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Asymptotic Behaviour of Random Vandermonde
Matrices with Entries on the Unit Circle

Øyvind Ryan, Member, IEEE and Mérouane Debbah, Senior Member, IEEE

Abstract—Analytical methods for finding moments of random
Vandermonde matrices with entries on the unit circle are devel-
oped. Vandermonde Matrices play an important role in signal
processing and wireless applications such as direction of arrival
estimation, precoding, and sparse sampling theory, just to name
a few. Within this framework, we extend classical freeness results
on random matrices with independent, identically distributed
(i.i.d.) entries and show that Vandermonde structured matrices
can be treated in the same vein with different tools. We focus
on various types of matrices, such as Vandermonde matrices
with and without uniform phase distributions, as well as gener-
alized Vandermonde matrices. In each case, we provide explicit
expressions of the moments of the associated Gram matrix,
as well as more advanced models involving the Vandermonde
matrix. Comparisons with classical i.i.d. random matrix theory
are provided, and deconvolution results are discussed. We review
some applications of the results to the fields of signal processing
and wireless communications.

Index Terms—Vandermonde matrices, Random Matrices, de-
convolution, limiting eigenvalue distribution, MIMO.

I. INTRODUCTION

Vandermonde matrices have for a long time had a central
position in signal processing due to their connections with
important tools in the field such as the FFT [1] or Hadamard
[2] transforms, to name a few. Vandermonde matrices occur
frequently in many applications, such as finance [3], signal ar-
ray processing [4], [5], [6], [7], [8], ARMA processes [9], cog-
nitive radio [10], security [11], wireless communications [12],
and biology [13], and have been much studied. The applied
research has been somewhat tempered by the fact that very
few theoretical results have been available.

A Vandermonde matrix with entries on the unit circle has
the following form:

V =
1√
N




1 · · · 1
e−jω1 · · · e−jωL

...
. . .

...
e−j(N−1)ω1 · · · e−j(N−1)ωL


 (1)

We will consider the case where ω1,...,ωL are i.i.d., taking
values in [0, 2π). Throughout the paper, the ωi will be
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called phase distributions. V will be used only to denote
Vandermonde matrices with a given phase distribution, and
the dimensions of the Vandermonde matrices will always be
N × L.

Known results on Vandermonde matrices are related to
the distribution of the determinant [14]. The large major-
ity of known results on the eigenvalues of the associated
Gram matrix concern Gaussian matrices [15] or matrices with
independent entries. Very few results are available in the
literature on matrices whose structure is strongly related to the
Vandermonde case [16], [17]. Known results depend heavily
on the distribution of the entries, and do not give any hint
on the asymptotic behaviour as the matrices become large.
In the realm of wireless channel modeling, [18] has provided
some insight on the behaviour of the eigenvalues of random
Vandermonde matrices for a specific case, without any formal
proof.

In many applications, N and L are quite large, and we may
be interested in studying the case where both go to ∞ at a
given ratio, L

N → c. Results in the literature say very little on
the asymptotic behaviour of (1) under this growth condition.
The results, however, are well known for other models. The
factor 1√

N
, as well as the assumption that the Vandermonde

entries e−jωi lie on the unit circle, are included in (1) to ensure
that the analysis will give limiting asymptotic behaviour.
Without this assumption, the problem at hand is more involved,
since the rows of the Vandermonde matrix with the highest
powers would dominate in the calculations of the moments for
large matrices, and also grow faster to infinity than the 1√

N
factor in (1), making asymptotic analysis difficult. In general,
often the moments, not the moments of the determinants, are
the quantities we seek. Results in the literature say also very
little on the moments of Vandermonde matrices (however,
see [16]), and also on the mixed moments of Vandermonde
matrices and matrices independent from them. This is in
contrast to Gaussian matrices, where exact expressions [19]
and their asymptotic behaviour [20] are known through the
concept of freeness [20], which is central for describing the
mixed moments.

The framework and results presented in this paper are
reminiscent of similar results concerning i.i.d. random matrices
[21] which have shed light on the design of many impor-
tant wireless communication problems such as CDMA [22],
MIMO [23], or OFDM [24]. This contribution aims to do
the same. We will show that, asymptotically, the moments
of the Vandermonde matrices depend only on the ratio c
and the phase distribution, and have explicit expressions. The
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expressions are more involved than what was claimed in [18].
Moments are useful for performing deconvolution. Decon-
volution for our purposes will mean retrieving ”moments”
trL((D(N))i), ..., trL((D(N))i) (where D(N) are unknown
matrices), from ”mixed moments” of D(N) and matrices
on the form (1), with L and N large. We are only able
to perform such deconvolution when the D(N) are square
diagonal matrices independent from V. We will see that
such deconvolution can be very useful in many applications,
since the retrieved moments can give useful information about
the system under study. Deconvolution has previously been
handled in cases where V is replaced with a Gaussian ma-
trix [25], [26], [19], [27]. As will be seen, the way the phase
distribution influences these moments can be split into several
cases. Uniform phase distribution plays a central role in that
it minimizes the moments. When the phase distribution has a
”nice” density (for our purposes this means that the density
of the phase distribution is continuous), a nice connection
with the moments for uniform phase distribution can be given.
When the density of the phase distribution has singularities,
for instance when it has point masses, it turns out that the
asymptotics of the moments change drastically.

We will also extend our results to generalized Vandermonde
matrices, i.e. matrices where the columns do not consist of
uniformly distributed powers. Such matrices are important
for applications to finance [3]. The tools used for standard
Vandermonde matrices in this paper will allow us to find
the asymptotic behaviour of many generalized Vandermonde
matrices as well.

While we provide the full computation of lower order
moments, we also describe how the higher order moments
can be computed. Tedious evaluation of many integrals is
needed for this. It turns out that the first three limit moments
coincide with those of the Marc̆henko Pastur law [20], [28].
For higher order moments this is not the case, although we
state an interesting inequality involving the Vandermonde limit
moments and the moments of the classical Poisson distribution
and the Marc̆henko Pastur law.

The paper is organized as follows. Section II provides
background essentials on random matrix theory needed to state
the main results. Section III states the main results of the
paper. It starts with a general result for the mixed moments
of Vandermonde matrices and matrices independent from
them. Results for the uniform phase distribution are stated
next, both for the asymptotic moments, and the lower order
moments. After this, the nice connection between uniform
phase distribution and other phase distributions is stated. The
case where the density of ω has singularities is then handled.
The section ends with results on generalized Vandermonde
matrices, and mixed moments of (more than one) independent
Vandermonde matrices. Section IV discusses our results and
puts them in a general deconvolution perspective, comparing
with other deconvolution results, such as those for Gaussian
deconvolution. Section V presents some simulations and useful
applications showing the implications of the presented results
in various applied fields, and discusses the validity of the
asymptotic claims in the finite regime. First we apply the
presented Vandermonde deconvolution framework to wireless

systems, where we estimate the number of paths, the transmis-
sions powers of the users, the number of sources, and what
is commonly referred to as wavelength. Finally we apply the
results on Vandermonde matrices to the very active field of
sparse signal reconstruction.

II. RANDOM MATRIX BACKGROUND ESSENTIALS

In the following, upper (lower boldface) symbols will be
used for matrices (column vectors), whereas lower symbols
will represent scalar values, (.)T will denote transpose opera-
tor, (.)? conjugation, and (.)H =

(
(.)T

)?
hermitian transpose.

IL will represent the L×L identity matrix. We let Tr be the
(non-normalized) trace for square matrices, defined by,

Tr(A) =
L∑

i=1

aii,

where aii are the diagonal elements of the L × L matrix A.
We also let trL be the normalized trace, defined by trL(A) =
1
LTr(A).

Results in random matrix theory often refer to the empirical
eigenvalue distribution of matrices:

Definition 1: With the empirical eigenvalue distribution of
an L× L hermitian random matrix T we mean the (random)
function

FL
T(λ) =

#{i|λi ≤ λ}
L

, (2)

where λi are the (random) eigenvalues of T.
In the following, Dr(N), 1 ≤ r ≤ n will denote non-

random diagonal L×L matrices, where we implicitly assume
that L

N → c. We will assume that the Dr(N) have a joint
limit distribution as N →∞ in the following sense:

Definition 2: We will say that the {Dr(N)}1≤r≤n have a
joint limit distribution as N →∞ if the limit

Di1,...,is = lim
N→∞

trL (Di1(N) · · ·Dis(N)) (3)

exists for all choices of i1, ..., is ∈ {1, .., n}.
The matrices Di(N) are assumed to be non-random

throughout the paper. However, all presented formulas extend
naturally to the case when Di(N) are random and independent
from the Vandermonde matrices. The difference when the
Di(N) are random is that expectations of products of traces
also come into play, in the sense that, similarly to expressions
on the form (3), expressions of the form

lim
N→∞

E[ trL (Di1(N) · · ·Dis(N)) · · ·
trL (Dj1(N) · · ·Djr (N))]

also enter the picture. Our framework can also be extended
naturally to compute the covariance of traces, defined in the
following way:

Definition 3: By the covariance Ci,j of two traces trL(Ai)
and trL(Aj) of an L × L random matrix A, we mean the
quantity

Ci,j(A) = E
[
trL

(
Ai

)
trL

(
Aj

)]
−E

[
trL

(
Ai

)]
E

[
trL

(
Aj

)]
.

(4)
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When A is replaced with an ensemble of matrices, AL,
the limits limL→∞ LCi,j(AL) are also called second order
moments.

The normalizing factor L is included in order to obtain
a limit. It will be explained later why this is the cor-
rect normalizing factor for the matrices we consider. The
term second order moment is taken from [29], where dif-
ferent matrix ensembles were considered. For these ma-
trices, the second order moments were instead defined as
limL→∞ L2Ci,j(AL) (i.e. a higher order normalizing factor
was used), since these matrices displayed faster convergence
to a limit. We will present expressions for the second order
moments limN→∞ LCi,j(D(N)VHV).

Most theorems in this paper will present expressions for
various mixed moments, defined in the following way:

Definition 4: By a mixed moment we mean the limit

Mn = limN→∞E[trL( D1(N)VHVD2(N)VHV
· · · ×Dn(N)VHV)], (5)

whenever this exists.
A joint limit distribution of {Dr(N)}1≤r≤n is always

assumed in the presented results on mixed moments. Note that
when D1(N) = · · · = Dn(N) = IL, the Mn compute to the
asymptotic moments of the Vandermonde matrices themselves,
defined by

Vn = lim
N→∞

E
[
trL

((
VHV

)n
)]

= lim
N→∞

E

[∫
λndFL

VHV(λ)
]

.

Similarly, when D1(N) = · · · = Dn(N) = D(N), we will
also write

Dn = lim
N→∞

trL(D(N)n). (6)

Note that this is in conflict with the notation Di1,...,is , but the
name of the index will resolve such conflicts.

To prove the results of this paper, the random matrix
concepts presented up to now need to be extended using
concepts from partition theory. We denote by P(n) the set of
all partitions of {1, ..., n}, and use ρ as notation for a partition
in P(n). Also, we will write ρ = {W1, ..., Wk}, where Wj

will be used repeatedly to denote the blocks of ρ, |ρ| = k will
denote the number of blocks in ρ, and |Wj | will denote the
number of elements in a given block. Definition 2 can now be
extended as follows.

Definition 5: For ρ = {W1, ..., Wk}, with Wi =
{wi1, ..., wi|Wi|}, we define

DWi = Diwi1 ,...,iwi|Wi|
(7)

Dρ =
k∏

i=1

DWi . (8)

To better understand the presented expressions for mixed
moments, the notion of free cumulants will be helpful. They
are defined in terms of noncrossing partitions [30].

Definition 6: A partition ρ is called noncrossing if, when-
ever we have i < j < k < l with i ∼ k, j ∼ l (∼ meaning
belonging to the same block), we also have i ∼ j ∼ k ∼ l

(i.e. i, j, k, l are all in the same block). The set of noncrossing
partitions of {1, , , ., n} is denoted NC(n).

The noncrossing partitions have already shown their use-
fulness in expressing what is called the freeness relation in a
particularly nice way [30].

Definition 7: Assume that A1, ...,An are L × L-random
matrices. By the free cumulants of A1, ...,An we mean the
unique set of multilinear functionals κr (r ≥ 1) which satisfy

E [trL (Ai1 · · ·Ain)] =
∑

ρ∈NC(n)

κρ[Ai1 , ...,Ain ] (9)

for all choices of i1, ..., in, where

κρ[Ai1 , ...,Ain ] =
k∏

j=1

κWj [Ai1 , ...,Ain ]

κWi
[Ai1 , ...,Ain

] = κ|Wi|[Aiwi1
, ...,Aiwi|Wi|

],

where ρ = {W1, ..., Wk}, with Wi = {wi1, ..., wi|Wi|}. By the
classical cumulants of A1, ...,An we mean the unique set of
multilinear functionals which satisfy (9) with NC(n) replaced
by the set of all partitions P(n).

We have restricted our definition of cumulants to random
matrices, although their general definition is in terms of more
general probability spaces (Lecture 11 of [30]). (9) is also
called the (free or classical) moment-cumulant formula. The
importance of the free moment-cumulant formula comes from
the fact that, had we replaced Vandermonde matrices with
Gaussian matrices, it could help us perform deconvolution.
For this, the cumulants of the Gaussian matrices are needed,
which asymptotically have a very nice form. For Vandermonde
matrices, it is not known what a useful definition of cumulants
would be. However, from the calculations in Appendix A, it
will turn out that the following quantities are helpful.

Definition 8: For ρ ∈ P(n), define

Kρ,ω,N = 1
Nn+1−|ρ|×∫
(0,2π)|ρ|

∏n
k=1

1−e
jN(ωb(k−1)−ωb(k))

1−e
j(ωb(k−1)−ωb(k))

dω1 · · · dω|ρ|,

(10)

where ωW1 , ..., ωW|ρ| are i.i.d. (indexed by the blocks of ρ), all
with the same distribution as ω, and where b(k) is the block
of ρ which contains k (notation is cyclic, i.e. b(0) = b(n)). If
the limit

Kρ,ω = lim
N→∞

Kρ,ω,N

exists, then it is called a Vandermonde mixed moment expan-
sion coefficient.

These quantities do not behave exactly as cumulants, but
rather as weights which tell us how a partition in the moment
formula we present should be weighted. In this respect our
formulas for the moments are different from classical or
free moment-cumulant formulas, since these do not perform
this weighting. The limits Kρ,ω may not always exist, and
necessary and sufficient conditions for their existence seem
to be hard to find. However, it is easy to prove from their
definition that they do not exist if the density of ω has
singularities (for instance when the density has point masses).
On the other hand, Theorem 3 will show that they exist when
the same density is continuous.
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P(n) is equipped with the refinement order ≤ [30], i.e.
ρ1 ≤ ρ2 if and only if any block of ρ1 is contained within a
block of ρ2. The partition with n blocks, denoted 0n, is the
smallest partition within this order, while the partition with 1
block, denoted 1n, is the largest partition within this order. In
the following sections, we will encounter the complementation
map of Kreweras (p. 147 of [30]), which is an order-reversing
isomorphism of NC(n) onto itself. To define this we need the
circular representation of a partition: We mark n equidistant
points 1, ..., n (numbered clockwise) on the circle, and form
the convex hull of points lying in the same block of the
partition. This gives us a number of convex sets Hi, equally
many as there are blocks in the partition, which do not intersect
if and only if the partition is noncrossing. Put names 1̄, ..., n̄
on the midpoints of the 1, ..., n (so that ī is the midpoint of
the segment from i to i+1). The complement of the set ∪iHi

is again a union of disjoint convex sets H̃i.
Definition 9: The Kreweras complement of ρ, denoted

K(ρ), is defined as the partition on {1̄, ..., n̄} determined by

i ∼ j in K(ρ) ⇐⇒ ī, j̄ belong to the same convex set H̃k.

An important property of the Kreweras complement is that
(p. 148 of [30])

|ρ|+ |K(ρ)| = n + 1. (11)

III. STATEMENT OF MAIN RESULTS

We first state the main result of the paper, which applies to
Vandermonde matrices with any phase distribution. It restricts
to the case when the expansion coefficients Kρ,ω exist. Differ-
ent versions of it adapted to different Vandermonde matrices
will be stated in succeeding sections.

Theorem 1: Assume that the {Dr(N)}1≤r≤n have a joint
limit distribution as N → ∞. Assume also that all Vander-
monde mixed moment expansion coefficients Kρ,ω exist. Then
the limit

Mn = limN→∞E[trL( D1(N)VHVD2(N)VHV
· · · ×Dn(N)VHV)]

(12)
also exists when L

N → c, and equals
∑

ρ∈P(n)

Kρ,ωc|ρ|−1Dρ. (13)

The proof of Theorem 1 can be found in Appendix A.
Theorem 1 explains how ”convolution” with Vandermonde
matrices can be performed, and also provides us with an
extension of the concept of free convolution to Vandermonde
matrices. It also gives us means for performing deconvolution.
Indeed, suppose D1(N) = · · · = Dn(N) = D(N), and that
one knows all the moments Mn. One can then infer on the
moments Dn by inspecting (13) for increasing values of n.
For instance, the first two equations can also be written

D11 =
M1

K11,ω

D12 =
M2 − cK02,ωD02

K12,ω
,

where we have used (8), that the one-block partition 01 = 11 is
the only partition of length 1, and that the two-block partition
02 and the one-block partition 12 are the only partitions of
length 2. This gives us the first moments D1 and D2 defined
by (6), since D11 = D1, D02 = D2

1 , and D12 = D2.

A. Uniformly distributed ω

For the case of Vandermonde matrices with uniform phase
distribution, it turns out that the noncrossing partitions play a
central role. The role is somewhat different than the relation
for freeness. Let u denote the uniform distribution on [0, 2π).

Proposition 1: The Vandermonde mixed moment expansion
coefficient

Kρ,u = lim
N→∞

Kρ,u,N

exists for all ρ. Moreover, 0 < Kρ,u ≤ 1, the Kρ,u are rational
numbers for all ρ, and Kρ,u = 1 if and only if ρ is noncrossing.

The proof of Proposition 1 can be found in Appendix B.
The same result is proved in [16], where the Kρ,u are given
an equivalent description. The proof in the appendix only
translates the result in [16] to the current notation. Due to
Proposition 1, Theorem 1 guarantees that the mixed moments
(12) exist in the limit for the uniform phase distribution, and
are given by (13). The Kρ,u are in general hard to compute for
higher order ρ with crossings. It turns out that the following
computations suffice to obtain the 7 first moments.

Proposition 2: The following holds:

K{{1,3},{2,4}},u =
2
3

K{{1,4},{2,5},{3,6}},u =
1
2

K{{1,4},{2,6},{3,5}},u =
1
2

K{{1,3,5},{2,4,6}},u =
11
20

K{{1,5},{3,7},{2,4,6}},u =
9
20

K{{1,6},{2,4},{3,5,7}},u =
9
20

.

The proof of Proposition 2 is given in Appendix C. Com-
bining Proposition 1 and Proposition 2 one can prove the
following:

Proposition 3: Assume D1(N) = · · · = Dn(N) = D(N),
and that the limits

mn = (cM)n = c lim
N→∞

E
[
trL

((
D(N)VHV

)n
)]

(14)

dn = (cD)n = c lim
N→∞

trL (Dn(N)) . (15)
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exist. When ω = u, we have that

m1 = d1

m2 = d2 + d2
1

m3 = d3 + 3d2d1 + d3
1

m4 = d4 + 4d3d1 +
8
3
d2
2 + 6d2d

2
1 + d4

1

m5 = d5 + 5d4d1 +
25
3

d3d2 + 10d3d
2
1 +

40
3

d2
2d1 + 10d2d

3
1 + d5

1

m6 = d6 + 6d5d1 + 12d4d2 + 15d4d
2
1 +

151
20

d2
3 + 50d3d2d1 + 20d3d

3
1 +

11d3
2 + 40d2

2d
2
1 + 15d2d

4
1 + d6

1

m7 = d7 + 7d6d1 +
49
3

d5d2 + 21d5d
2
1 +

497
20

d4d3 + 84d4d2d1 + 35d4d
3
1 +

1057
20

d2
3d1 +

693
10

d3d
2
2 + 175d3d2d

2
1 +

35d3d
4
1 + 77d3

2d1 +
280
3

d2
2d

3
1 +

21d2d
5
1 + d7

1.

Proposition 3 is proved in Appendix D. Several of the
following theorems will also be stated in terms of the scaled
moments (14)-(15), rather than Mn, Dn. The reason for this
is that the dependency on the matrix aspect ratio c can be
absorbed in mn, dn, so that the result itself can be expressed
independently of c, as in the equations of Proposition 3. The
same usage of scaled moments has been applied for large
Wishart matrices [27]. Similar computations to those in the
proof of Proposition 3 are performed in [16], although the
computations there do not go up as high as the first seven
mixed moments. To compute higher order moments, Kρ,u

must be computed for partitions of higher order also. The
computations performed in Appendix C and D should convince
the reader that this can be done, but that it is very tedious.

Following the proof of Proposition 1, we can also obtain
formulas for the second order moments of Vandermonde
matrices. Since it is easily seen that C1,n(D(N)VHV) =
Cn,1(D(N)VHV) = 0, the first nontrivial second order
moment is the following:

Proposition 4: Assume that V has uniform phase distribu-
tion, let dn be as in (15), and define

mi,j = c lim
L→∞

LCi,j

(
D(N)VHV)

)
. (16)

Then we have that

m2,2 =
4
3
d2
2. (17)

Proposition 4 is proved in Appendix E, and relies on the
same type of calculations as those in Appendix C. Following
the proof of Proposition 1 again, we can also obtain exact
expressions for moments of lower order random Vandermonde
matrices with uniform phase distribution, not only the limit.
We state these only for the first four moments.

Theorem 2: Assume D1(N) = D2(N) = · · · = Dn(N),
set c = L

N , and define

m(N,L)
n = cE

[
trL

((
D(N)VHV

)n
)]

(18)

d(N,L)
n = ctrL (Dn(N)) . (19)

When ω = u we have that

m
(N,L)
1 = d

(N,L)
1

m
(N,L)
2 =

(
1−N−1

)
d
(N,L)
2 + (d(N,L)

1 )2

m
(N,L)
3 =

(
1− 3N−1 + 2N−2

)
d
(N,L)
3

+3
(
1−N−1

)
d
(N,L)
1 d

(N,L)
2 + (d(N,L)

1 )3

m
(N,L)
4 =

(
1− 20

3
N−1 + 12N−2 − 19

3
N−3

)
d
(N,L)
4

+
(
4− 12N−1 + 8N−2

)
d
(N,L)
3 d

(N,L)
1

+
(

8
3
− 6N−1 +

10
3

N−2

)
(d(N,L)

2 )2

+6
(
1−N−1

)
d
(N,L)
2 (d(N,L)

1 )2 + (d(N,L)
1 )4.

Theorem 2 is proved in Appendix F. Exact formulas for the
higher order moments also exist, but they become increasingly
complex, as higher order terms N−k also enter the picture.
These formulas are also harder to prove for higher order
moments. In many cases, exact expressions are not what we
need: first order approximations (i.e. expressions where only
the N−1-terms are included) can suffice for many purposes.
In Appendix F, we explain how the simpler case of these first
order approximations can be computed. It seems much harder
to prove a similar result when the phase distribution is not
uniform.

An important result building on the results we present is the
following, which provides a major difference from the limit
eigenvalue distributions of Gaussian matrices.

Proposition 5: The asymptotic mean eigenvalue distribu-
tion of a Vandermonde matrix with uniform phase distribution
has unbounded support.

Proposition 5 is proved in Appendix G.

B. ω with continuous density

The following result tells us that the limit Kρ,ω exists for
many ω, and also gives a useful expression for them in terms
of Kρ,u and the density of ω.

Theorem 3: The Vandermonde mixed moment expansion
coefficients Kρ,ω = limN→∞Kρ,ω,N exist whenever the
density pω of ω is continuous on [0, 2π). If this is fulfilled,
then

Kρ,ω = Kρ,u(2π)|ρ|−1

(∫ 2π

0

pω(x)|ρ|dx

)
. (20)

The proof is given in Appendix H. Although the proof
assumes a continuous density, we remark that it can be
generalized to cases where the density contains a finite set of
jump discontinuities also. In Section V, several examples are
provided where the integrals (20) are computed. An important
consequence of Theorem 3 is the following, which gives the
uniform phase distribution an important role.
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Proposition 6: Let Vω denote a Vandermonde matrix with
phase distribution ω, and set

Vω,n = lim
N→∞

E
[
trL

((
VH

ω Vω

)n
)]

.

Then we have that

Vu,n ≤ Vω,n.

The proof is given in Appendix I. An immediate conse-
quence of this and Proposition 5 is that all phase distributions,
not only uniform phase distribution, give Vandermonde matri-
ces with unbounded mean eigenvalue distributions in the limit.
Besides providing us with a deconvolution method for finding
the mixed moments of the {Dr(N)}1≤r≤n, Theorem 3 also
provides us with a way of inspecting the phase distribution ω,
by first finding the moments of the density, i.e.

∫ 2π

0
pω(x)kdx.

However, note that we can not expect to find the density of
ω itself, only the density of the density of ω. This follows
immediately by noting that

∫ 2π

0
pω(x)kdx remains unchanged

when the phase distribution ω is cyclically shifted.

C. ω with density singularities

The asymptotics of Vandermonde matrices are different
when the density of ω has singularities, and depends on
the density growth rates near the singular points. It will be
clear from the following results that one can not perform
deconvolution for such ω to obtain the higher order moments
of the {Dr(N)}1≤r≤n, as only their first moment can be
obtained. The asymptotics are first described for ω with atomic
density singularities, as this is the simplest case to prove.
After this, densities with polynomic growth rates near the
singularities are addressed.

Theorem 4: Assume that pω =
∑r

i=1 piδαi is atomic
(where δαi(x) is dirac measure (point mass) at αi), and denote
by p(n) =

∑r
i=1 pn

i . Then

lim
N→∞

E[Tr( D1(N)
1
N

VHVD2(N)
1
N

VHV

· · · ×Dn(N)
1
N

VHV)]

= cn−1p(n) lim
N→∞

n∏

i=1

trL (Di(N)) .

Note here that the non-normalized trace is used.
The proof can be found in Appendix J. In particular,

Theorem 4 states that the asymptotic moments of 1
N VHV can

be computed from p(n). The theorem is of great importance
for the estimation of the point masses pi. In blind seismic
and telecommunication applications, one would like to detect
the locations αi. Unfortunately, Theorem 4 tells us that this is
impossible with our deconvolution framework, since the p(n),
which are the quantities we can find through deconvolution,
have no dependency to them. This parallels Theorem 3, since
also there we could not recover the density pω itself. Having
found the p(n) through deconvolution, one can find the point
masses pi, by solving for p1, p2, ... in the Vandermonde

equation



p1 p2 · · · pr

p2
1 p2

2 · · · p2
r

...
...

...
...







1
1
...


 =




p(1)

p(2)

...


 .

The case when the density has non-atomic singularities is
more complicated. We provide only the following result, which
addresses the case when the density has polynomic growth rate
near the singularities.

Theorem 5: Assume that

lim
x→αi

|x− αi|spω(x) = pi for some 0 < s < 1

for a set of points α1, ..., αr, with pω continuous for ω 6=
α1, ..., αr. Then

lim
N→∞

E[Tr( D1(N)
1

Ns
VHVD2(N)

1
Ns

VHV

· · · ×Dn(N)
1

Ns
VHV)]

= cn−1q(n) lim
N→∞

n∏

i=1

trL (Di(N))

where

q(n) =
(
2Γ(1− s) cos

(
(1−s)π

2

))n

p(n)×∫
[0,1]n

∏n
k=1

1
|xk−1−xk|1−s dx1 · · · dxn,

(21)

and p(n) =
∑

i pn
i . Note here that the non-normalized trace is

used.
The proof can be found in Appendix K. Also in this case

it is only the point masses pi which can be found through
deconvolution, not the locations αi. Note that the integral in
(21) can also be written as an m-fold convolution. Similarly,
the definition of Kρ,ω,N given by (10) can also be viewed as
a 2-fold convolution when ρ has two blocks, and as a 3-fold
convolution when ρ has three blocks (but not for ρ with more
than 3 blocks).

A useful application of Theorem 5 we will return to is the
case when ω = k sin(θ) for some constant k (see (39)), with θ
uniformly distributed on some interval. This case is simulated
in Section V-A. It is apparent from (40) that the density goes to
infinity near ω = ±k, with rate x−1/2. Theorem 5 thus applies
with s = 1/2. For this case, however, the ”edges” at ±π/2 are
never reached in practice. Indeed, in array processing [31], the
antenna array is a sector antenna which scans an angle interval
which never includes the edges. We can therefore restrict ω in
our analysis to clusters of intervals [αi, βi] not containing ±1,
for which the results of Section III-B suffice. In this way, we
also avoid the computation of the cumbersome integral (21).

D. Generalized Vandermonde matrices
We will consider generalized Vandermonde matrices on the

form

V =
1√
N




e−jbNf(0)cω1 · · · e−jbNf(0)cωL

e−jbNf( 1
N )cω1 · · · e−jbNf( 1

N )cωL

...
. . .

...
e−jbNf( N−1

N )cω1 · · · e−jbNf( N−1
N )cωL


 ,

(22)
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where f is called the power distribution, and is a function
from [0, 1) to [0, 1). We will also consider the more general
case when f is replaced with a random variable λ, i.e.

V =
1√
N




e−jNλ1ω1 · · · e−jNλ1ωL

e−jNλ2ω1 · · · e−jNλ2ωL

...
. . .

...
e−jNλN ω1 · · · e−jNλN ωL


 , (23)

with the λi i.i.d. and distributed as λ, defined and taking values
in [0, 1), and also independent from the ωj .

We will define mixed moment expansion coefficients for
generalized Vandermonde matrices also. The difference is that,
while we in Definition 8 simplified using the geometric sum
formula, we can not do this now since we do not assume
uniform power distribution anymore. To define expansion
coefficients for generalized Vandermonde matrices of the form
(22), define first integer functions fN from [0, N − 1] to
[0, N−1] by fN (r) = bNf

(
r
N

)c. Let pfN be the correspond-
ing density for fN . The procedure is similar for matrices of
the form (23). The following definition captures both cases:

Definition 10: For (22) and (23), define

Kρ,ω,f,N = 1
N1−|ρ|×∫
(0,2π)|ρ|∏n

k=1

(∑N−1
r=0 pfN

(r)ejr(ωb(k−1)−ωb(k))
)

dω1 · · · dω|ρ|
Kρ,ω,λ,N = 1

N1−|ρ|×∫
(0,2π)|ρ|

∏n
k=1

(∫ 1

0
NejNλ(ωb(k−1)−ωb(k))dλ

)

dω1 · · · dω|ρ|,
(24)

where ωW1 , ..., ωW|ρ| are as in Definition 8. If the limits

Kρ,ω,f = lim
N→∞

Kρ,ω,f,N

Kρ,ω,λ = lim
N→∞

Kρ,ω,λ,N ,

exist, then they are called Vandermonde mixed moment expan-
sion coefficients.

Note that (1) corresponds to (22) with f(x) = x. The
following result holds:

Theorem 6: Theorem 1 holds also with Vandermonde ma-
trices (1) replaced with generalized Vandermonde matrices on
either form (22) or (23), and with Kρ,ω replaced with either
Kρ,ω,f or Kρ,ω,λ.

The proof follows the same lines as those in Appendix A,
and is therefore only explained briefly at the end of that
appendix. As for matrices of the form (1), it is the case
of uniform phase distribution which is most easily described
how to compute for generalized Vandermonde matrices also.
Appendix B shows how the computation of Kρ,u boils down
to computing certain integrals. The same comments are valid
for matrices of the form (22) or (23) in order to compute
Kρ,ω,f and Kρ,ω,λ. This is further commented at the end of
that appendix.

We will not consider generalized Vandermonde matrices
with density singularities.

E. The joint distribution of independent Vandermonde matri-
ces

When many independent random Vandermonde matrices are
involved, the following holds:

Theorem 7: Assume that the {Dr(N)}1≤r≤n have a joint
limit distribution as N → ∞. Assume also that V1,V2, ...
are independent Vandermonde matrices with the same phase
distribution ω, and that the density of ω is continuous. Then
the limit

limN→∞E[trL( D1(N)VH
i1

Vi2D2(N)VH
i2

Vi3

· · · ×Dn(N)VH
in

Vi1)]

also exists when L
N → c. The limit is 0 when n is odd, and

equals ∑

ρ≤σ∈P(n)

Kρ,ωc|ρ|−1Dρ, (25)

where σ = {σ1, σ2} = {{1, 3, 5, ..., }, {2, 4, 6, ...}} is the
partition where the two blocks are the even numbers, and the
odd numbers.

The proof of Theorem 7 can be found in Appendix L. That
appendix also contains some remarks on the case when the
matrices Di(N) are placed at different positions relative to
the Vandermonde matrices. From Theorem 7, the following
corollary is immediate:

Corollary 1: The first three mixed moments

V (2)
n = lim

N→∞
E

[
trL

((
VH

1 V2VH
2 V1

)n
)]

of independent Vandermonde matrices V1,V2 are given by

V
(2)
1 = I2

V
(2)
2 =

2
3
I2 + 2I3 + I4

V
(2)
3 =

11
20

I2 + 4I3 + 9I4 + 6I5 + I6,

where

Ik = (2π)k−1

(∫ 2π

0

pω(x)kdx

)
.

In particular, when the phase distribution is uniform, the first
three mixed moments are given by

V
(2)
1 = 1

V
(2)
2 =

11
3

V
(2)
3 =

411
20

The results here can also be extended to the case with
independent Vandermonde matrices with different phase dis-
tributions:

Theorem 8: Assume that {Vi}1≤i≤s are independent Van-
dermonde matrices, where Vi has continuous phase distribu-
tion ωi. Denote by pωi the density of ωi. Then Equation (25)
still holds, with Kρ,ω replaced by

Kρ,u(2π)|ρ|−1

∫ 2π

0

s∏

i=1

pωi(x)|ρi|dx,

where ρi consists of all numbers k such that ik = i.
The proof is omitted, as it is a straightforward extension of

the proofs of Theorem 3 and Theorem 7.
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IV. DISCUSSION

In the recent work [16], the Vandermonde model (1) is
encountered in reconstruction of multidimensional signals in
wireless sensor networks. The authors also recognize a similar
expression for the Vandermonde mixed moment expansion
coefficient as in Definition 8. They also state that, for the case
of uniform phase distribution, closed form expressions for the
moments can be found, building on an analysis of partitions
and calculation of volumes of convex polytopes described by
certain constraints. This is very similar to what is done in this
paper.

We will in the following discuss some differences and
similarities between Gaussian and Vandermonde matrices.

A. Convergence rates

In [19], almost sure convergence of Gaussian matrices was
shown by proving exact formulas for the distribution of lower
order Gaussian matrices. These deviated from their limits by
terms of order 1/N2. In Theorem 2, we see that terms of order
1/N are involved. This slower rate of convergence may not be
enough to make a statement on whether we have almost sure
convergence for Vandermonde matrices. However, [32] shows
some almost sure convergence properties for certain Hankel
and Toeplitz matrices. These matrices are seen in that paper to
have similar combinatorial descriptions for the moments, when
compared to Vandermonde matrices in this paper. Therefore, it
may be the case that the techniques in [32] can be generalized
to address almost sure convergence of Vandermonde matrices
also. Figure 1 shows the speed of convergence of the moments
of Vandermonde matrices (with uniform phase distribution)
towards the asymptotic moments as the matrix dimensions
grow, and as the number of samples grow. The differences
between the asymptotic moments and the exact moments are
also shown. To be more precise, the MSE values in Figure 1
are computed as follows:

1) K samples Vi are independently generated using (1).
2) The 4 first sample moments v̂ji = 1

L trn

((
VH

i Vi

)j
)

(1 ≤ j ≤ 4) are computed from the samples.
3) The 4 first estimated moments V̂j are computed as the

mean of the sample moments, i.e. V̂j = 1
K

∑K
i=1 m̂ji.

4) The 4 first exact moments Ej are computed using
Theorem 2.

5) The 4 first asymptotic moments Aj are computed using
Proposition 3.

6) The mean squared error (MSE) of the first 4 esti-
mated moments from the exact moments is computed

as
∑4

j=1

(
V̂j − Ej

)2

.
7) The MSE of the first 4 exact moments from the asymp-

totic moments is computed as
∑4

j=1 (Ej −Aj)
2.

Figure 1 is in sharp contrast with Gaussian matrices, as shown
in Figure 2. First of all, it is seen that the asymptotic moments
can be used just as well instead of the exact moments (for
which expressions can be found in [33]), due to the O(1/N2)
convergence of the moments. Secondly, it is seen that only
5 samples were needed to get a reliable estimate for the
moments.
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(a) 80 samples
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(b) 320 samples

Fig. 1. MSE of the first 4 estimated moments from the exact moments for 80
and 320 samples for varying matrix sizes, with N = L. Matrices are on the
form VHV with V a Vandermonde matrix with uniform phase distribution.
The MSE of the first 4 exact moments from the asymptotic moments is also
shown.

B. Inequalities between moments of Vandermonde matrices
and moments of known distributions

We will state an inequality involving the moments of Van-
dermonde matrices, and the moments of known distributions.
The classical Poisson distribution with rate λ and jump size
α is defined as the limit of

((
1− λ

n

)
δ0 +

λ

n
δα

)∗n

as n → ∞ [30], where ∗ denotes classical (additive) convo-
lution, and ∗n denotes n-fold convolution with itself. For our
analysis, we will only need the classical Poisson distribution
with rate c and jump size 1, denoted νc. The free Poisson
distribution with rate λ and jump size α is defined similarly
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Fig. 2. MSE of the first 4 estimated moments from the exact moments for
5 samples for varying matrix sizes, with N = L. Matrices are on the form
1
N

XXH with X a complex standard Gaussian matrix. The MSE of the first
4 exact moments from the asymptotic moments is also shown.

as the limit of
((

1− λ

n

)
δ0 +

λ

n
δα

)¢n

as n → ∞, where ¢ is the free probability counterpart of
∗ [30], [20], and where ¢n denotes n-fold free convolution
with itself. For our analysis, we will only need the free Poisson
distribution with rate 1

c and jump size c, denoted µc. µc is the
same as the better known Marc̆henko Pastur law, i.e. it has the
density [20]

fµc(x) = (1− 1
c
)+δ0(x) +

√
(x− a)+(b− x)+

2πcx
, (26)

where (z)+ = max(0, z), a = (1−√c)2, b = (1+
√

c)2. Since
the classical (free) cumulants of the classical (free) Poisson
distribution are λαn [30], we see that the (classical) cumulants
of νc are c, c, c, c, ..., and that the (free) cumulants of µc are
1, c, c2, c3, .... In other words, if a1 has the distribution µc,
then

φ(an
1 ) =

∑
ρ∈NC(n) cn−|ρ| =

∑
ρ∈NC(n) c|K(ρ)|−1

=
∑

ρ∈NC(n) c|ρ|−1.
(27)

Here we have used the Kreweras complementation map and
(11), with φ denoting the expectation in a non-commutative
probability space [20]. Also, if a2 has the distribution νc, then

E(an
2 ) =

∑

ρ∈P(n)

c|ρ|. (28)

We immediately recognize the c|ρ|−1-entry of Theorem 1 in
(27) and (28) (with an additional power of c in (28)). Combin-
ing Proposition 1 with D1(N) = · · · = Dn(N) = IL, (27),
and (28), we thus get the following corollary to Proposition 1:

Corollary 2: Assume that V has uniform phase distribu-
tion. Then the limit moment

Vn = lim
N→∞

E
[
trL

((
VHV

)n
)]

satisfies the inequality

φ(an
1 ) ≤ Vn ≤ 1

c
E(an

2 ),

where a1 has the distribution µc of the Marc̆henko Pastur law,
and a2 has the Poisson distribution νc. In particular, equality
occurs for m = 1, 2, 3 and c = 1 (since all partitions are
noncrossing for m = 1, 2, 3).

Corollary 2 thus states that the moments of Vandermonde
matrices with uniform phase distribution are bounded above
and below by the moments of the classical and free Poisson
distributions, respectively. The left part of the inequality in
Corollary 2 was also observed in Section VI in [16]. The dif-
ferent Poisson distributions enter here because their (free and
classical) cumulants resemble the c|ρ|−1-entry in Theorem 1,
where we also can use that Kρ,u = 1 if and only if ρ is
noncrossing to get a connection with the Marc̆henko Pastur
law. To see how close the asymptotic Vandermonde moments
are to these upper and lower bounds, the following corollary
to Proposition 3 contains the first moments:

Corollary 3: When c = 1, the limit moments

Vn = lim
N→∞

E
[
trL

((
VHV

)n
)]

,

the moments fpn of the Marc̆henko Pastur law µ1, and the
moments pn of the Poisson distribution ν1 satisfy

fp4 = 14 ≤ V4 = 44
3 ≈ 14.67 ≤ p4 = 15

fp5 = 42 ≤ V5 = 146
3 ≈ 48.67 ≤ p5 = 52

fp6 = 132 ≤ V6 = 3571
20 ≈ 178.55 ≤ p6 = 203

fp7 = 429 ≤ V7 = 2141
3 ≈ 713.67 ≤ p7 = 877.

The first three moments coincide for the three distributions,
and are 1, 2, and 5, respectively.

The numbers fpn and pn are simply the number of
partitions in NC(n) and P(n), respectively. The number
of partitions in NC(n) equals the Catalan number Cn =

1
n+1

(
2n
n

)
[30], and are easily computed. The number of

partitions of P(n) are also known as the Bell numbers Bn [30].
They can easily be computed from the recurrence relation

Bn+1 =
n∑

k=0

Bk

(
n

k

)
.

In Figure 3, the mean eigenvalue distribution of 640 samples
of a 1600 × 1200 (i.e. c = 0.75) Vandermonde matrix
with uniform phase distribution is shown. While the Poisson
distribution ν1 is purely atomic and has masses at 0, 1, 2, and
3 which are e−1, e−1, e−1/2, and e−1/6 (the atoms consist
of all integer multiples), the Vandermonde histogram shows a
more continuous eigenvalue distribution, with the peaks which
the Poisson distribution has at integer multiples clearly visible,
although not as sharp. We remark that the support of VHV
for a fixed N goes all the way up to N , but lies within
[0, N ]. It is unknown whether the peaks at integer multiples
in the Vandermonde histogram grow to infinity as we let
N → ∞. From the histogram, only the peak at 0 seems to
be of atomic nature. The effect of decreasing c amounts to
stretching the eigenvalue density vertically, and compressing
it horizontally, just as the case for the different Marc̆henko
Pastur laws. An eigenvalue histogram for Gaussian matrices
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Fig. 3. Histogram of the mean eigenvalue distribution of 640 samples of
VHV, with V a 1600 × 1200 Vandermonde matrix with uniform phase
distribution.
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Fig. 4. Histogram of the mean eigenvalue distribution of 20 samples of
1
N

XXH , with X an L × N = 1200 × 1600 complex, standard, Gaussian
matrix.

which in the limit give the corresponding (in the sense of
Corollary 2) Marc̆henko Pastur law for Figure 3 (i.e. µ0.75) is
shown in Figure 4. Figure 5 shows an eigenvalue histogram
in the case of a non-uniform phase distribution. Here we have
taken 640 samples of a 1600×1200 Vandermonde matrix with
phase distribution with density (40), with λ = 2d, α = π

4 . This
density, also shown in Figure 6, is used in the applications of
Section V-A. Experiments show that the eigenvalue histogram
tends to flatten when the phase distribution becomes ”less
uniform”, with a higher concentration of larger eigenvalues.

It is unknown whether the inequalities for the moments can
be extended to inequalities for the associated capacity. If X is
an N×N standard, complex, Gaussian matrix, then an explicit
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Fig. 5. Histogram of the mean eigenvalue distribution of 640 samples of
VHV, with V a 1600× 1200 Vandermonde matrix with phase distribution
pω defined in (40) with λ = 2d, α = π
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Fig. 6. The density pω(x) given by (40), with λ = 2d, α = π
4

.

expression for the asymptotic capacity exists [28]:

limN→∞ 1
N log2 det

(
IN + ρ

(
1
N XXH

))
=

2 log2

(
1 + ρ− 1

4

(√
4ρ + 1− 1

)2
)

− log2 e
4ρ

(√
4ρ + 1− 1

)2
.

(29)

In Figure 7(a), several realizations of the capacity are com-
puted for Gaussian matrix samples of size 36 × 36. The
asymptotic capacity (29) is also shown. In Figure 7(b), several
realizations of the capacity are computed for Vandermonde
matrix samples of the same size, for the case of uniform phase
distribution. It is seen that the variance of the Vandermonde
capacities is higher than for the Gaussian counterparts. This
should come as no surprise, due to the slower convergence
to the asymptotic limits for Vandermonde matrices. Although
the capacities of Vandermonde matrices with uniform phase
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)
when X is standard,

complex, Gaussian. The asymptotic capacity (29) is also shown.
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Fig. 7. Realizations of the capacity for Gaussian and Vandermonde matrices
of size 36× 36.

distribution and Gaussian matrices seem to be close, we have
no proof that the capacities of Vandermonde matrices are even
finite due to the unboundedness of its support.

C. Deconvolution

Deconvolution with Vandermonde matrices (as stated in
(13) in Theorem 1) differs from the Gaussian deconvolution
counterpart [30] in the sense that there is no multiplicative [30]
structure involved, since Kρ,ω is not multiplicative in ρ. The
Gaussian equivalent of Proposition 3 (i.e. VHV replaced with
1
N XXH , with X an L × N complex, standard, Gaussian

matrix) is

m1 = d1 (30)
m2 = d2 + d2

1 (31)
m3 = d3 + 3d2d1 + d3

1 (32)
m4 = d4 + 4d3d1 + 2d2

2 + 6d2d
2
1 + d4

1 (33)
m5 = d5 + 5d4d1 + 5d3d2 + 10d3d

2
1 +

10d2
2d1 + 10d2d

3
1 + d5

1 (34)
m6 = d6 + 6d5d1 + 6d4d2 + 15d4d

2
1 +

3d2
3 + 30d3d2d1 + 20d3d

3
1 +

5d3
2 + 10d2

2d
2
1 + 15d2d

4
1 + d6

1 (35)
m7 = d7 + 7d6d1 + 7d5d2 + 21d5d

2
1 +

7d4d3 + 42d4d2d1 + 35d4d
3
1 +

21d2
3d1 + 21d3d

2
2 + 105d3d2d

2
1 +

35d3d
4
1 + 35d3

2d1 + 70d2
2d

3
1 +

21d2d
5
1 + d7

1, (36)

where the mi and the di are computed as in (14)-(15). This fol-
lows immediately from asymptotic freeness [20], and from the
fact that 1

N XXH converges to the Marc̆henko Pastur law µc.
In particular, when all Di(N) = IL and c = 1, we obtain the
limit moments 1, 2, 5, 14, 42, 132, 429, which also were listed
in Corollary 3. One can also write down Gaussian equivalents
to the second order moments of Vandermonde matrices (17)
using techniques from [29]. However the formulas look quite
different, and the asymptotic behaviour is different. We have
for instance

lim
L→∞

L2D1,1

(
D(N)

1
N

XXH

)
= cd2, (37)

where it is not needed that the matrices D(N) are diagonal.
Similarly, one can write down an equivalent to Theorem 2 for
the exact moments. For the first three moments (the fourth
moment is dropped, since this is more involved), these are

m1 = d1

m2 = d2 + d2
1

m3 =
(
1 + N−2

)
d3 + 3d1d2 + d3

1.

This follows from a careful count of all possibilities after the
matrices have been multiplied together (see also [33], where
one can see that the restriction that the matrices Di(N) are
diagonal can be dropped in the Gaussian case). It is seen,
contrary to Theorem 2 for Vandermonde matrices, that the
second exact moment equals the second asymptotic moment
(31), and also that the convergence is faster (i.e. O(N−2))
for the third moment (this will also be the case for higher
moments).

The two types of (de)convolution also differ in how they
can be computed in practice. In [27], an algorithm for free
convolution with the Marc̆henko Pastur law was sketched. A
similar algorithm may not exist for Vandermonde convolu-
tion. However, Vandermonde convolution can be subject to
numerical approximation: To see this, note first that Theorem 3
splits the numerics into two parts: The approximation of the
integrals

∫
pω(x)|ρ|dx, and the approximation of the Kρ,u. A
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strategy for obtaining the latter quantities could be to randomly
generate many numbers between 0 and 1 and estimate the
volume as the ratio of the solutions which satisfy (63) in
Appendix B. Implementations of the various Vandermonde
convolution variants given in this paper can be found in [34].

In practice, one often has a random matrix model where
independent Gaussian and Vandermonde matrices are both
present. In such cases, it is possible to combine the individual
results for both of them. In Section V, examples on how this
can be done are presented.

V. APPLICATIONS

The applications presented here all use the deconvolution
framework for Vandermonde matrices. Since additive, white,
Gaussian noise also is taken into account, Vandermonde de-
convolution is combined with Gaussian deconvolution. Matlab
code for running the different simulations can be found in [34].

In the eigenvalue histograms for Vandermonde matrices
shown in figures 3 and 5, large matrices were used in order
to obtain something close to the asymptotic limit. In practical
scenarios, and in the applications we present, N and L are
much smaller than what was used in these figures, which
partially explains the uncertainty in some of the simulations. In
particular, the uncertainty for non-uniform phase distributions
such as those in Section V-A is high, since exact expressions
for the lower order moments are not known, contrary to the
case of uniform phase distribution. In all the following, d is the
distance between the antennas whereas λ is the wavelength.
The ratio d

λ is a figure of the resolution with which the system
will be able to separate (and therefore estimate the position
of) users in space.

A. Detection of the number of sources

Let us consider a basestation equipped with N receiving
antennas, and with L mobiles (each with a single antenna) in
the cell. The received signal at the base station is given by

ri = VP
1
2 si + ni. (38)

Here ri is the N × 1 received vector, si is the L× 1 transmit
vector by the L users which is assumed to satisfy E

[
sisH

i

]
=

IL, ni is N × 1 additive, white, Gaussian noise of variance
σ√
N

(all components in si and ni are assumed independent).
In the case of a line of sight between the users and the base
station, and considering a Uniform Linear Array (ULA), the
matrix V has the following form:

V =
1√
N




1 · · · 1
e−j2π d

λ sin(θ1) · · · e−j2π d
λ sin(θL)

...
. . .

...
e−j2π(N−1) d

λ sin(θ1) · · · e−j2π d
λ sin(θL)




(39)
Here, θi is the angle of the user in the cell and is supposed
to be uniformly distributed over [−α, α]. P

1
2 is an L × L

diagonal power matrix due to the different distances from
which the users emit. In other words, we assume that the
phase distribution has the form 2π d

λ sin(θ) with θ uniformly
distributed on [−α, α]. The fact that the phase has the form

2π d
λ sin(θ) is a well known result in array processing [31].

The user’s distribution can be known (in the case of these
simulations, the uniform distribution has been accounted for
without loss of generality) through measurements in wireless
systems up to some parameters (here, α typically). This is
usually done to have a better understanding of the user’s
behaviour. It is easily seen, by taking inverse functions, that
the density is, when 2d sin α

λ < 1,

pω(x) =
1

2α
√

4π2d2

λ2 − x2
(40)

on [− 2πd sin α
λ , 2πd sin α

λ ], and 0 elsewhere (see Figure 6).
Throughout the paper we will assume, as in Figure 5,

that λ = 2d, α = π
4 when model (39) is used. With this

assumption, 2d sin α
λ < 1 is always fulfilled.

The goal is to detect the number of sources L and their
respective power based on the sample covariance matrix
supposing that we have K observations, of the same order
as N . When the number of observation is quite higher than N
(and the noise variance is known), classical subspace methods
[35] provide tools to detect the number of sources. Indeed, let
R be the true covariance matrix given by

VPVH + σ2IN ,

where σ2 is the noise variance. This matrix has N − L
eigenvalues equal to σ2 and L eigenvalues strictly superior
to σ2. One can therefore determine the number of source
by counting the number of eigenvalues different from σ2.
However, in practice, one has only access to the sample
covariance matrix given by

W =
1
K

YYH ,

with

Y = [r1, ...rK ] = VP
1
2 [s1, ..., sK ] + [n1, ...,nK ]. (41)

If one has only the sample covariance matrix W, we have three
independent parts which must be dealt with in order to get an
estimate of P: the Gaussian matrices S = [s1, ..., sK ] and
N = [n1, ...,nK ], and the Vandermonde matrix V. It should
thus be possible to combine Gaussian deconvolution [33]
and Vandermonde deconvolution by performing the following
steps:

1) Estimate the moments of 1
K VP

1
2 SSHP

1
2 VH using

multiplicative free convolution as described in [27]. This
is the denoising part.

2) Estimate the moments of PVHV, again using multi-
plicative free deconvolution.

3) Estimate the moments of P using Vandermonde decon-
volution as described in this paper.

Putting these steps together, we will prove the following:
Proposition 7: Define

In = (2π)n−1

∫ 2π

0

pω(x)ndx, (42)
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and denote the moments of P and the sample covariance
matrix, respectively, by

Pi = trL(Pi)
Wi = trN (Wi).

Then the equations

W1 = c2P1 + σ2

W2 = c2P2 + (c2
2I2 + c2c3)(P1)2

+2σ2(c2 + c3)P1 + σ4(1 + c1)
W3 = c2P3 + (3c2

2I2 + 3c2c3)P1P2

+
(
c3
2I3 + 3c2

2c3I2 + c2c
2
3

)
(P1)3

+3σ2(1 + c1)c2P2

+3σ2((1 + c1)c2
2I2 + c3(c3 + 2c2))(P1)2

+3σ4(c2
1 + 3c1 + 1)c2P1

+σ6(c2
1 + 3c1 + 1)

provide an asymptotically unbiased estimator for the mo-
ments Pi from the moments of Wi (or vice versa) when
limN→∞ N

K = c1, limN→∞ L
N = c2, limN→∞ L

K = c3.
The proof of this can be found in Appendix M. Note that

c3 = c1c2, so that the definition of c3 is really not necessary.
We still include it however, since c1, c2 and c3 are matrix
aspect ratios which represent different deconvolution stages,
so that they all are used when these stages are implemented
and combined serially. In the simulations, Proposition 7 is put
to the test when P has three sets of powers, 0.5, 1, and 1.5,
with equal probability, with phase distribution given by (39).
Both the number of sources and the powers are estimated.
For the phase distribution (39), the integrals I2 and I3 can
be computed exactly (for general phase distributions they are
computed numerically), and are [36]

I2 =
λ

4dα2
ln

(
1 + sin α

1− sin α

)

I3 =
λ2 tan α

4d2α3
.

Under the assumptions λ = 2d, α = π
4 used throughout this

paper, the integrals above take the values

I2 =
40
π2

ln

(
2 +

√
2

2−√2

)

I3 =
1600
π3

.

For estimation of the powers, knowing that we have only
three sets of powers with equal probability, it suffices to
estimate the three lowest moments in order to get an estimate
of the powers (which are the three distinct eigenvalues of P).
Therefore, in the following simulations, Proposition 7 is first
used to get an estimate of the moments of P. Then these are
used to obtain an estimate of the three distinct eigenvalues of
P using the Newton-Girard formulas [37]. These should then
lie close to the three powers of P. Power estimation for the
model (39) is shown in the first plot of Figure 10. In the plot,
K = L = N = 144, and σ =

√
0.1. Experiments show that

when the phase distribution becomes ”less” uniform, larger

matrix sizes are needed in order for accurate power estimation
using this method. This will also be seen when we perform
power estimation using uniform phase distribution in the next
section.

For estimation of the number of users L, we assume that
the power distribution of P is known, but not L itself. Since
L is unknown, in the simulations we enter different candidate
values of it into the following procedure:

1) Computing the moments Pi = trL(Pi) of P.
2) The moments trL(Pi) are fed into the formulas of

Proposition 7, and we thus obtain candidate moments
Wi of the sample covariance matrix W.

3) Compute the sum of the square errors between these can-
didate moments, and the moments Ŵi of the observed
sample covariance matrix Ŵ, i.e. compute

∑3
i=1 |Wi−

Ŵi|2.
The estimate L for the number of users is chosen as the one
which gives the minimum value for the sum of square errors
after these steps.

In Figure 8, we have set σ =
√

0.1, N = 100, and L = 36.
We tried the procedure described above for 1 all the way up
to 100 observations. It is seen that only a small number of
observations are needed in order to get an accurate estimate
of L. When K = 1, it is seen that more observations are
needed to get an accurate estimate of L, when compared to
K = 10.

B. Estimation of the number of paths

In many channel modeling applications, one needs to deter-
mine the number of paths in the channel [38]. For this purpose,
consider a multi-path channel of the form:

h(τ) =
L∑

i=1

siδ(τ − τi)

Here, si are i.d. Gaussian random variables with power Pi and
τi are uniformly distributed delays over [0, T ]. The si represent
the attenuation factors due to the different reflections. L is the
total number of paths. In the frequency domain, the channel
is given by

H(f) =
L∑

i=1

siG(f)e−j2πfτi .

Sampling the continuous frequency signal at fi = iW
N where

W is the bandwidth, the model becomes (for a given channel
realization)

H = VP
1
2 s

where

V =
1√
N




1 · · · 1
e−j2π

W τ1
N · · · e−j2π

W τL
N

...
. . .

...
e−j2π(N−1)

W τ1
N · · · e−j2π(N−1)

W τL
N




,

(43)
We will here set W = T = 1, which means that the ωi of
(1) are uniformly distributed over [0, 2π). The corresponding
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Fig. 8. Estimate for the number of users. Actual value of L is 36. Also, σ =√
0.1, N = 100. The powers were 0.5, 1, and 1.5, with equal probability.

eigenvalue histogram was shown in Figure 3. When additive
noise (n) again is taken into consideration, our model again
becomes that of (38), the only difference being that the phase
distribution of the Vandermonde matrix now is uniform. L now
is the number of paths, N the number of frequency samples,
and P is the unknown L×L diagonal power matrix. Taking K
observations we arrive at the same form as in (41). In this case
with uniform phase distribution, we can do even better than
Proposition 7, in that one can write down estimators for the
moments which are unbiased for any number of observations
and frequency samples:

Proposition 8: Assume that V has uniform phase distribu-
tion, and let Pi be the moments of P, and Wi = trN (Wi)
the moments of the sample covariance matrix. Define also

c1 = N
K , c2 = L

N , and c3 = L
K . Then

E [W1] = c2P1 + σ2

E [W2] = c2

(
1− 1

N

)
P2 + c2(c2 + c3)(P1)2

+2σ2(c2 + c3)P1 + σ4(1 + c1)

E [W3] = c2

(
1 +

1
K2

)(
1− 3

N
+

2
N2

)
P3

+
(

1− 1
N

)(
3c2

2

(
1 +

1
K2

)
+ 3c2c3

)
P1P2

+
(

c3
2

(
1 +

1
K2

)
+ 3c2

2c3 + c2c
2
3

)
(P1)3

+3σ2

(
(1 + c1)c2 +

c1c
2
2

KL

)(
1− 1

N

)
P2

+3σ2

(
c1c

3
2

KL
+ c2

2 + c2
3 + 3c2c3

)
(P1)2

+3σ4

(
c2
1 + 3c1 + 1 +

1
K2

)
c2P1

+σ6

(
c2
1 + 3c1 + 1 +

1
K2

)

Just as Proposition 7, this is proved in Appendix M. In the
following, this result is used in order to determine the number
of paths as well as the power of each path. The different
convergence rates of the approximations are clearly seen in
the plots.

In Figure 9, the number of paths is estimated based on the
procedure sketched above. We have set σ =

√
0.1, N = 100,

and L = 36. The procedure is tried for 1 all the way up to
100 observations. The plot is very similar to Figure 8, in that
only a small number of observations are needed in order to
get an accurate estimate of L. When K = 1, it is seen that
more observations are needed to get an accurate estimate of
L, when compared to K = 10.

For the estimation of powers simulation, we have set K =
N = L = 144, and σ =

√
0.1, following the procedure also

described above, up to 1000 observations. The second plot in
Figure 10 shows the results which confirms the usefulness of
the approach.

C. Estimation of wavelength

In the field of MIMO cognitive sensing [39], [40], terminals
must decide on the band on which to transmit and in particular
sense which band is occupied. One way of doing so is to
find the wavelength λ in (39), based on some realizations of
the sample covariance matrix. In our simulation, we have set
K = 10, L = 36, N = 100, and σ =

√
0.1, in addition to

λ = 2, d = 1, α = π
4 . We have tried values between 0 and

5 as candidate wavelengths (to be more precise, the values
0.05, 0.1, 0.15, ..., 5 are tried), and chosen the one which gives
the smallest deviation (in the same sense as above, i.e. the sum
of the squared errors of the first three moments are taken)
from a different number of realizations of sample covariance
matrices. The resulting plot is shown in Figure 11, and shows
that the Vandermonde deconvolution method can also be used
for wavelength estimation.
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Fig. 9. Estimate for the number of paths. Actual value of L is 36. Also,
σ =

√
0.1, N = 100.

D. Signal reconstruction and estimation of the sampling dis-
tribution

For signal reconstruction, one can provide a general frame-
work where only the sampling distribution matters asymptot-
ically. The sampling distribution can be estimated with the
help of the presented results. Several works have investigated
how irregular sampling affects the performance of signal
reconstruction in the presence of noise in different fields,
namely sensor networks [41], [42], image processing [43],
[44], geophysics [45], and compressive sampling [46]. The
usual Nyquist Theorem states that for a signal with maximum
frequency fmax, one needs to sample the signal at a rate
which is at least twice this number. However, in many cases,
this can not be performed, or one has an observation of a
signal at only a subset of the frequencies. Moreover, one feels
that if the signal has a sparse spectrum, one can take fewer
samples and still have the same information on the original
signal. One of the central motivations of sparse sampling is
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(a) The model (39) of Section V-A.
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(b) The model (43) of Section V-B.

Fig. 10. Estimation of powers for the two models (39) and (43), for various
number of observations. K = N = L = 144, and σ =

√
0.1. The actual

powers were 0.5, 1, and 1.5, with equal probability.

exactly to understand under which condition one can still
have less samples and recover the original signal up to an
error of ε [47]. Let us consider the signal of interest as a
superposition of its frequency components (this is also the
case for a unidimensional bandlimited physical signal), i.e.

r(t) =
1√
N

N−1∑

k=0

ske
−j2πkt

N

and suppose that the signal is sampled at various instants
[t1, ..., tL] with ti ∈ [0, 1]. This can be identically written as

r(ω) =
1√
N

N−1∑

k=0

ske−jkω,

or r = VT s. In the presence of noise, one can write

r = VT s + n, (44)
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Fig. 11. Estimation of wavelength. Deconvolution was performed for varying
number of observations, assuming different wavelengths, In the true model
(39), λ = 2, d = 1, α = π

4
, K = 10, L = 36, N = 100, and σ =

√
0.1.

where r = [r(ω1), ...r(ωL)]T , s and n are as in (38), and with
V on the form (1). A similar analysis for such cases can be
found in [16].

In the following, we suppose that one has K observations
of the received sampled vector r:

Y = [r1, ...rK ] = VT [s1, ..., sK ] + [n1, ...,nK ] (45)

The vector r is the discrete output of the sampled continuous
signal r(w) for which the distribution is unknown (however,
c is known). This case happens when one has an observation
without the knowledge of the sampling rate for example. The
difference in (45) from the model (41) lies in that the adjoint
of a Vandermonde matrix is used, and in that there is no
additional diagonal matrix P included. The following result
can now be stated and proved similarly to Proposition 7 and 8:

Proposition 9:

E [trn (W)] = 1 + σ2 (46)
E

[
trn

(
W2

)]
= c2I2 + (1 + c3)(1 + σ2)2 (47)

E
[
trn

(
W3

)]
= 1 + 3c2(1 + c3)I2

3c3 + c2
3 + c2

2I3

3σ2(1 + 3c3 + c2
3 + c2(1 + c3)I2)

3σ4c2(c2
3 + 3c3 + 1)

σ6(c2
3 + 3c3 + 1), (48)

where limN→∞ N
K = c1, limN→∞ L

N = c2, limN→∞ L
K = c3,

In is defined as in Proposition 7, and W = 1
K YYH .

The proof of Proposition 9 is commented in Appendix M.
We have tested (46)-(48) by taking a phase distribution ω
which is uniform on [0, α], and 0 elsewhere. The density is
thus 2π

α on [0, α], and 0 elsewhere. In this case we can compute
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Fig. 12. Estimated values of α using (46)-(48), for various number of
observations, and for K = 10, L = 36, N = 100, σ =
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that

I2 =
2π

α

I3 =
(

2π

α

)2

.

The first of these equations, combined with (46)-(48), enables
us to estimate α. This is tested in Figure 12 for various
number of observations. In Figure 13 we have also tested
estimation of I2, I3 from the observations using the same
equations. When one has a distribution which is not uniform,
the integrals I3, I4, ... would also be needed in finding the
characteristics of the underlying phase distribution. Figure 13
shows that the estimation of I2 requires far fewer observa-
tions than the estimation of I3. In both figures, the values
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K = 10, L = 36, N = 100, and σ =
√

0.1 were used and α
was π

4 . It is seen that the estimation of I3 is a bit off even for
higher number of observations. This is to be expected, since
an asymptotic result is applied.

VI. CONCLUSION AND FURTHER DIRECTIONS

We have shown how asymptotic moments of random Van-
dermonde matrices with entries on the unit circle can be
computed analytically, and treated many different cases. Van-
dermonde matrices with uniform phase distribution proved to
be the easiest case, and it was shown how the case with
more general phases could be expressed in terms of this. The
case where the phase distribution has singularities was also
handled, as this case displayed different asymptotic behaviour.
Also, mixed moments of independent Vandermonde matrices
were investigated, as well as the moments of generalized
Vandermonde matrices. In addition to the general asymptotic
expressions stated, exact expressions for the first moments of
Vandermonde matrices with uniform phase distribution were
also stated. We have also provided some useful applications of
random Vandermonde matrices. The applications concentrated
on deconvolution and signal sampling analysis. As shown,
many useful system models use independent Vandermonde
matrices and Gaussian matrices combined in some way. The
presented examples show how random Vandermonde matrices
in such systems can be handled in practice to obtain estimates
on quantities such as the number of paths in channel modeling,
the transmission powers of the users in wireless transmission,
or the sampling distribution for signal recovery. The paper
has only touched upon a limited number of applications, but
the results already provide benchmark figures in the non-
asymptotic regime.

From a theoretical perspective, it would also be interesting
to find methods for obtaining the generalized expansion co-
efficients Kρ,ω,λ from Kρ,u,u, similar to how we found the
expansion coefficients Kρ,ω from Kρ,u. This could also shed
some light on whether uniform phase- and power distribution
also minimizes moments of generalized Vandermonde matri-
ces, similarly to how we showed that it minimizes moments
in the non-generalized case.

Throughout the paper, we assumed that only diagonal
matrices were involved in mixed moments of Vandermonde
matrices. The case of non-diagonal matrices is harder, and
should be addressed in future research. The analysis of the
maximum and minimum eigenvalue is also of importance.
The methods presented in this paper can not be used directly
to obtain explicit expressions for the p.d.f. of the asymptotic
mean eigenvalue distribution, so this is also a case for fu-
ture research. A way of attacking this problem could be to
develop for Vandermonde matrices analytic counterparts to
what one has in free probability, such as the R-, S-, and the
Stieltjes transform [20]. Interestingly, certain matrices similar
to Vandermonde matrices, have analytical expressions for the
moments: in [17], analytical expressions for the moments of
matrices with entries of the form Ai,j = F (ωi−ωj) are found.
This is interesting for the Vandermonde matrices we consider,

since (
1
N

VHV
)

i,j

=
sin

(
N
2 (ωi − ωj)

)

N sin
(

1
2 (ωi − ωj)

) .

Unfortunately, the function FN (x) =
sin(N

2 x)
N sin( 1

2 x) depends on
the matrix dimension N , so that we can not find a function F
which fits the result from [17].

Finally, another case for future research is the asymptotic
behaviour of Vandermonde matrices when the matrix entries
lie outside the unit circle.

APPENDIX A
THE PROOF OF THEOREM 1

We can write

E
[
trL

(
D1(N)VHVD2(N)VHV · · ·Dn(N)VHV

)]
(49)

as

L−1
∑

i1,...,in
j1,...,jn

E( D1(N)(j1, j1)VH(j1, i2)V(i2, j2)

D2(N)(j2, j2)VH(j2, i3)V(i3, j3)
...
Dn(N)(jn, jn)VH(jn, i1)V(i1, j1))

(50)
The (j1, ..., jn) uniquely identifies a partition ρ of {1, ..., n},
where each block Wj of ρ consists of the positions of the
indices which equal j, i.e.

Wj = {k|jk = j}.

We will also say that (j1, ..., jn) give rise to ρ. Write

Wj = {wj1, wj2, ..., wj|Wj |}.

When (j1, ..., jn) give rise to ρ, we see that since

jwj1 = jwj2 = · · · = jwj|Wj |
,

we also have that

ωjwj1
= ωjwj2

= · · · = ωjwj|Wj |
,

and we will denote their common value by ωWj as in Defini-
tion 8. With this in mind, it is straightforward to verify that
(50) can be written as

∑

ρ∈P(n)

∑

(i1,...,in)

∑

(j1, ..., jn)
giving rise to ρ

N−nL−1

×
|ρ|∏

k=1

E

(
e
j
(∑

k∈Wj
ik−1−

∑
k∈Wj

ik

)
ωWk

)

×D1(N)(j1, j1)× · · · ×Dn(N)(jn, jn), (51)
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where i1, ..., in takes values between 0 and N − 1. We will in
the following switch between the form (51) and the form

∑

ρ∈P(n)

∑

(j1, ..., jn)
giving rise to ρ

∑

(i1,...,in)

N |ρ|−n−1c|ρ|−1L−|ρ|

×E

(
n∏

k=1

(
ej(ωb(k−1)−ωb(k))ik

))

×D1(N)(j1, j1)× · · · ×Dn(N)(jn, jn),(52)

where we also have reorganized the powers of N and L in
(51), and changed the order of summation (i.e. summed over
the different i1, ..., in first). Noting that

∑

(i1,...,in)

N |ρ|−n−1E

(
n∏

k=1

ej(ωb(k−1)−ωb(k))ik

)
(53)

= N |ρ|−n−1E


 ∑

(i1,...,in)

n∏

k=1

ej(ωb(k−1)−ωb(k))ik


(54)

= N |ρ|−n−1E

(
n∏

k=1

(
N−1∑

ik=0

ej(ωb(k−1)−ωb(k))ik

))
(55)

= N |ρ|−n−1E

(
n∏

k=1

1− ejN(ωb(k−1)−ωb(k))

1− ej(ωb(k−1)−ωb(k))

)
(56)

= N |ρ|−n−1 ×∫

(0,2π)|ρ|

n∏

k=1

1− ejN(ωb(k−1)−ωb(k))

1− ej(ωb(k−1)−ωb(k))

dω1 · · · dω|ρ| (57)
= Kρ,ω,N , (58)

Definition 8 of the Vandermonde mixed moment expansion
coefficients comes into play, so that (52) can also be written

∑

ρ∈P(n)

∑

(j1, ..., jn)
giving rise to ρ

c|ρ|−1L−|ρ|Kρ,ω,N

×D1(N)(j1, j1) · · · × ×Dn(N)(jn, jn). (59)

The notation for a joint limit distribution simplifies (52).
Indeed, add to (52) for each ρ the terms

∑

ρ′∈P(n),ρ′>ρ

∑

(j1, ..., jn)
giving rise to ρ′

c|ρ|−1L−|ρ|Kρ,ω,N

×D1(N)(j1, j1) · · · ×Dn(N)(jn, jn). (60)

These go to 0 as N →∞, since they are bounded by

c|ρ|−1L−|ρ|Kρ,ω,NL|ρ
′| = Kρ,ω,Nc|ρ|−1L|ρ

′|−|ρ| = O(L−1).

After this addition, the limit of (59) can be written
∑

ρ∈P(n)

c|ρ|−1Kρ,ωDρ, (61)

which is what we had to show.
We also need to comment on the statement of Theo-

rem 6, where generalized Vandermonde matrices are con-
sidered. In this case, the derivations after (52) are different
since the power distribution is not uniform. For the case
of (22), we can in (55) replace

∑n
ik=1 ej(ωb(k−1)−ωb(k))ik

with
∑N−1

r=0 NpfN
(r)ejr(ωb(k−1)−ωb(k)), since the number of

occurrences of the power ejr(ωb(k−1)−ωb(k)) is NpfN
(r). The

rest of the proof of Theorem 6 follows by canceling n powers
of N after this replacement. The details are similar for the
case (23), where the law of large numbers is applied to arrive
at the second formula in (24).

APPENDIX B
THE PROOF OF PROPOSITION 1

Note that for each block Wj ,

E

(
e
j
(∑

k∈Wj
ik−1−

∑
k∈Wj

ik

)
ωWj

)
= 0

when ∑

k∈Wj

ik−1 6=
∑

k∈Wj

ik,

and 1 if ∑

k∈Wj

ik−1 =
∑

k∈Wj

ik. (62)

If we denote by Sρ,N the set of all n-tuples (i1, ..., in) (0 ≤
ik ≤ N − 1, 1 ≤ k ≤ n) which solve (62), and define |Sρ,N |
to be the cardinality of Sρ,N , it is clear that

Kρ,u = lim
N→∞

Kρ,u,N = lim
N→∞

1
Nn+1−|ρ| |Sρ,N |.

It is straightforward to show that the solution set of (62) has
n+1−|ρ| free variables. After dividing the equations (62) by
N and letting N go to infinity, Kρ,u can thus alternatively be
expressed as the volume in Rn+1−|ρ| of the solution set of

∑

k∈Wj

xk−1 =
∑

k∈Wj

xk, (63)

with 0 ≤ xk ≤ 1. It is clear that the volume of this solution set
computes to a rational number. It is the form (63) which will be
used in the other appendices to compute Kρ,u for certain lower
order ρ. Appendix D of [16] states the same equations for
finding quantities equivalent to Vandermonde mixed moment
expansion coefficients for the uniform phase distribution. The
fact that Kρ,u ≤ 1 follows directly from Appendix D of [16].
The same applies for the fact that Kρ,u = 1 if and only if ρ
is noncrossing.

For any ρ, we can define a partition of {1, ..., n} into n+1−
|ρ| blocks, where two elements are defined to be in the same
block if and only if the corresponding variables in solutions
to (63) are linearly dependent. When ρ is noncrossing, it is
straightforward to show that two such variables are dependent
if and only if they are equal, and also that this partition is the
Kreweras complement K(ρ) of ρ. This fact is used elsewhere
in this paper.

We will also briefly explain why the computations in this
appendix are useful for generalized Vandermonde matrices
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with uniform phase distribution. For (22), the number of
solutions i1, ..., ik to (62) needs to be multiplied by

NpfN
(i1) · · ·NpfN

(ik),

since each ij now may occur NpfN
(ij) times. This means that

Kρ,ω,f can be computed as the integrals in this appendix, but
that we also need to multiply with the density pf for each
variable. The computations of these new integrals become
rather involved when f is not uniform, and are therefore
dropped.

APPENDIX C
THE PROOF FOR PROPOSITION 2

We will in the following compute the volume of the solution
set of (63), as a volume in [0, 1]n+1−|ρ| ⊂ Rn+1−|ρ|, as
explained in the proof of Proposition 1. These integrals are
very tedious to compute, and many of the details are skipped.
The formula

r!s!
(r + s + 1)!

=
∫ 1

0

xr(1− x)sdx

can be used to simplify some of the calculations for higher
values of n.

A. Computation of K{{1,3},{2,4}},u
This is equivalent to finding the volume of the solution set

of
x1 + x3 = x2 + x4

in R3. Since this means that

x4 = x1 + x3 − x2 lies between 0 and 1,

we can set up the following integral bounds: When x1 +x3 ≤
1, we must have that 0 ≤ x2 ≤ x1 + x3, so that we get the
contribution

∫ 1

0

∫ 1−x1

0

∫ x1+x3

0

dx2dx3dx1,

which computes to 1
3 . When 1 ≤ x1 + x3, we must have that

x1 + x3 − 1 ≤ x2 ≤ 1, so that we get the contribution
∫ 1

0

∫ 1

1−x1

∫ 1

x1+x3−1

dx2dx3dx1,

which also computes to 1
3 . Adding the contributions together

we get 2
3 , which is the stated value for K{{1,3},{2,4}},u.

It turns out that when the blocks of ρ are cyclic shifts of each
other, the computation of Kρ,u can be simplified. Examples
of such ρ are {{1, 3}, {2, 4}} (for which we just computed
Kρ,u), {{1, 3, 5}, {2, 4, 6}}, and {{1, 4}, {2, 5}, {3, 6}}. We
will in the following describe this simplified computation. Let
a
(m)
l (x) be the polynomial which gives the volume in Rm−1

of the solutions set to x1 + · · · + xm = x (constrained to
0 ≤ xi ≤ 1) for l ≤ x ≤ l +1. It is clear that these satisfy the
integral equations

a
(m+1)
l (x) =

∫ l

x−1

a
(m)
l−1(t)dt +

∫ x

l

a
(m)
l (t)dt, (64)

which can be used to compute the am
l (x) recursively. Note

first that a
(1)
0 (x) = 1. For m = 2 we have

a
(2)
0 (x) =

∫ x

0

a
(1)
0 (t)dt = x

a
(2)
1 (x) =

∫ 1

x−1

a
(1)
0 (t)dt = 2− x.

For m = 3 we have

a
(3)
0 (x) =

∫ x

0

a
(2)
0 (t)dt =

1
2
x2

a
(3)
1 (x) =

∫ 1

x−1

a
(2)
0 (t)dt +

∫ x

1

a
(2)
1 (t)dt

= 1− 1
2
(x− 1)2 − 1

2
(2− x)2

a
(3)
2 (x) =

∫ 2

x−1

a
(2)
1 (t)dt =

1
2
(3− x)2.

B. Computation of K{{1,3,5},{2,4,6}},u
For m = 3, integration gives

∫ 1

0

(a(3)
0 )2(t)dt +

∫ 2

1

(a(3)
1 )2(t)dt +

∫ 3

2

(a(3)
2 )2(t)dt,

which computes to 11
20 . This is the stated expression for

K{{1,3,5},{2,4,6}},u.

C. Computation of K{{1,4},{2,5},{3,6}},u
This is equivalent to finding the volume of the solution set

of
x1 + x4 = x2 + x5 = x3 + x6

in R4, which is computed as
∫ 1

0

(a(2)
0 )3(t)dt +

∫ 2

1

(a(2)
1 )3(t)dt,

which computes to 1
2 . This is the stated expression for

K{{1,4},{2,5},{3,6}},u.

D. Computation of K{{1,4},{2,6},{3,5}},u
This is equivalent to finding the volume of the solution set

of

x1 + x4 = x2 + x5

x2 + x6 = x3 + x1

in R4. Since this means that

x5 = x1 − x2 + x4 lies between 0 and 1,
x6 = x1 − x2 + x3 lies between 0 and 1,

we can set up the following integral bounds:
For x2 ≥ x1 we must have x2 − x1 ≤ x3, x4 ≤ 1, so that

we get the contribution
∫ 1

0

∫ 1

x1

∫ 1

x2−x1

∫ 1

x2−x1

dx4dx3dx2dx1,

which computes to 1
4 . It is clear that for x1 ≥ x2 we get

the same result by symmetry, so that the total contribution is
1
4 + 1

4 = 1
2 , which proves the claim.
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E. Computation of K{{1,5},{3,7},{2,4,6}},u
This is equivalent to finding the volume of the solution set

of

x1 + x5 = x2 + x6

x3 + x7 = x4 + x1

in R5, or

x6 = x5 + x1 − x2 lies between 0 and 1,
x7 = x4 + x1 − x3 lies between 0 and 1 .

(65)

This can be split into the following volumes:
1) x1 ≤ x2 ≤ x3,
2) x1 ≤ x3 ≤ x2,
3) x3 ≤ x2 ≤ x1,
4) x2 ≤ x3 ≤ x1,
5) x2 ≤ x1 ≤ x3,
6) x3 ≤ x1 ≤ x2.

Each of these volumes can be computed by setting up an in-
tegral with corresponding bounds. Computing these integrals,
we get the values 1

15 , 1
15 , 1

15 , 1
15 , 11

120 , 11
120 , respectively. Adding

these contributions together, we get

4
15

+
11
60

=
27
60

=
9
20

,

which proves the claim.

F. The computation of K{{1,6},{2,4},{3,5,7}},u
This is equivalent to finding the volume of the solution set

of

x1 + x6 = x2 + x7

x2 + x4 = x3 + x5

in R5, or

x6 = x7 + x2 − x1 lies between 0 and 1,
x5 = x4 + x2 − x3 lies between 0 and 1, .

This can be obtained from (65) by a permutation of the
variables, so the contribution from K{{1,6},{2,4},{3,5,7}},u must
also be 9

20 , which proves the claim.

APPENDIX D
THE PROOF FOR PROPOSITION 3

Note first that multiplying both of sides of (13) with c gives

cMn =
∑

ρ∈P(n)

Kρ,ω(cD)ρ, (66)

where we now can substitute the scaled moments (14)-(15).
With D1(N) = D2(N) = · · · = Dn(N) = D(N), Dρ

as defined in Definition 2 does only depend on the block
cardinalities |Wj |, so that we can group together the Kρ,ω

for ρ with equal block cardinalities. If we group the blocks of
ρ so that their cardinalities are in descending order, and set

P(n)r1,r2,...,rk
= {ρ = {W1, ..., Wk} ∈ P(n)||Wi| = ri∀i},

where r1 ≥ r2 ≥ · · · ≥ rk, and also write

Kr1,r2,...,rk
=

∑

ρ∈P(n)r1,r2,...,rk

Kρ,ω, (67)

(66) can be written

mn =
∑

r1,...,rk
r1+···+rk=n

Kr1,r2,...,rk

k∏

j=1

drj
. (68)

For the first 5 moments this becomes

m1 = K1d1 (69)
m2 = K2d2 + K1,1d

2
1 (70)

m3 = K3d3 + K2,1d2d
2
1 + K1,1,1d

3
1 (71)

m4 = K4d4 + K3,1d3d1 + K2,2d
2
2 + K2,1,1d2d

2
1 +

K1,1,1,1d
4
1 (72)

m5 = K5d5 + K4,1d4d1 + +K3,2d3d2 +
K3,1,1d3d

2
1 + K2,2,1d

2
2d1 + K2,1,1,1d2d

3
1 +

K1,1,1,1,1d
5
1. (73)

Thus, to prove Proposition 3, we have to compute the
Kr1,r2,...,rk

by going through all partitions. We will have use
for the following result, taken from [30]:

Lemma 1: The number of noncrossing partitions in NC(n)
with r1 blocks of length 1, r2 blocks of length 2 and so on
(so that r1 + 2r2 + 3r3 + · · ·nrn = n) is

n!
r1!r2! · · · rn!(n + 1− r1 − r2 · · · rn)!

.

Using this and a similar formula for the number of par-
titions with prescribed block sizes, we obtain cardinalities
for noncrossing partitions and the set of all partitions with
a given block structure. These numbers are the used in the
following calculations. For the proof of Proposition 3, we need
to compute (67) for all possible block cardinalities (r1, ..., rk),
and insert these in (69)-(73). The formulas for the three first
moments are obvious, since all partitions of length ≤ 3 are
noncrossing. For the remaining computations, the following
two observations save a lot of work:

• If ρ1 ∈ P(n1), ρ2 ∈ P(n2) with n1 < n2, and ρ1 can be
obtained from ρ2 by omitting elements k in {1, ..., n2}
such that k and k + 1 are in the same block, then we
must have that Kρ1,u = Kρ2,u. This is straightforward
to prove since it follows from the proof of Proposition 1
that ik+1 can be chosen arbitrarily between 0 and N − 1
in such a case.

• Kρ1,u = Kρ2,u if the set of equations (63) for ρ1 can
be obtained by a permutation of the variables in the set
of equations for ρ2. Since the rank of the matrix for
(63) equals the number of equations −1, we actually
need only have that |ρ1| − 1 of the |ρ1| equations can
be obtained from permutation of |ρ2| − 1 equations of
the |ρ2| equations in the equation system for ρ2.
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A. The moment of fourth order

The result is here obvious except for the case for the three
partitions with block cardinalities (2, 2) (for all other block
cardinalities, all partitions are noncrossing, so that Kr1,r2,...,rk

is simply the number of noncrossing partitions with block
cardinalities (r1, ..., rk). this number can be computed from
Lemma 1). Two of the partitions with blocks of cardinality
(2, 2) are noncrossing, the third one is not. We see from
Proposition 2 that the total contribution is

K2,2 = 2 + K{{1,3},{2,4}},u
= 2 + 2

3 = 8
3 .

The formula for the fourth moment follows.

B. The moment of fifth order

Here two cases require extra attention:
1) ρ = {W1, W2} with |W1| = 3, |W2| = 2: There are 10

such partitions, and 5 of them have crossings and contribute
with K{{1,3},{2,4}},u. The total contribution is therefore

5 + 5×K{{1,3},{2,4}},u
= 5 + 5× 2

3 = 25
3 .

2) ρ = {W1,W2,W3} with |W1| = |W2| = 2, |W3| = 1:
There are 15 such partitions, of which 5 have crossings. The
total contribution is therefore

10 + 5×K{{1,3},{2,4}},u
= 10 + 5× 2

3 = 40
3 .

The computations for the sixth and seventh order moments
are similar, but the details are skipped. These are more tedious
in the sense that one has to count the number of partitions with
a given block structure, and identify each partition with one
of the coefficients listed in Proposition 2.

APPENDIX E
THE PROOF OF PROPOSITION 4

Ci,j(D(N)VHV) is computed as in Appendix A. Since
some terms in E

[
trL

(
Ai

)
trL

(
Aj

)]
cancel those in

E
[
trL

(
Ai

)]
E

[
trL

(
Aj

)]
, we can restrict to summing over

partitions of 1, 2, ..., i + j where at least one block contains
elements from both [1, ..., i] and [i+1, ..., i+j]. We denote this
set by P(i, j), and set n = i + j. In our new calculations,(52)
now instead takes the form

L
∑

ρ∈P(i,j)

∑

(j1, ..., jn)
giving rise to ρ

∑

(i1,...,in)

N |ρ|−i−j−1L−1c|ρ|−1L−|ρ|

×E

(
n∏

k=1

(
ej(ωb(k−1)−ωb(k))ik

))

×D1(N)(j1, j1)× · · · ×Dn(N)(jn, jn),(74)

where the normalizing factor L from Definition 4 has been
included. Simplifying this as in Appendix A, and restricting
to uniform phase distribution, we obtain

lim
L→∞

LCi,j(D(N)VHV) =
∑

ρ∈P(i,j)

c|ρ|−1K2,ρ,uDρ,

where K2,ρ,u is the volume of the solution set of

∑

k∈Wj

xσ−1(k−1) =
∑

k∈Wj

xk, (75)

where σ is the permutation which shifts [1, i] and [i+1, ..., i+
j] to the right cyclically so that the result is contained within
the same interval. Thus, when the normalizing factor L is
included, we see that the second order moments exist.

C2,2(D(N)VHV) in (17) is computed by noting that
K2,{{1,3},{2,4}},u and K2,{{1,4},{2,3}},u both equal 2

3 , and that
there are 9 other partitions in P(2, 2), and K2,π,u = 1 for all
these π (all these values are computed as in Appendix C). By
adding up for the different block cardinalities we get that

c lim
L→∞

LC2,2(D(N)VHV) =
4
3
d2
2,

and using the substitution (16) we arrive at the desired result.

APPENDIX F
THE PROOF OF THEOREM 2

In order to get the exact expressions in Theorem 2, we now
need to keep track of the Kρ,u,N defined by (10), not only the
limits Kρ,u (if we had not assumed ω = u, the calculations
for Kρ,ω,N would be much more cumbersome). When ρ is
a partition of {1, ..., n} and n ≤ 4, we have that Kρ,u,N =
Kρ,u = 1 when ρ 6= {{1, 3}, {2, 4}}. We also have that

K{{1,3},{2,4}},u,N =
2
3

+
1

3N2
, (76)

where we have used that
∑N

i=1 i2 = N
3 (N + 1)(N + 1

2 ) [36].
We also need the exact expression for the quantity

Tρ =
∑

(j1,...,jn)

giving rise to ρ

L−|ρ|D1(N)(j1, j1)×· · ·×Dn(N)(jn, jn)

from (59) (i.e. we can not add (60) to obtain the approximation
(61) here). Setting D

(N,L)
n = trL (Dn(N)), and D

(N,L)
ρ =∏k

i=1 D
(N,L)
Wi

, we see that

Tρ = D(N,L)
ρ −

∑

ρ′>ρ

L|ρ
′|−|ρ|Tρ′ , (77)
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which can be used recursively to express the Tρ in terms of
the D

(N,L)
ρ . We obtain the following formulas for n = 4:

T{{1,2,3,4}} = D
(N,L)
4 (78)

T{{1,2,3},{4}} = D
(N,L)
3 D

(N,L)
1 − L−1D

(N,L)
4 (79)

T{{1,2},{3,4}} = (D(N,L)
2 )2 − L−1D

(N,L)
4 (80)

T{{1,2},{3},{4}} = D
(N,L)
2 (D(N,L)

1 )2

−2L−1(D(N,L)
3 D

(N,L)
1

−L−1D
(N,L)
4 )

−L−1
(
(D(N,L)

2 )2 − L−1D
(N,L)
4

)

−L−2D
(N,L)
4

= D
(N,L)
2 (D(N,L)

1 )2

−L−1(D(N,L)
2 )2

−2L−1D
(N,L)
3 D

(N,L)
1

+2L−2D
(N,L)
4 (81)

T{{1},{2},{3},{4}} = (D(N,L)
1 )4

−6L−1(D(N,L)
2 (D(N,L)

1 )2

−L−1(D(N,L)
2 )2

−2L−1D
(N,L)
3 D

(N,L)
1

+2L−2D
(N,L)
4 )

−3L−2(D(N,L)
2 )2 + 3L−3D

(N,L)
4

−4L−2D
(N,L)
3 D

(N,L)
1

+4L−3D
(N,L)
4 − L−3D

(N,L)
4

= −6L−3D
(N,L)
4

+L−2(8D
(N,L)
3 D

(N,L)
1

+3(D(N,L)
2 )2)

−6L−1D
(N,L)
2 (D(N,L)

1 )2 +

(D(N,L)
1 )4. (82)

For n = 3 and n = 2 the formulas are

T{{1,2,3}} = D
(N,L)
3 (83)

T{{1,2},{3}} = D
(N,L)
1 D

(N,L)
2 − L−1D

(N,L)
3 (84)

T{{1},{2},{3}} = (D(N,L)
1 )3 − 3L−1D

(N,L)
1 D

(N,L)
2

+2L−2D
(N,L)
3 (85)

T{{1,2}} = D
(N,L)
2 (86)

T{{1},{2}} = (D(N,L)
1 )2 − L−1D

(N,L)
2 . (87)

It is clear that (78)-(82) and (83)-(87) cover all possibilities
when it comes to partition block sizes. Using (14)-(15), and
putting (76), (78)-(82), and (83)-(87) into (59) we get the
expressions in Theorem 2 after some calculations.

If we are only interested in first order approximations rather
than exact expressions, (77) gives us

Tρ ≈ Dρ −
∑

ρ′>ρ

|ρ|−|ρ′|=1

L−1Dρ′ ,

which is easier to compute. Also, we need only first order
approximations to Kρ,u,N , which is much easier to compute
than the exact expression. For (76),

K{{1,3},{2,4}},u,N ≈ 2
3

is already a first order approximation. Inserting the approxima-
tions in (59) gives a first order approximation of the moments.

APPENDIX G
THE PROOF OF PROPOSITION 5

We only state the proof for the case c = 1. In [32] it
is stated that the asymptotic 2n-moment (m2n) of certain
Hankel and Toeplitz matrices can be expressed in terms of
volumes of solution sets of equations on the form (63), with ρ
restricted to partitions with all blocks of length 2. Rephrased
in our language of Vandermonde mixed moment expansion
coefficients, this means that

m2n =
∑

ρ ∈ P(2n)
ρ has two elements in each block

Kρ,u (88)

In the language of [32], the formula is not stated exactly
like this, but rather in terms of volumes of solution sets of
equations of the form (63). This translates to (88), since we in
Appendix B interpreted Kρ,u as such volumes. In Proposition
A.1 in [32], unbounded support was proved by showing that
(m2n)1/n → ∞. Again denoting the asymptotic moments of
Vandermonde matrices with uniform phase distribution by Vn,
we have that m2n ≤ V2n, since we sum over a greater class
of partitions than in (88) when computing the Vandermonde
moments. This means that (V2n)1/n → ∞ also, so that the
asymptotic mean eigenvalue distribution of the Vandermonde
matrices have unbounded support also.

APPENDIX H
THE PROOF OF THEOREM 3

We will use the fact that
Kρ,u,N = 1

(2π)|ρ|Nn+1−|ρ|×∫
(0,2π)|ρ|

∏n
k=1

1−e
jN(xb(k−1)−xb(k))

1−e
j(xb(k−1)−xb(k))

dx1 · · · dx|ρ|,

(89)

where integration is w.r.t. Lebesgue measure.
For ρ = 1n Theorem 3 is trivial. We will thus assume that

ρ 6= 1n in the following. We first prove that limN→∞Kρ,ω,N

exists whenever pω is continuous. To simplify notation, define

F (ω) =
n∏

k=1

1− ejN(ωb(k−1)−ωb(k))

1− ej(ωb(k−1)−ωb(k))

=
n∏

k=1

sin
(
N(ωb(k−1) − ωb(k))/2

)

sin
(
(ωb(k−1) − ωb(k))/2

) ,

and set ω = (ω1, ..., ω|ρ|) and dω = dω1 · · · dω|ρ|. Since ω is
continuous, there exists a pmax such that pω(ωi) ≤ pmax for
all ωi. Then we have that

|Kρ,ω,N | ≤ p|ρ|max

Nm+1−|ρ|

× ∫
[0,2π)|ρ|

∏n
k=1

∣∣∣∣
sin(N(xb(k−1)−xb(k))/2)
sin((xb(k)−xb(k+1))/2)

∣∣∣∣ dx,
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where we have converted to Lebesgue measure, and where we
have also written dx = dx1 · · · dx|ρ|. Consider first the set

U = {ω||xb(k−1) − xb(k)| ≤ π∀k}.
When 2π

N ≤ |ωb(k−1) − ωb(k)| ≤ π, it is clear that
∣∣∣∣∣
sin

(
N(xb(k−1) − xb(k))/2

)

sin
(
(xb(k−1) − xb(k))/2

)
∣∣∣∣∣ ≤

∣∣∣∣
4

xb(k−1) − xb(k)

∣∣∣∣ , (90)

since
∣∣sin (

N(xb(k−1) − xb(k))/2
)∣∣ ≤ 1, and since | sin(x)| ≥

|x2 | when |x| ≤ π
2 . When |xb(k−1)−xb(k)| ≤ 2π

N we have that
∣∣∣∣∣
sin

(
N(xb(k−1) − xb(k))/2

)

sin
(
(xb(k−1) − xb(k))/2

)
∣∣∣∣∣ ≤ N. (91)

Let k1, ..., k|ρ| ∈ Z, and assume that k|ρ| = 0. By using the
triangle inequality, it is clear that on the set

Dk1,...,k|ρ|−1 = {ω|
∣∣∣∣xi − 2kiπ

N

∣∣∣∣ ≤
π

N
∀1 ≤ i ≤ |ρ|},

when |kr − ks| ≥ 2 for all r, s, the i’th factor in F (x) is
bounded by 4N

(|kb(r−1)−kb(r)|−1)π
due to (90). Also, when |kr−

ks| < 2 for some r, s, the corresponding factors in F (x) are
bounded by N on Dk1,...,k|ρ| due to (91). Note also that the
volume of Dk1,...,k|ρ|−1 is (2π)|ρ|−1N1−|ρ|. By adding some
more terms (to compensate for the different behaviour for |kr−
ks| ≥ 2 and |kr−ks| < 2), we have that we can find a constant
D that

1
Nn+1−|ρ|

∫
U
|F (x)|dx

≤ 1
Nn+1−|ρ|N

n

×∑
0≤k1,...,k|ρ|−1<N

all ki different

(∏n
r=1

D
|kb(r−1)−kb(r)|

)
2π(2π)|ρ|−1N1−|ρ|

= (2π)|ρ|Dn
∑

0≤k1,...,k|ρ|−1<N

all ki different

∏n
r=1

1
|kb(r−1)−kb(r)| ,

(92)
where we have integrated w.r.t. x|ρ| also (i.e. k|ρ| is kept
constant in (92)). A similar analysis as for U applies for the
complement set

V = {ω|π ≤ |xb(k−1) − xb(k)| ≤ 2π for some k},
so that we can find a constant C such that

1
Nn+1−|ρ|

∫
[0,2π)|ρ| |F (x)|dx

≤ C
∑

0≤k1,...,k|ρ|−1<N

all ki different

∏n
r=1

1
|kb(r−1)−kb(r)| ,

(93)

It is clear this sum converges: First of all, this is only needed
to prove for ρ = 0n, since the summands for ρ 6= 0n is only
a subset of the summands for ρ = 0n.

Secondly, for ρ = 0n, (93) can be bounded by considering
convolutions of the following function with itself:

f(x) =
{ 1

|x| for |x| > 1
0 for |x| ≤ 1

(94)

The assumption that f(x) = 0 in a neighbourhood of zero is
due to the fact that the ki are all different. Note that |f(x)| ≤

1
|x|1−ε for any 0 < ε < 1. Also, the n − 2-fold convolution
(we wait with the n− 1’th convolution till the end) of 1

|x|1−ε

with itself exist outside 0 whenever 0 < (n− 2)ε < 1, and is

on the form r 1
|x|1−(n−2)ε for some constant r [36]. Therefore,

(93) is bounded by
∫

|x|>1

r
1

|x|1−(n−2)ε

1
|x|dx =

∫

|x|>1

r
1

|x|2−(n−2)ε
dx

=
2r

(n− 2)ε− 1
.

This proves that the entire sum (93) is bounded, and thus
also the statement on the existence of the limit K(ρ, ω) in
Theorem 3 when the density is continuous.

For the rest of the proof of Theorem 3 , we first record the
following result:

Lemma 2: For any ε > 0,

lim
N→∞

1
Nn+1−|ρ|

∫

Bε,r

F (ω)dω = 0, (95)

where

Bε,r = {(ω1, ..., ω|ρ|)||ωb(r−1) − ωb(r)| > ε}.
Proof: The set Bε,r corresponds to those k1, ..., k|ρ| in (93)

for which |kb(r−1)− kb(r)| > N
2π ε. Thus, for large N , we sum

over k1, ..., k|ρ| in (93) for which |kb(r−1)−kb(r)| is arbitrarily
large. By the convergence of the Fourier integral of 1

|x| , it is
clear that this converges to zero.

Define

Bε = {(ω1, ..., ω|ρ|)||ωi − ωj | > ε for some i, j}.
If ω ∈ Bε, there must exist an r so that |ωb(r−1)−ωb(r)| > 2ε

n ,
so that ω ∈ Br,2ε/n. This means that

Bε ⊂ ∪rBr,2ε/n,

so that by Lemma 2 also

lim
N→∞

1
Nn+1−|ρ|

∫

Bε

F (ω)dω = 0.

This means that in the integral for Kρ,ω,N , we need only
integrate over the ω which are arbitrarily close to the diagonal,
(where ω1 = · · · = ω|ρ|). We thus have

Kρ,ω = limN→∞ 1
Nn+1−|ρ|

∫
[0,2π)|ρ| F (x)

∏|ρ|
r=1 pω(xr)dx

= limN→∞ 1
Nn+1−|ρ|

∫
[0,2π)|ρ| F (x)pω(x|ρ|)|ρ|dx

= limN→∞ 1
Nn+1−|ρ|

∫ 2π

0
pω(x|ρ|)|ρ|(∫

[0,2π)|ρ|−1 F (x)dx1 · · · dx|ρ|−1

)

dx|ρ|.

We used here that the density is continuous. Using that

limN→∞ 1
Nn+1−|ρ|

∫
[0,2π)|ρ|−1 F (x)dx1 · · · dx|ρ|−1

= (2π)|ρ|−1Kρ,u
(96)

when x|ρ| is kept fixed at an arbitrary value (this is straight-
forward by using the methods from the proof of Proposition 1
and (89)), we get that the above equals

Kρ,u(2π)|ρ|−1

∫ 2π

0

pω(x|ρ|)|ρ|dx|ρ|,

which is what we had to show.
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APPENDIX I
THE PROOF OF PROPOSITION 6

Proposition 6 will follow directly if we can prove the
following result:

Lemma 3: Let ωk (1 ≤ k ≤ n) be the uniform distribution
on [ 2π(k−1)

n , 2πk
n ] and define ωλ1,...,λn (0 ≤ λi ≤ 1, λ1+ · · ·+

λn = 1) as the phase distribution with density pωλ1,...,λn
=

λ1pω1 + · · ·+ λnpωn . Then

Kρ,ω 1
n

,..., 1
n

≤ Kρ,ωλ1,...,λn
.

Proof: This follows immediately by noting that

Kρ,ωλ1,...,λn

= Kρ,u(2π)|ρ|−1

(∫ 2π

0

pωλ1,...,λn
(x)|ρ|dx

)

= Kρ,u(2π)|ρ|−1

×
∫ 2π

0

(λ1pω1(x) + · · ·+ λnpωn(x))|ρ|dx

= Kρ,u(2π)|ρ|−1 ×

((λ1)|ρ|
∫ 2π

0

pω1(x)|ρ|dx + · · ·

+(λn)|ρ|
∫ 2π

0

pωn(x)|ρ|dx)

= Kρ,u(2π)|ρ|−1 ×

((λ1)|ρ|
∫ 2π

0

pω1(x)|ρ|dx + · · ·

+(λn)|ρ|
∫ 2π

0

pω1(x)|ρ|dx)

= Kρ,u(2π)|ρ|−1
(
(λ1)|ρ| + · · ·+ (λn)|ρ|

)

×
∫ 2π

0

pω1(x)dx

≥ Kρ,u(2π)|ρ|−1

((
1
n

)|ρ|
+ · · ·+

(
1
n

)|ρ|)

×
∫ 2π

0

pω1(x)|ρ|dx

= Kρ,ω 1
n

,..., 1
n

,

where we have used that x
|ρ|
1 + · · ·x|ρ|n constrained to x1 +

· · · + xn = 1 achieves its minimum for x1 = · · · = xn = 1
n .

APPENDIX J
THE PROOF OF THEOREM 4

The contribution in the integral Kρ,ω,N comes only from
when the ωi coincide with the atoms of p. Actually, we
evaluate 1−ejNω

1−ejω in points on the form ω = αi − αj . This
evaluates to Nnpn

i when all ωi are chosen equal to the same
atom αj . Since limN→∞ 1−ejNω

N(1−ejω) = 0 for any fixed ω 6= 0,
limN→∞Kρ,ω,NN−n = 0 when ω is chosen from nonequal

atoms. (52) (with additional 1/N -factors) thus becomes
∑

ρ∈P(n)∑
(j1,...,jn)

giving rise to ρ∑
(i1,...,in)

N |ρ|−2n−1c|ρ|−1L−|ρ|

(
∑

i Nnpn
i + aρ,NNn))

D1(N)(j1, j1)D2(N)(j2, j2)
· · · ×Dn(N)(jn, jn),

(97)

where limN→∞ aρ,N = 0. Multiplying both sides with N and
letting N go to infinity gives

lim
N→∞

∑

ρ∈P(n)

N |ρ|−nc|ρ|−1

(∑

i

pn
i + aρ,N

)
Dρ.

It is clear that this converges to 0 when ρ 6= 0n (since |ρ| < n
in this case), so that the limit is

cn−1

(∑

i

pn
i

)
α0n

= cn−1p(n) lim
N→∞

n∏

i=1

trL (Di(N)) ,

which proves the claim

APPENDIX K
THE PROOF OF THEOREM 5

We need the following identity [36]:
∫ ∞

0

x−sejnxdx =
Γ(1− s)
|n|1−s

e
jsgn(n)(1−s)π

2 ,

where sgn(x) = 1 if x > 0, sgn(x) = −1 if x < 0, and 0
otherwise. From this it follows that∫∞

−∞ pi|x− αi|−sejnxdx =

2pie
jnαi Γ(1−s)

|n|1−s cos
(

(1−s)π
2

)
.

(98)

Note that the measure with density p, has the same asymptotics
near αi as the measure with density pi|x− αi|−s on

(
−

(
1− s

2pi

) 1
1−s

,

(
1− s

2pi

) 1
1−s

)
.

As in the proof in Appendix J, the integral for the expansion
coefficients is dominated by the behaviour near the points
(αi, ..., αi). To see this, note that the behaviour near the
singular points on the diagonal is O (s(|ρ| − n)− 1) when
polynomic growth of order s of the density near the singular
points is assumed. This is very much related to (93) in
Appendix H, since Kρ,ω here in a similar way can be bounded
by (taking into account new powers of N )

C 1
Nn+ns+1−|ρ|N

nN−|ρ|N |ρ|s

×∑
0≤k1,...,k|ρ|<N

all ki different

∏n
r=1

1
|kb(r−1)−kb(r)|

∏|ρ|
t=1 k−s

t . (99)

In (99), the Nn-factor appears in exactly the same way as
in the proof of Theorem 3 in Appendix H, N−|ρ| appears as
a volume in R|ρ|, and N |ρ|s comes from evaluation of the
density in the points xi = 2kiπ

N , 1 ≤ i ≤ |ρ|). Since 1
|x|s has a

bounded integral around 0, and since the sum still converges
(it is dominated by (93)), (99) is

O (s(|ρ| − n)− 1) .
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This has it’s highest order when |ρ| = n, so that we can restrict
to looking at 0n. Note also that we may just as well assume
that pω(x) is identical to pi|x − ωi|−s at an interval around
ωi, since limx→αi |x− αi|spω(x) = pi implies that

pω(x) = pi|x− ωi|−s + k(x)|x− ωi|−s (100)

where limx→ωi k(x) = 0. It is straightforward to see that the
contribution of the second part in (100) to (99) vanishes as
N → ∞, so that we may just as well assume that pω(x) is
identical to pi|x−ωi|−s at an interval around ωi, as claimed.
Also, since

lim
n→∞

∫

|x|>ε

x−sejnxdx = 0

for all ε > 0, and since the contributions from large n dominate
in (101) below (since

∑
n |n|−s diverges), it is clear that we

can restrict to an interval around ωi when computing the limit
also (since pω is continuous outside the singularity points, this
follows from Theorem 3, and due to the additional 1

Ns -factor
added to (1)). After restricting to 0n, multiplying both sides
with N , summing over all singularity points, and using (98),
we obtain the approximation

∑

(i1,...,in)

∑
a

N−nscn−1

×
(

2paΓ(1− s) cos
(

(1− s)π
2

))n

×
n∏

k=1

ej(ik−1−ik)αa

|ik−1 − ik|1−s

×trL(D1(N))× · · · × trL(Dn(N)) (101)

to (52). Since
∏n

k=1 ej(ik−1−ik)αa = 1, we recognize

q(n,N) =
(
2Γ(1− s) cos

(
(1−s)π

2

))n

(
∑

a pn
a)×∑

(i1,...,in) N−ns
∏n

k=1
1

|ik−1−ik|1−s ,

as a factor in (101) such that the limit of (101) as N → ∞
can be written

cn−1 lim
N→∞

q(n,N) lim
N→∞

n∏

i=1

trL (Di(N)) .

It therefore suffices to prove that limN→∞ q(n,N) = q(n). To
see this, write

N−s

|ik−1 − ik|1−s =
1
N

1(
1
N

)1−s |ik−1 − ik|1−s

=
1
N

1∣∣∣ ik−1
N − ik

N

∣∣∣
1−s .

Summing over all 1 ≤ i1, ..., in ≤ N , it is clear from this that
q(n,N) can be viewed as a Riemann sum which converges to
q(n) as N →∞.

APPENDIX L
THE PROOF OF THEOREM 7 AND COROLLARY 1

Proof of Theorem 7: we define Sj to be the blocks of σ,
i.e.

Sj = {k|ik = j}.

Note that Theorem 3 guarantees that the limit Kρ,ω =
limN→∞Kρ,ω,N exists. The partition ρ simply is a grouping
of random variables into independent groups. It is therefore
impossible for a block in ρ to contain elements from both S1

and S2, so that any block is contained in either S1 or S2. As
a consequence, ρ ≤ σ.

Until now, we have not treated mixed moments of the form

D1(N)Vi2V
H
i2D2(N)Vi3V

H
i3 · · · ×Dn(N)Vi1V

H
i1 ,

which are the same as the mixed moments of Theorem 7
except for the position of the Di(N). We will not go into
depths on this, but only remark that this case can be treated
in the same vein as generalized Vandermonde matrices by
replacing the density pf (or pλ in case of continuous gener-
alized Vandermonde matrices) with functions pDi(x) defined
by pDi(x) = Di(N)(bLxc, bLxc) for 0 ≤ x ≤ 1. This also
covers the case of mixed moments of independent, generalized
Vandermonde matrices (and, in fact, there are no restrictions
on the horizontal and vertical phase densities pωi and pλj for
each matrix. They may all be different). The proof for this is
straightforward.

Proof of Corollary 1: this follows in the same way as
Proposition 3 is proved from Proposition 2, by only consid-
ering ρ which are less than σ, and also by using Theorem 3.
σ are for the listed moments {{1}, {2}}, {{1, 3}, {2, 4}}, and
{{1, 3, 5}, {2, 4, 6}}, respectively.

APPENDIX M
THE PROOFS OF PROPOSITION 7 AND 8

The moments E
[
trn

(
Wi

)]
will be related to the moments

Pi through three convolution stages:

1) relating the moments of W with the moments of

Γ = VP
1
2

(
1
K

SSH

)
P

1
2 VH , (102)

from which we easily get the moments of

S̃ =
(

1
K

SSH

)
P

1
2 VHVP

1
2 , (103)

2) relating the moments of S with the moments of

T = PVHV, (104)

3) relating the moments of T with the moments of P.
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For the first stage, the moments of Ŵ and Γ relate through
the formulas

E [trn (W)] = E [trN (Γ)] + σ2 (105)
E

[
trn

(
W2

)]
= E

[
trN

(
Γ2

)]

+2σ2(1 + c1)E [trN (Γ)]
+σ4(1 + c1) (106)

E
[
trn

(
W3

)]
= E

[
trN

(
Γ3

)]

+3σ2(1 + c1)E
[
trN

(
Γ2

)]

+3σ2c1E
[
(trN (Γ))2

]

+3σ4

(
c2
1 + 3c1 + 1 +

1
K2

)
E [trN (Γ)]

+σ6

(
c2
1 + 3c1 + 1 +

1
K2

)
, , (107)

which are obtained by replacing R in [33] by VP
1
2 S, with

c = c1 = N
K . For the second part of the first stage, note that

E
[
trN

(
Γk

)]
= c2E

[
trL

(
S̃k

)]
(108)

E
[
(trN (Γ))k

]
= ck

2E

[(
trL

(
S̃
))k

]
, (109)

where c2 = L
N . We can now apply Theorem 2 to obtain

c3E
[
trL

(
S̃
)]

= c3E [trL (T)] (110)

c3E
[
trL

(
S̃2

)]
= c3E

[
trL

(
T2

)]

+c2
3E

[
(trL (T))2

]
(111)

c3E
[
trL

(
S̃3

)]
=

(
1 + K−2

)
c3E

[
trL

(
T3

)]

+3c2
3E

[
(trLT) trL

(
T2

)]

+c3
3E

[
(trL (T))3

]
(112)

E

[(
trL

(
S̃
))2

]
= E

[
(trL (T))2

]

+
1

KL
E

[
trL

(
T2

)]
, (113)

where c3 = L
K , and T = PVHV. (105)-(107), (108)-(109),

and (110)-(113) can be combined to

E [trn (W)] = c2E [trL (T)] + σ2 (114)

E
[
trn

(
W2

)]
= c2E

[
trL

(
T2

)]
+ c2c3E

[
(trL (T))2

]

+2σ2(c2 + c3)E [trL (T)] + σ4(1 + c1)(115)

E
[
trn

(
W3

)]
= c2

(
1 +

1
K2

)
E

[
trL

(
T3

)]

+3c2c3E
[
(trL (T))

(
trL

(
T2

))]

+c2c
2
3E

[
(trL (T))3

]

+3σ2

(
(1 + c1)c2 +

c1c
2
2

KL

)
E

[
trL

(
T2

)]

+3σ2c3(c3 + 2c2)E
[
(trL (T))2

]

+3σ4

(
c2
1 + 3c1 + 1 +

1
K2

)
c2E [trL (T)]

+σ6

(
c2
1 + 3c1 + 1 +

1
K2

)
. (116)

Up to now, all formulas have provided exact expressions for
the expectations. For the next step, exact expressions for the
expectations are only known when the phase distributions are
uniform, in which case the formulas are given by Theorem 2:

c2E [trL (T)] = c2trL(P) (117)
c2E

[
trL

(
T2

)]
=

(
1−N−1

)
c2trL(P2)

+c2
2(trL(P))2 (118)

c2E
[
trL

(
T3

)]
=

(
1− 3N−1 + 2N−2

)
c2trL(P3)

+3
(
1−N−1

)
c2
2trL(P)trL(P2)

+c3
2(trL(P))3 (119)

E
[
(trL (T))2

]
= trL(P)2 (120)

E
[
(trL (T))3

]
= trL(P)3 (121)

E
[
(trL (T))

(
trL

(
T2

))]
=

(
1−N−1

)
trL(P )trL(P2) + c2(trL(P))3. (122)

If the phase distribution ω is not uniform, Theorem 1 and
Theorem 3 gives the following approximation:

c2E [trL (T)] = c2trL(P) (123)
c2E

[
trL

(
T2

)] ≈ c2trL(P2) + c2
2I2(trL(P))2 (124)

c2E
[
trL

(
T3

)] ≈ c2trL(P3) + 3c2
2I2trL(P)trL(P2)

+c3
2I3(trL(P))3 (125)

E
[
(trL (T))2

]
= (trLP)2 (126)

E
[
(trL (T))3

]
= (trLP)3 (127)

E
[
(trL (T))

(
trL

(
T2

))]
≈ trL(P)trL(P2) + c2I2(trL(P))3, (128)

where the approximation is O(N−1), and where Ik is defined
by (42).

Proposition 8 is proved by combining (114)-(116) with
(117)-(122), while Proposition 7 is proved by combining
(114)-(116) with (123)-(128). Proposition 9 is proved by first



27

observing that the roles of L and N are interchanged, since
the Vandermonde matrix is replaced by its transpose. This
means that we obtain the formulas (114)-(116), with c1 and
c3 interchanged, and c2 replaced with 1

c2
. The matrix T is

now instead VVH , and these can be scaled to obtain the
moments of VHV. Finally the integrals In or the angle α
can be estimated from these moments, using (123)-(128) with
the moments of P replaced with 1 (since no additional power
matrix is included in the model).

Matlab code for implementing the steps (105)-(107), (110)-
(113), and (117)-(122) can be found in [34].
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