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ABSTRACT

This paper deals with the problem of adaptive digital trans-
mission systems for lossless reconstruction. A new system,
based on the principle of non-uniform transmission, is pro-
posed. It uses a recently proposed algorithm for adaptive sta-
ble identification and robust reconstruction of AR processes
subject to missing data. This algorithm offers at the same time
an unbiased estimation of the model’s parameters and an op-
timal reconstruction in the least mean square sense. It is an
extension of the RLSL algorithm to the case of missing ob-
servations combined with a Kalman filter for the prediction.
This algorithm has been extended to 2D signals. The pro-
posed method has been applied for lossless image compres-
sion. It has shown an improvement in bit rate transmission
compared to the JPEG2000 standard.

Index Terms— adaptive, lossless, compression

1. INTRODUCTION

Lossless compression methods are important in many medi-
cal applications where large data set need to be transmitted
without any loss of information. Actually, some lesions risk
becoming undetectable due to the effects of lossy compres-
sion. General lossless compression coders are considered to
be composed of two main blocks: a data decorrelation block
and an entropy coder for the decorrelated data. Two main ten-
dencies may be noticed for the methods used for the decorre-
lation step: methods based on wavelet transforms and meth-
ods based on predictive coding. They have led to the main
compression standards : the JPEG2000 for the former group
of methods [1], the JPEG-LS for the latter [2]. Intensive at-
tention is paid to transform based compression methods with
many algorithms which perform well regarding the bit rate
such as SPIHT [3], QT [4], etc.
All these coders use a uniform transmission of the binary ele-
ments to transmit. In a previous paper [5], the design of digital
systems based upon non-uniform transmission of signal sam-
ples was introduced. The idea behind is to avoid sending a
sample if it can be efficiently predicted, e.g. with a prediction
error smaller than the quantization one, thus reducing the av-
erage transmission bit rate and increasing the SNR. A speech

coder based on the ADPCM principle and non-uniform trans-
mission of signals have already been proposed in [6]. It uses
the LMS-like algorithm [7] for the prediction of the samples
that were not sent. However, this algorithm converges toward
biased estimations of the model’s parameters and does not
use an optimal predictor in the least mean square sense. Re-
cently, we proposed an RLSL algorithm for adaptive stable
identification of non stationary AR processes subject to miss-
ing data, using a Kalman filter as a predictor [8]. This algo-
rithm is fast, guarantees the stability of the model identified
and offers at the same time an optimal reconstruction error
in the least mean square sense and an unbiased estimation of
the model’s parameters in addition to the fast adaptivity to
the variations of the parameters in the case of non stationary
processes. Non stationnary AR processes can model a large
number of signals in practical situations, such as images in the
bi-dimensional case [9]. A new lossless image coder based on
a non-uniform transmission principle is proposed: it is based
on an adaptation of the algorithm proposed in [8] for optimal
prediction and identification of 2D AR processes subject to
missing observations.

In the following, begin by presenting the non-uniform
transmission idea for lossless compression. In a second part,
the adaptive algorithm for reconstruction of AR processes
with missing observations [8] is described and extended to
2D AR processes. Its integration into a non-uniform trans-
mission system is studied in the third section. Finally, an
example illustrates the performances of the proposed system.
It is compared to a uniform digital transmission system : the
JPEG2000.

2. NON-UNIFORM TRANSMISSION SYSTEM FOR
LOSSLESS RECONSTRUCTION

The proposed system uses predictive coding and non-uniform
transmission to reduce the bit rate transmission. An AR sig-
nal modeling is considered for the prediction. Let xn be the
amplitude of the signal at time n. The prediction of a sample
will be noted x̂n,P and the prediction error en,P = xn−x̂n,P .
In the receiver, a sample xn is predicted using the estimated
model parameters at time n− 1, ân−1, and the available sam-
ples. The key ideas of the proposed system are the following.



If en,P ≈ 0, xn is replaced by x̂n,P in the receiver without
any loss, requiring only one bit flag to be transmitted for the
first and the last sample where en,P ≈ 0. If an efficient pre-
diction method for non-uniformly sampled data is used, the
above situation occurs many times during the transmission.
This is the case for example outside the region of interest of
the image where the sample value is constant or null. The
whole number of transmitted samples is thus considerably re-
duced. As some of the samples are not transmitted, the re-
ceiver has to deal with the problem of online identification
and reconstruction of signals subject to missing samples. The
probability law of the prediction error of the image to transmit
is then used to adapt the number of bit coding the prediction
error in the case where it is non zero.

3. PREDICTION/RECONSTRUCTION FOR
NON-UNIFORMLY SAMPLED DATA

3.1. Kalman RLSL algorithm

Let {xn} be an AR process of order L with parameters {ak},
and {εn} the corresponding innovation process of variance
σ2

ε . The loss process is modeled by an i.i.d binary random
variable {cn}, where cn = 1 if xn is available, otherwise
cn = 0. Let {zn} be the reconstruction of the process {xn}.
If xn is available zn = xn, otherwise, zn = x̂n, the predic-
tion of xn. In order to identify, in real time, the AR process
subject to missing data, the algorithm proposed in [8] can be
summarised as follows. The reflection coefficients of the lat-
tice structure are determined by minimizing the weighted sum
of the quadratic forward, f

(l)
t , and backward, b

(l)
t , prediction

errors :

E(l)
n =

n∑

i=1

wn−i

(
f (l)2

n + b(l)2
n

)
. (1)

A Kalman filter provide an optimal prediction of the signal
using the AR estimated parameters. These parameters are
deduced from the estimated reflection coefficients using the
Durbin Levinson recursions. At time n + 1, the first line of
the matrix A of the state space representation of an AR pro-
cess is built with â(L)>

n , the vector of the parameters estimated
at time n. The matrix is then named An+1.

An+1 =




â
(L)
1,n . . . . . . â

(L)
L,n

1 0 0
. . .

...
0 1 0


 ,

Pn+1|n = An+1Pn|nA>n+1 + Rε,
x̂n+1|n = An+1x̂n|n
ŷn+1|n = cn+1x̂n+1|n

(2)

If xn+1 is available, i.e. cn+1 = 1,

Kn+1 = Pn+1|ncn+1(c>n+1Pn+1|ncn+1)−1, (3a)

Pn+1|n+1 = (Id −Kn+1c>n+1)Pn+1|n, (3b)
x̂n+1|n+1 = x̂n+1|n + Kn+1(yn+1 − ŷn+1|n) (3c)

The predictions of the previous missing data up to time n −
L + 1 are updated thanks to the filtering of the state in equa-
tion (3c). It is convenient now to calculate all the variables
of the lattice filter since the last available observation at time
n − h, where h ≥ 0 depends on the observation pattern. At
each time t, for n − h + 1 ≤ t ≤ n + 1, the recursive equa-
tions of the RLSL algorithm given by (5) are applied to es-
timate the different reflection coefficients k̂

(l)
t and prediction

errors f̂
(l)
t , b̂

(l)
t for 1 ≤ l ≤ L. The values of the forward and

backward prediction errors are initialized using the updated
estimates of the missing samples (those contained within the
filtered state x̂n+1|n+1), i.e. f̂

(0)
t = b̂

(0)
t = x̂t|n+1.

Hence,

• For t = n− h + 1 to n + 1

– Initialize for l = 0

f̂
(0)
t = b̂

(0)
t = x̂t|n+1, k̂

(0)
t = 1, (4)

– For l = 1 to min(L, n)

C
(l)
t = λC

(l)
t−1 + 2f̂ (l−1)t b̂

(l−1)
t−1 , (5a)

D
(l)
t = λD

(l)
t−1 + f̂

(l−1)2
t + b̂

(l−1)2
t−1 , (5b)

k̂
(l)
t = −C

(l)
t

D
(l)
t

, (5c)

f̂
(l)
t = f̂

(l−1)
t − k̂

(l)
t b̂

(l−1)
t−1 , (5d)

b̂
(l)
t = b̂

(l−1)
t−1 − k̂

(l)
t f̂

(l−1)
t , (5e)

– end

• end.

The AR parameters at time n+1, (â(L)
i,n+1)1≤i≤L, are deduced

from the reflection coefficients (k̂(l)
n+1)1≤i≤L using the Durbin

Levinson recursions.
However if xn+1 is absent, cn+1 = 0, the predicted state,

x̂n+1|n, is not filtered by the Kalman filter, and the parameters
are not updated since the reflection coefficients (k̂(l)

n+1)1≤l≤L

are not yet calculated,

Kn+1 = 0, (6a)
Pn+1|n+1 = Pn+1|n, (6b)
x̂n+1|n+1 = x̂n+1|n, (6c)

â(L)
n+1 = â(L)

n . (6d)



The cost function minimized by this algorithm is the weighted
mean of all quadratic prediction errors. When a sample is
missing, the prediction error can not be calculated, it is re-
placed by its estimation. Indeed, recall that in order to update
the reflection coefficients at a time n, the lattice filter variables
must have been calculated at all previous times. Therefore,
using this algorithm, the lattice filter variables are estimated
at all times even when a sample is missing. Consequently,
this algorithm presents an excellent convergence behavior and
have fast parameter tracking capability even for a large prob-
ability of missing a sample. The computational complexity of
this algorithm is found to be O((1 − q)NL2), where q is the
bernoulli’s probability of losing a sample, N is the size of the
signal and L the order of the AR model.

3.2. Adaptation to 2D signals

A first solution to use the previous algorithm for 2D signals
is to use the classical video scanning of the image in order to
get a 1D signal. However, only a 1D decorrelation is achieved
using this method.
In order to get a 2D decorrelation of the image, a 2D AR
predictor x̂i,j of the sample xi,j (7) must be used in addition
to the video scanning of the image.
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Fig. 1. AR 2D: prediction support

x̂i,j =
∑

n,m∈S

ân,mxi−n,j−m (7)

In order to integrate this 2D AD predictor into the previous
algorithm, the first line of the A matrix is built with the ân,m

parameters, and the regressor vector [xn−1 . . . xn−L]> is re-
placed by [xi−1,j . . . xi−n,j−m . . . xi−p,j−q]

>. The renum-
bering task excepted, to built the A matrix, the computational
time of these 2D algorithm is similar to the 1D one.

4. PROPOSED ADAPTATIVE TRANSMISSION
ALGORITHM

In this section, we propose to use the algorithms discussed
in section 3 as efficient predictors in the non uniform trans-
mission system proposed in section 2 in order to minimize
the number of bit to transmit. At each time n, knowing all

transmitted samples and using the same identification and re-
construction method as the one used in the receiver, the trans-
mitter evaluates the signal reconstruction performance in the
receiver. This can be done by comparing the receiver predic-
tion error, |en,P |, with different thresholds, S1 ≈ 0,S2, ...,Si.
Thus, if the receiver is able to reconstruct the sample with-
out error (error greatly smaller than the quantification error
(1e−5)), only a one bit flag is transmitted to indicate the first
and the last missing sample. The number of thresholds Si and
their values are chosen according to the probability law of the
prediction error to transmit only the Bi bits required to code
the prediction error for each threshold. The proposed coding
decoding algorithm can be summarized, at a time n, as:

• In the transmitter:
. en,P = xn − x̂n,P

. if (|en,P | = 1e−5 and |en−1,P | > 1e−5 or |en,P | >
1e−5 and |en−1,P | = 1e−5), one bit flag is transmitted,
. else if |en,P | < S2,
. if |en,P | < S3, B3 bits are transmitted,
. else B2 bits are transmitted,
. else B1 bits are transmitted.

• In the receiver, the method described in 3 is used for
adaptive identification and reconstruction of a signal
subject to missing data: if a new sample is received,
the AR parameters are updated. Otherwise, the miss-
ing sample is predicted in terms of the past available
samples and the current estimation of the parameters.

5. SIMULATIONS

The performances of both proposed methods are compared to
the JPEG2000. The first method uses a 1D AR model of order
3 of the signal. In the second method, the image is modeled
by a 2D AR process of order (2, 2). The performances of the
different methods are evaluated in term of bit rate (in bpp) on
CT images. The PSNR is computed for the proposed methods
to show the lossless reconstruction of the image. The PSNR
which have been reached for all the simulations corresponds
to the infinity value. Table 1 shows the results for CT images
of (512x512x12) bits presented in figures 2, 3 and 4 (Images
courtesy of Dr Kopans, MGH Boston, USA. Tomosynthesis
investigational device from GE Healthcare (Chalfont St Giles,
UK)). In these images the prediction error is in most of the
case small (lower than 32), but for the pixels of the edge of
the ROI the prediction error requires 12 bits to be coded. Con-
sequently, the following values are chosen for the number of
bit to code the prediction error : B1 = 13, B2 = 8, B3 = 6.

6. CONCLUSION

A new digital transmission system for lossless image recon-
struction has been proposed. It is based on a non-uniform
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Fig. 2. CT1 image
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Fig. 3. CT2 image

transmission principle and on extensions to 2D of the algo-
rithm proposed in [8] for real time identification and recon-
struction of AR processes subject to missing data. The pro-
posed methods, applied on CT images, has shown in their two
forms (2D as well as 1D) an improvement in bit rate compar-
ing to the JPEG2000. Significant gains for lossless compres-
sion are reached: 3.4% for CT3 image up to 4.6% for CT1
image. Moreover, as usual for predictive coders, they benefit
from smaller complexity comparing to wavelet based coders.

7. REFERENCES

[1] ISO/IEC 15444-1, “Information technology - jpeg2000
image coding system,” JPEG2000 standard, Part 1-Core

Table 1. Comparison of the three methods in bit rate (in bpp)
for CT images of (512x512x12) bits:

Method CT1 CT2 CT3
1 6.53 6.67 5.1
2 6.45 6.61 5.1

JPEG2000 6.76 6.89 5.28

50 100 150 200 250 300 350 400 450 500

50

100

150

200

250

300

350

400

450

500

Fig. 4. CT3 image

coding system, 2000.

[2] ISO/IEC 14495-1, “Information technology - lossless
and near-lossless compression of continuous-tone still
images,” JPEG-LS standard, Baseline, 2000.

[3] A. Said and W. A. Pearlman, “A new fast and efficient
image codec based on set partitionning in hierarchical
trees,” IEEE Trans. on Circuits and systems for Video
Technology, vol. 6, pp. 243–250, June 1996.

[4] A. Munteanu and J. Cornelis, “Wavelet based lossless
compression scheme with progressive transmission ca-
pability,” International Journal of Imaging Systems and
Tecnology, vol. 10, pp. 76–85, January 1999.

[5] S. Mirsaidi, G. Fleury, and J. Oksman, “Reducing quanti-
zation error using prediction/non uniform transmission,”
in Proc. International Workshop on Sampling Theory and
Applications. IEEE, 1997, pp. 139–143.

[6] E. Lahalle and J. Oksman, “ADPCM speech coder
with adaptive transmission and ARMA modelling of
non-uniformly sampled signals,” in 5th Nordic Signal
Processing Symposium, CD-ROM proceedings, Norway.
IEEE, 2002.

[7] S. Mirsaidi, G. Fleury, and J. Oksman, “LMS like AR
modeling in the case of missing observations,” IEEE
Transactions on Signal Processing, vol. 45, pp. 1574–
1583, June 1997.

[8] R. Zgheib, G. Fleury, and E. Lahalle, “Lattice algorithm
for adaptive stable identification and robust reconstruc-
tion of non stationary ar processes with missing observa-
tions,” IEEE Transactions on Signal Processing, vol. 56,
pp. 2746–2754, July 2008.

[9] N. S. Jayant and P. Noll, “Digital coding of waveform,
principles and applications to speech and video,” Prentice
Hall, 1984.


