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Plateau de Moulon, 3 rue Joliot-Curie
91192 Gif sur Yvette, France

Email: merouane.debbah@supelec.fr

Jack W. Silverstein
Department of Mathematics

North Carolina State University
Raleigh, North Carolina 27695-8205

Email: jack@math.ncsu.edu

Abstract—This paper introduces a new formula to derive
explicit capacity expressions of a class of communication schemes,
including single-cell multi-user MIMO and multi-cell point-to-
point MIMO, when the wireless channels have separable variance
profiles and the system dimensions grow large. As an introductory
example, we study point-to-point MIMO channels with multi-
cell interference, in downlink. In this setting, we provide new
asymptotic capacity expressions when single-user decoding or
MMSE decoding are used. Simulations are shown to corroborate
the theoretical claims, even when the number of transmit/receive
antennas is not very large.

I. I NTRODUCTION

In the last years, while mobile networks were expected
to run out of power and frequency resources, Foschini [4]
and Telatar [5] introduced the notion of MIMO (multiple
input multiple output) systems and predicted a growth of
capacity performance ofmin(nR, nT) times the single antenna
capacity for annT-antenna transmitter and annR-antenna
receiver. However, this tremendous multiplexing gain can only
be provided for large SINR (signal-to-interference plus noise
ratio) and without signal correlation. In case of correlation due
to antenna spacing or to poorly scattering environments, these
results are still an open issue. In present multi-cell wireless
mobile networks, neither base stations nor users cooperate; this
leaves the device manufacturers with the dilemma of increas-
ing the signal processing capabilities of the transmit/receive
units to result into non significant throughput gains when
adjacent cells interfere one another. Moreover, due to limited
computational constraints, suboptimal linear techniquessuch
as MMSE (minimum mean square error) decoding are used at
the receiver [6], in place of optimal single-user decoders.

In this work, we derive the channel capacity of MMSE
receivers against optimal single-user decoders in multi-cell
networks, when the number of antennas at the transmitters
and receivers is large. The capacity here is defined as the
supremum of the achievable rates between a base station
and a specific user (in uplink or in downlink) interfered
by other cells. We model all transmission channels by the
well-spread Kronecker model [7]. Few major contributions
propose to study the capacity performance of point-to-point
communications with interference. In [11], the authors carry
out the performance analysis of TDMA-based networks with
inter-cell interference. In [12], a random matrix approachis

used to study large CDMA-based networks with inter-cell
interference. In the MIMO context, [8] provides an analytic
solution to our problem, using replica methods [9]. These
methods are however tedious since they require heavy combi-
natorial calculus. We propose in the following a more direct
approach, based on analytical tools of random matrix theory
[10]. In particular, we introduce a new theorem, related to
the Stieltjes transform of a specific class of random matrices,
which generalizes a similar result in [1].

Although this specific work is dedicated to the study of
point-to-point MIMO systems with multi-cell interference,
the method we introduce covers a larger class of problems,
in which channel capacities express as the log determinant
of a sum of Gram matricesXiX

H

i , where Xi is a large
matrix modelled as Kronecker. For example, aside from
uplink/downlink multi-cell single-user MIMO, this method
encompasses single-cell multi-user MIMO communications in
the uplink, evaluation of the capacity region of multiple access
channels and dirty paper coding in broadcast channels [14] etc.

The remainder of this work is structured as follows: in
Section II, we provide mathematical preliminaries and we
introduce a new theorem, for which we provide a sketch of
the proof. In Section III, we introduce the system model. In
Section IV, the point-to-point capacity of the channel between
a base station and a user, interfered by other cells, is derived
when optimal single-user decoding or MMSE decoding are
performed at the receiver. In Section V, we provide simulation
results of the previously derived theoretical formulas. Finally,
in Section VI, we give our conclusions.

Notation: In the following, boldface lower-case symbols
represent vectors, capital boldface characters denote matrices
(IN is the N × N identity matrix). Xij denotes the(i, j)
entry of X. The Hermitian transpose is denoted(·)H. The
operatorstrX, |X| and‖X‖ represent the trace, determinant
and spectral norm of matrixX, respectively. The symbolE[·]
denotes expectation. The notationFY stands for the empirical
distribution of the eigenvalues of the Hermitian matrixY.

II. M ATHEMATICAL PRELIMINARIES

Part of this work is dedicated to the introduction of a novel
theorem, from which the multi-cell downlink and uplink ca-
pacities will be given compact expressions. This theorem gen-



eralizes Silverstein and Bai’s formula [1] to random matrices
with separable variance profiles, i.e. following the Kronecker
model, and unfolds as follows,

Theorem 1: (Stieltjes Transform) LetK, N ∈ N be some
positive integers. Let

BN =

K
∑

k=1

R
1
2

k XkTkX
H

kR
1
2

k (1)

be anN × N matrix with the following hypothesis for all
k ∈ {1, . . . ,K},

1) Tk is nk×nk Hermitian nonnegative definite,nk ∈ N
∗,

2) R
1
2

k is theN ×N Hermitian nonnegative definite square
root of the nonnegative definite matrixRk,

3) The sequences{FTk}nk≥1 and {FRk}N≥1 are tight,
i.e. for allε > 0, there existsM0 > 0 such thatM > M0

implies FTk([M,∞)) < ε and FRk([M,∞)) < ε for
all nk, N .

4) Xk is N ×nk with i.i.d. complex Gaussian entries with
variance1/nk.

For k ∈ {1, . . . ,K}, let ck = nk/N . Also denote, forz ∈
C \ R

+, mN (z) = 1
N (BN − zIN )−1. Then, as allnk andN

grow large (whileK is fixed), with ratiock

mN (z) − m
(0)
N (z)

a.s.
−→ 0 (2)

where

m
(0)
N (z) =

1

N
tr

(

K
∑

k=1

∫

τkdFTk(τk)

1 + τk

ck
ek(z)

Rk − zIN

)−1

(3)

and the set of functions{ei(z)}, i ∈ {1, . . . ,K}, form the
unique solution to theK equations

ei(z) =
1

N
trRi

(

K
∑

k=1

∫

τdFTk(τk)

1 + τk

ck
ek(z)

Rk − zIN

)−1

(4)

such thatsgn(ℑ[ei(z)]) = sgn(ℑ[z]).
The functionmN (z) is the Stieltjes transform [10] of the

random variable with cumulative distribution functionFBN .
The complete proof of a more general expression of this
theorem is given in an extended version of the present article
[2]. In the following, we give a sketch of the essential steps
of the proof

Proof: First note that, whenK = 1 and, for all i, Ri =
IN , the theorem is already known from [1]. We consider here
K = 1 (and drop the useless indexes), the general case being
a trivial extension, see [2]. Also, we assume hereT diagonal,
which does not restrict generality since the Gaussian matrix
X is unitarily invariant.

• A first truncation and centralization step makes it possible
to bound the entries of the random matrixX and the en-
tries ofR, T to ‖X‖ ≤ k log(N), k > 2, ‖R‖ ≤ log(N),
‖T‖ ≤ log(N). It is shown first that these truncations and
centralizations do not restrict the generality of the final
result. Now deterministic bounds can then be used.

• Denote D = −zIN − zp(z)R, with p(z) =
−1/(nz)

∑n
j=1

τj

1+τje(z)/c , {τi} being the eigenvalues of

H1

H2

HK

User1

Base station1

Base station2

Base stationK

Fig. 1. Downlink multi-cell scenario

T, e(z) = (1/N) trT(BN − zIN )−1 and z ∈ C
+.

From the resolvent identity (Equation (4.1) in [1]) and
the matrix inversion lemma (Equation (2.2) in [1]),
(1/N) trD−1 − mN (z) = (1/n)

∑n
j=1 τjdj with

dj =
xH

j R
1
2 (B(j) − zIN )−1D−1R

1
2 xj

1 + τjy
H

j (B(j) − zIN )−1yj
(5)

−
(1/N) trR(BN − zIN )−1D−1

1 + τie(z)/c
(6)

wherexj is the jth column ofX, yj the jth column of
R

1
2 X andB(j) is BN with jth column removed. Observ-

ing thatdj → 0 whenN → ∞, we have(1/N) trD−1−
mN (z) → 0 and similarly(1/N) trD−1R − e(z) → 0.

• The rest of the proof consists in proving the existence and
uniqueness of a solution to Equation (4), from which we
have the existence of a unique solutionm

(0)
N in Equation

(3). It is then proven that, with the initial hypothesis for
X, T andR, mN (z) − m

(0)
N (z)

a.s.
−→ 0.

• Applying finally Vitali’s theorem to the analytic function
m

(0)
N , the theorem is shown to hold for allz ∈ C \ R

+.

Remark 1: This theorem allows us to derive Stieltjes trans-
forms of large matricesindependently of the realization of
the Xk matrices. In wireless communications, this provides a
characterization of a multi-user or multi-cell communication
based only on the transmit and receive correlationsRk and
Tk. This further helps to estimate channel capacity thanks to
the Shannon transform,

Theorem 2: (Shannon Transform) LetBN be a random
Hermitian matrix as defined in Theorem 1 with the additional
assumption that there existsM > 0, such that, for allN , nk,
max(‖Tk‖, ‖Rk‖) < M , and letx > 0. Then, for largeN ,
nk, V(x) − V

(0)(x)
a.s.
−→ 0, where

V(x) =

∫

log2

(

1 +
b

x

)

dFBN (b) (7)

and

V
(0)(x) =

∫ +∞

x

(

1

w
− m

(0)
N (−w)

)

dw (8)

A proof of this result is provided in [2].



III. SYSTEM MODEL

In this work we derive capacity expressions of wireless
channels between a multi-antenna transmitter and a multi-
antenna receiver, the latter of which is interfered by sev-
eral multi-antenna transmitters. This scheme is well-suited to
multi-cell wireless networks with orthogonal intra-cell and
interfering inter-cell transmissions, both in downlink and in
uplink. The following scenarios encompass in particular

• multi-cell uplink: the base station of a cell indexed by
i ∈ {1, . . . ,K} receives data from one user in this cell1

and is interfered byK − 1 users transmitting on the
same physical resource from remote cells indexed by
j ∈ {1, . . . ,K}, j 6= i.

• multi-cell downlink: the user being allocated a given
time/frequency resource in a cell indexed byi ∈
{1, . . . ,K} receives data from its dedicated base-station
and is interfered byK − 1 base stations in neighboring
cells indexed byj ∈ {1, . . . ,K}, j 6= i. This situation is
depicted in Figure 1.

In the following, in order not to confuse both scenarios, only
the downlink scheme is considered. However, one must keep
in mind that the provided results can easily be adapted to the
uplink case.

Consider a wireless mobile network withK ≥ 1 cells
indexed from1 to K, controlled bynon-physically connected
base stations. On a particular time/frequency resource, each
base station serves only one user; therefore the base station
and the user of cellj will also be indexed byj. Without loss
of generality, we focus our attention on user1, equipped with
nR ≫ K antennas and hereafter referred to asthe user or the
receiver. Every base stationj ∈ {1, . . . ,K} is equipped with
nTj

≫ K antennas. We additionally denotecj = nTj
/nR.

Denotesj ∈ C
nTj , E[sjs

H

j ] = InTj
, the signal transmitted

by base stationj, y ∈ C
nR the signal received by the user and

n ∼ CN(0, σ2InR
) the noise vector received by the user. The

fading MIMO channel between base stationj and the user is
denotedHj ∈ C

nR×nTj . Moreover we assume thatHj has a
separable variance profile, i.e. can be decomposed as

Hj = R
1
2
j XjT

1
2
j (9)

with Rj ∈ C
nR×nR the (Hermitian) correlation matrix at the

receiver with respect to the channelHj , Tj ∈ C
nTj

×nTj

the correlation matrix at transmitterj and Xj ∈ C
nR×nTj a

random matrix with Gaussian independent entries of variance
1/nTj

.
Remark 2: Note that in this model, and contrary to what

is often assumed,Rj , the correlation matrix at the receiver,
depends onj. In the uplink scenario, this assumption is of
particular relevance in the sense that base stations are usually
placed in areas clear of scatterers. In these circumstances,
the solid angle from which the signals from userj originate
influences the signal correlation at the receive antenna array.

1this user is allocated a given time/frequency resource, which is orthogonal
to time/frequency resources of the other users in the cell; e.g. the multi-access
protocol is OFDMA.

Hence the dependence of the receive correlation matrices on
j. Note moreover that, in this model, the transmit power
assumptionE[sjs

H

j ] = InTj
is not restrictive in the sense that

the transmit power correlation of base stationj can be included
into the matrixTj . However, the Kronecker model has two
major drawbacks: (i) the inner matrixXj implicitly assumes a
high density of scatterers2 in the communication link and (ii)
the correlations on both sides must be inter-independent and
independent of the realizations ofXj , which is inaccurate to
some extent.

With the assumptions above, the communication model
unfolds

y = H1s1 +

K
∑

j=2

Hjsj + n (10)

where s1 is the useful signal (from base station1) and sj ,
j ≥ 2, constitute interfering signals.

IV. M ULTI -CELL MIMO CAPACITY

A. Optimal Single-User Decoding

If the receiving user considers the signals from theK − 1
interfering transmitters as correlated Gaussian noise andknows
the value of the SNR (signal-to-noise ratio)σ−2, then base
station1 can transmit with arbitrarily low decoding error at a
rate per-receive antennaCopt(σ

2) given by [3]

Copt(σ
2) =

1

nR
log2 |InR

+
1

σ2

K
∑

j=1

HjH
H

j |

−
1

nR
log2 |InR

+
1

σ2

K
∑

j=2

HjH
H

j | (11)

Assume thatnR and thenTi
, i ∈ {1, . . . ,K}, are large

compared toK and such that no eigenvalue ofRi or Ti is
too large. As in Theorem 1, we define the functionm(0) as
the asymptotic Stieltjes transform ofBN =

∑K
j=1 HjH

H

j ,

m(0)(z) =
1

nR
tr





K
∑

j=1

∫

tjdFTj (tj)

1 +
tj

cj
ej(z)

Rj − zInR





−1

(12)

where, for alli ∈ {1, . . . ,K}, ei(z) is solution of the fixed-
point equation

ei(z) =
1

nR
trRi





K
∑

j=1

∫

tjdFTj (tj)

1 +
tj

cj
ej(z)

Rj − zInR





−1

(13)

From Theorem 2, applied toBN =
∑K

j=1 HjH
H

j , we then
have approximately

1

nR
log2 |InR

+
1

σ2

K
∑

j=1

HjH
H

j | =

∫ +∞

σ2

(

1

w
− m(0)(−w)

)

dw

(14)

2the number and distance between scatterers must be of the same order as
the number and distance between the transmit and receive antennas.



A similar result is obtained for the second right-hand
side term of Equation (11). The per-receive antenna capacity
Copt(σ

2) is therefore well approximated, for large number of
antennas, by

Copt(σ
2) = (15)

1

nR

∫ +∞

σ2






tr





K
∑

j=1

∫

tjdFTj (tj)

1 +
tj

cj
ej(w)

Rj − wInR





−1

− tr





K
∑

j=2

∫

tjdFTj (tj)

1 +
tj

cj
fj(w)

Rj − wInR





−1





dw (16)

where,ei, i ∈ {1, . . . ,K}, andfi, i ∈ {2, . . . ,K}, verify

ei(z) =
1

nR
trRi





K
∑

j=1

∫

tjdFTj (tj)

1 +
tj

cj
ej(z)

Rj − zInR





−1

(17)

fi(z) =
1

nR
trRi





K
∑

j=2

∫

tjdFTj (tj)

1 +
tj

cj
fj(z)

Rj − zInR





−1

(18)

B. MMSE Decoder

Achieving Copt requires non-linear processing at the re-
ceiver, such as MMSE successive interference cancellation. A
suboptimal linear technique, the MMSE decoder, is often used
instead. The communication model in this case reads

y =





k
∑

j=1

HjH
H

j + σ2InR





−1

HH

1





k
∑

j=1

Hjsj + n



 (19)

and each entry ofy will be processed individually.
This technique makes it possible to transmit data reliably at

any rate inferior to the per-antenna MMSE capacityCMMSE,

CMMSE(σ2) =
1

nR

nT1
∑

i=1

log2(1 + γi) (20)

where, denotinghj ∈ C
nTj the jth column of H1 and

R
1
2
1 xj = hj , the individual SINRγi’s express as

γi =
hH

i

(

∑K
j=1 HjH

H

j + σ2InR

)−1

hi

1 − hH

i

(

∑K
j=1 HjH

H

j + σ2InR

)−1

hi

(21)

= hH

i





K
∑

j=1

HjH
H

j − hih
H

i + σ2InR





−1

hi (22)

= xH

i R
1
2
i





K
∑

j=1

HjH
H

j − hih
H

i + σ2InR





−1

R
1
2
i xi (23)

where Equation (22) comes from a direct application of the
matrix inversion lemma. With these notations,xi has i.i.d.
complex Gaussian entries with varianceT1ii

/nTi
and the inner

matrix of the right-hand side of (23) is independent ofxi (since
the entries ofH1H

H

1 − hih
H

i are independent of the entries
hi). Applying Lemma 3.1 of [1], fornTi

large, approximately

γi =
T1ii

nT1

trR1





K
∑

j=1

HjH
H

j − hih
H

i + σ2InR





−1

(24)

From Lemma 2.1 of [13], the rank 1 perturbation(−hih
H

i )
does not affect asymptotically the trace in (24). And therefore,
approximately,

γi =
T1ii

nT1

trR1





K
∑

j=1

HjH
H

j + σ2InR





−1

(25)

Observing thate1(z) in Section IV-A corresponds to the
normalized trace in Equation (25) (this is shown precisely in
the proof of Theorem 1 [2]), we finally have the compact
expression forCMMSE,

CMMSE(σ2) =
1

nR

nT1
∑

i=1

log2

(

1 +
1

c1
T1ii

e1(−σ2)

)

(26)

In practice, when no power allocation strategy is applied,
T1ii

= P the average power per transmit symbol, and the
capacity becomesCMMSE = c1 · log2(1 + P

c1
e1(−σ2)).

V. SIMULATION AND RESULTS

In the following, we apply the results (15) and (26) to the
downlink of a two-cell network. The capacity analyzed here
is the achievable rate on the link between base station1 and
the user, the latter of which is interfered by base station2.
The relative power of the signal received from base station2
is on averageΓ times that of base station1. Both base stations
are equipped with linear arrays ofnT antennas and the user
with a linear array ofnR antennas. The correlation matrices
Ti at the transmission andRi at the reception,i ∈ {1, 2}, are
modeled thanks to a generalization of Jake’s model including
solid angles of transmit/receive power, i.e. for instance,

Tiab
=

∫ θ(i)
max

θ
(i)
min

exp

(

2π · i ·
dTi

ab

λ
cos(θ)

)

dθ (27)

with dTi

ab the distances between antennas indexed bya, b ∈

{1, . . . , nTi
} for transmitteri, (θ

(i)
min, θ

(i)
max) the angles over

which useful power (i.e. power that will be received by the
user) is transmitted, andλ the wavelength.

In Figure 2, we tooknR = 16, Γ = 0.25 and we consider
optimal single-user decoding at the receiver. For every real-
ization of Ti, Ri, 1000 channel realizations are processed to
produce the simulated ergodic capacity and compared to the
theoretical capacity (15). Those capacities are then averaged
over100 realizations ofTi, Ri, varying in the random choice
of θ

(i)
min and θ

(i)
max with constraintθ(i)

max − θ
(i)
min = π/2, while

dTi

ab = 10λ|a − b| at the transmitters,dR
ab = 2λ|a − b| at

the receiver. The SNR ranges from−5 dB to 30 dB, and
nT ∈ {8, 16}. We observe here that Monte-Carlo simulations
perfectly match the capacity obtained from Equation (15).
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Fig. 2. Capacity of point-to-point MIMO in two-cell uplink,optimal single-
user decoding,nR = 16, nT ∈ {8, 16}, Γ = 25%.

In Figure 3, with the same assumptions as previously, we
apply MMSE decoding at the receiver. Here, a slight difference
is observed in the high SNR regime between theory and
practice. This was somehow expected, since the largenR

approximations in Silverstein’s lemmas [1] are very loose for
σ2 close toR

− in the sense of the Euclidean distance. To
cope with this gap, many more antennas must be used. We
also observe a significant difference in performance between
optimum single-user and linear MMSE decoders, especially in
the high SNR region. Therefore, in wireless networks, when
interfering cells are treated as correlated Gaussian noiseat the
cell-edge, i.e. where the interference is maximum, the MMSE
decoder provides tremendous performance loss.

VI. CONCLUSION

In this paper, we introduced a theorem relating the Stielt-
jes transform of a class of large matrices to deterministic
approximates. Based on this formula, we provided compact
capacity expressions for the optimal single-user decoder and
MMSE decoder in point-to-point MIMO systems with inter-
cell interference and random channel matrices with separable
variance profile, both in downlink and in uplink. The simula-
tions show perfect match with the theoretical formulas in the
low-to-medium SNR region, even if fewer antennas are used
at the transmitters and receivers. As for the high SNR region,
a large number of antennas must be used to reach an accurate
match between theory and Monte-Carlo simulations.
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