integration into a non-uniform transmission

system is studied in the third section. Finally, an example

illustrates the performances of the proposed system. It is com-

pared to a uniform digital transmission system : the JPEG2000.

2. NON-UNIFORM TRANSMISSION SYSTEM FOR

LOSSLESS RECONSTRUCTION

The proposed system uses predictive coding and non-uniform

transmission to reduce the bit rate transmission. An AR sig-

nal modeling is considered for the prediction. Let xn be the

amplitude of the signal at time n. The prediction of a sample

will be noted x̂n,P and the prediction error en,P = xn−x̂n,P .

In the receiver, a sample xn is predicted using the estimated

model parameters at time n− 1, ân−1, and the available sam-



ples. The key ideas of the proposed system are the following.

If en,P ≈ 0, xn is replaced by x̂n,P in the receiver without

any loss, requiring only one bit flag to be transmitted for the

first and the last sample where en,P ≈ 0. If an efficient pre-

diction method for non-uniformly sampled data is used, the

above situation occurs many times during the transmission.

This is the case for example outside the region of interest of

the image where the sample value is constant or null. The

whole number of transmitted samples is thus considerably re-

duced. As some of the samples are not transmitted, the re-

ceiver has to deal with the problem of online identification

and reconstruction of signals subject to missing samples. The

probability law of the prediction error of the image to transmit

is then used to adapt the number of bit coding the prediction

error in the case where it is non zero.

3. PREDICTION/RECONSTRUCTION FOR

NON-UNIFORMLY SAMPLED DATA

3.1. Kalman RLSL algorithm

Let {xn} be an AR process of order L with parameters {ak},

and {ǫn} the corresponding innovation process of variance

σ2
ǫ . The loss process is modeled by an i.i.d binary random

variable {cn}, where cn = 1 if xn is available, otherwise

cn = 0. Let {zn} be the reconstruction of the process {xn}.

If xn is available zn = xn, otherwise, zn = x̂n, the predic-

tion of xn. In order to identify, in real time, the AR process

subject to missing data, the algorithm proposed in [8] can be

summarised as follows. The reflection coefficients of the lat-

tice structure are determined by minimizing the weighted sum

of the quadratic forward, f
(l)
t , and backward, b

(l)
t , prediction

errors :

E(l)
n =

n
∑

i=1

wn−i

(

f (l)2
n + b(l)2

n

)

. (1)

A Kalman filter provide an optimal prediction of the signal

using the AR estimated parameters. These parameters are

deduced from the estimated reflection coefficients using the

Durbin Levinson recursions. At time n + 1, the first line of

the matrix A of the state space representation of an AR pro-

cess is built with â
(L)⊤
n , the vector of the parameters estimated

at time n. The matrix is then named An+1.

An+1 =











â
(L)
1,n . . . . . . â

(L)
L,n

1 0 0
. . .

...

0 1 0











,

Pn+1|n = An+1Pn|nA⊤
n+1 + Rǫ,

x̂n+1|n = An+1x̂n|n

ŷn+1|n = cn+1x̂n+1|n

(2)

If xn+1 is available, i.e. cn+1 = 1,

Kn+1 = Pn+1|ncn+1(c
⊤
n+1Pn+1|ncn+1)

−1, (3a)

Pn+1|n+1 = (Id − Kn+1c⊤n+1)Pn+1|n, (3b)

x̂n+1|n+1 = x̂n+1|n + Kn+1(yn+1 − ŷn+1|n) (3c)

The predictions of the previous missing data up to time n −
L + 1 are updated thanks to the filtering of the state in equa-

tion (3c). It is convenient now to calculate all the variables

of the lattice filter since the last available observation at time

n − h, where h ≥ 0 depends on the observation pattern. At

each time t, for n − h + 1 ≤ t ≤ n + 1, the recursive equa-

tions of the RLSL algorithm given by (5) are applied to es-

timate the different reflection coefficients k̂
(l)
t and prediction

errors f̂
(l)
t , b̂

(l)
t for 1 ≤ l ≤ L. The values of the forward and

backward prediction errors are initialized using the updated

estimates of the missing samples (those contained within the

filtered state x̂n+1|n+1), i.e. f̂
(0)
t = b̂

(0)
t = x̂t|n+1.

Hence,

• For t = n − h + 1 to n + 1

– Initialize for l = 0

f̂
(0)
t = b̂

(0)
t = x̂t|n+1, k̂

(0)
t = 1, (4)

– For l = 1 to min(L, n)

C
(l)
t = λC

(l)
t−1 + 2f̂ (l−1)t b̂

(l−1)
t−1 , (5a)

D
(l)
t = λD

(l)
t−1 + f̂

(l−1)2
t + b̂

(l−1)2
t−1 , (5b)

k̂
(l)
t = −

C
(l)
t

D
(l)
t

, (5c)

f̂
(l)
t = f̂

(l−1)
t − k̂

(l)
t b̂

(l−1)
t−1 , (5d)

b̂
(l)
t = b̂

(l−1)
t−1 − k̂

(l)
t f̂

(l−1)
t , (5e)

– end

• end.

The AR parameters at time n+1, (â
(L)
i,n+1)1≤i≤L, are deduced

from the reflection coefficients (k̂
(l)
n+1)1≤i≤L using the Durbin

Levinson recursions. owever if xn+1 is absent, cn+1 = 0, the

predicted state, x̂n+1|n, is not filtered by the Kalman filter,

and the parameters are not updated since the reflection coeffi-

cients (k̂
(l)
n+1)1≤l≤L are not yet calculated,

Kn+1 = 0, (6a)

Pn+1|n+1 = Pn+1|n, (6b)

x̂n+1|n+1 = x̂n+1|n, (6c)

â
(L)
n+1 = â

(L)
n . (6d)

The cost function minimized by this algorithm is the weighted

mean of all quadratic prediction errors. When a sample is



missing, the prediction error can not be calculated, it is re-

placed by its estimation. Indeed, recall that in order to update

the reflection coefficients at a time n, the lattice filter variables

must have been calculated at all previous times. Therefore,

using this algorithm, the lattice filter variables are estimated

at all times even when a sample is missing. Consequently,

this algorithm presents an excellent convergence behavior and

have fast parameter tracking capability even for a large prob-

ability of missing a sample. The computational complexity of

this algorithm is found to be O((1 − q)NL2), where q is the

bernoulli’s probability of losing a sample, N is the size of the

signal and L the order of the AR model.

3.2. Adaptation to 2D signals

A first solution to use the previous algorithm for 2D signals

is to use the classical video scanning of the image in order to

get a 1D signal. However, only a 1D decorrelation is achieved

using this method.

In order to get a 2D decorrelation of the image, a 2D AR

predictor x̂i,j of the sample xi,j (7) must be used in addition

to the video scanning of the image.
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Fig. 1. AR 2D: prediction support

x̂i,j =
∑

n,m∈S

ân,mxi−n,j−m (7)

In order to integrate this 2D AD predictor into the previous

algorithm, the first line of the A matrix is built with the ân,m

parameters, and the regressor vector [xn−1 . . . xn−L]
⊤

is re-

placed by [xi−1,j . . . xi−n,j−m . . . xi−p,j−q]
⊤

. The renum-

bering task excepted, to built the A matrix, the computational

time of these 2D algorithm is similar to the 1D one.

4. PROPOSED ADAPTATIVE TRANSMISSION

ALGORITHM

In this section, we propose to use the algorithms discussed

in section 3 as efficient predictors in the non uniform trans-

mission system proposed in section 2 in order to minimize

the number of bit to transmit. At each time n, knowing all

transmitted samples and using the same identification and re-

construction method as the one used in the receiver, the trans-

mitter evaluates the signal reconstruction performance in the

receiver. This can be done by comparing the receiver predic-

tion error, |en,P |, with different thresholds, S1 ≈ 0,S2, ...,Si.

Thus, if the receiver is able to reconstruct the sample with-

out error (error greatly smaller than the quantification error

(1e−5)), only a one bit flag is transmitted to indicate the first

and the last missing sample. The number of thresholds Si and

their values are chosen according to the probability law of the

prediction error to transmit only the Bi bits required to code

the prediction error for each threshold. The proposed coding

decoding algorithm can be summarized, at a time n, as:

• In the transmitter:

. en,P = xn − x̂n,P

. if (|en,P | = 1e−5 and |en−1,P | > 1e−5 or |en,P | >

1e−5 and |en−1,P | = 1e−5), one bit flag is transmitted,

. else if |en,P | < S2,

. if |en,P | < S3, B3 bits are transmitted,

. else B2 bits are transmitted,

. else B1 bits are transmitted.

• In the receiver, the method described in 3 is used for

adaptive identification and reconstruction of a signal

subject to missing data: if a new sample is received,

the AR parameters are updated. Otherwise, the miss-

ing sample is predicted in terms of the past available

samples and the current estimation of the parameters.

5. SIMULATIONS

The performances of both proposed methods are compared to

the JPEG2000. The first method uses a 1D AR model of order

3 of the signal. In the second method, the image is modeled

by a 2D AR process of order (2, 2). The performances of the

different methods are evaluated in term of bit rate (in bpp) on

CT images. The PSNR is computed for the proposed methods

to show the lossless reconstruction of the image. The PSNR

which have been reached for all the simulations corresponds

to the infinity value. Table 1 shows the results for CT images

of (512x512x12) bits presented in figures 2, 3 and 4 (Images

courtesy of Dr Kopans, MGH Boston, USA. Tomosynthesis

investigational device from GE Healthcare (Chalfont St Giles,

UK)). In these images the prediction error is in most of the

case small (lower than 32), but for the pixels of the edge of

the ROI the prediction error requires 12 bits to be coded. Con-

sequently, the following values are chosen for the number of

bit to code the prediction error : B1 = 13, B2 = 8, B3 = 6.

6. CONCLUSION

A new digital transmission system for lossless image recon-

struction has been proposed. It is based on a non-uniform

transmission principle and on extensions to 2D of the algo-

rithm proposed in [8] for real time identification and recon-

struction of AR processes subject to missing data. The pro-
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Fig. 2. CT1 image
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Fig. 3. CT2 image

posed methods, applied on CT images, has shown in their two

forms (2D as well as 1D) an improvement in bit rate compar-

ing to the JPEG2000 and JGPEG-LS standards. Comparing

to the JPEG2000, significant gains for lossless compression

are reached: 3.4% for CT3 image up to 4.6% for CT1 image.

Comparing to the JPEG-LS, the most significant gains (2.7%

up to 3.6%) are reached for CT2 and CT1 images where the

RLE coding of the JPEG-LS is not used.
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