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Abstract

In this paper, we study the frequency-selective broadcast channel with confidential messages (BCC)
in which the transmitter sends a confidential message to receiver 1 and a common message to receivers
1 and 2. In the case of a block transmission of N symbols followed by a guard interval of L symbols,
the frequency-selective channel can be modeled as a N x (/N + L) Toeplitz matrix. For this special type
of multiple-input multiple-output (MIMO) channels, we propose a practical Vandermonde precoding that
consists of projecting the confidential messages in the null space of the channel seen by receiver 2
while superposing the common message. For this scheme, we provide the achievable rate region, i.e.
the rate-tuple of the common and confidential messages, and characterize the optimal covariance inputs
for some special cases of interest. It is proved that the proposed scheme achieves the optimal degree
of freedom (d.o.f) region. More specifically, it enables to send ! < L confidential messages and N — [
common messages simultaneously over a block of N 4 L symbols. Interestingly, the proposed scheme
can be applied to secured multiuser scenarios such as the K + l-user frequency-selective BCC with

K confidential messages and the two-user frequency-selective BCC with two confidential messages. For

The material in this paper was partially presented at IEEE 19th International Symposium on Personal, Indoor and Mobile

Radio Communications (PIMRC), Cannes, France, Sept. 2008.
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each scenario, we provide the achievable secrecy degree of freedom (s.d.o.f.) region of the corresponding
frequency-selective BCC and prove the optimality of the Vandermonde precoding. One of the appealing
features of the proposed scheme is that it does not require any specific secrecy encoding technique but

can be applied on top of any existing powerful encoding schemes.

I. INTRODUCTION

We consider a secured medium such that the transmitter wishes to send a confidential message to
its receiver while keeping the eavesdropper, tapping the channel, ignorant of the message. Wyner [1]
introduced this model named the wiretap channel to model the degraded broadcast channel where the
eavesdropper observes a degraded version of the receiver’s signal. In this model, the confidentiality is
measured by the equivocation rate, i.e. the mutual information between the confidential message and the
eavesdropper’s observation. For the discrete memoryless degraded wiretap channel, Wyner characterized
the capacity-equivocation region and showed that a non-zero secrecy rate can be achieved [1]. The most
important operating point on the capacity-equivocation region is the secrecy capacity, i.e. the largest
reliable communication rate such that the eavesdropper obtains no information about the confidential
message (the equivocation rate is as large as the message rate). The secrecy capacity of the Gaussian
wiretap channel was given in [2]. Csiszar and Korner considered a more general wiretap channel in which
a common message for both receivers is sent in addition to the confidential message [3]. For this model
known as the broadcast channel with confidential messages (BCC), the rate-tuple of the common and
confidential messages was characterized.

Recently, a significant effort has been made to opportunistically exploit the space/time/user dimensions
for secrecy communications (see for example [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14] and
references therein). In [4], the secrecy capacity of the ergodic slow fading channels was characterized and
the optimal power/rate allocation was derived. The secrecy capacity of the parallel fading channels was
given [6], [7] where [7] considered the BCC with a common message. Moreover, the secrecy capacity
of the wiretap channel with multiple antennas has been studied in [8], [9], [10], [11], [12], [13], [15]
and references therein. In particular, the secrecy capacity of the multiple-input multiple-output (MIMO)
wiretap channel has been fully characterized in [14], [5], [11], [12] and more recently its closed-form
expressions under a matrix covariance constraint have been derived in [15]. Furthermore, a large number
of recent works have considered the secrecy capacity region for more general broadcast channels. In
[16], the authors studied the two-user MIMO Gaussian BCC where the capacity region for the case of

one common and one confidential message was characterized. The two-user BCC with two confidential
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messages, each of which must be kept secret to the unintended receiver, has been studied in [17], [18],
[19], [20]. In [18], Liu and Poor characterized the secrecy capacity region for the multiple-input single-
output (MISO) Gaussian BCC where the optimality of the secret dirty paper coding (S-DPC) scheme was
proved. A recent contribution [19] extended the result to the MIMO Gaussian BCC. The multi-receiver
wiretap channels have been also studied in [21], [22], [23], [24], [25], [26] (and reference therein) where
the confidential messages to each receiver must be kept secret to an external eavesdropper. It has been
proved that the secrecy capacity region of the MIMO Gaussian multi-receiver wiretap channels is achieved
by S-DPC [26], [24].

However, very few work have exploited the frequency selectivity nature of the channel for secrecy
purposes [27] where the zeros of the channel provide an opportunity to "hide” information. This paper
shows the opportunities provided by the broad-band channel and studies the frequency-selective BCC
where the transmitter sends one confidential message to receiver 1 and one common message to both
receivers 1 and 2. The channel state information (CSI) is assumed to be known to both the transmitter
and the receivers. We consider the quasi-static frequency-selective fading channel with L + 1 paths such
that the channel remains fixed during an entire transmission of n blocks for an arbitrary large n. It
should be remarked that in general the secrecy rate cannot scale with signal-to-noise ratio (SNR) over
the channel at hand, unless the channel of receiver 2 has a null frequency band of positive Lebesgue
measure (on which the transmitter can “hide” the confidential message). In this contribution, we focus
on the realistic case where receiver 2 has a full frequency band (without null sub-bands) but operates in
a reduced dimension due to practical complexity issues. This is typical of current orthogonal frequency
division multiplexing (OFDM) standards (such as IEEE802.11a/WiMax or LTE [28], [29], [30]) where a
guard interval of L symbols is inserted at the beginning of each block to avoid the inter-block interference
and both receivers discard these L symbols. We assume that both users have the same standard receiver,
in particular receiver 2 cannot change its hardware structure. Studying secure communications under this
assumption is of interest in general, and can be justified since receiver 2 is actually a legitimate receiver
which can receive a confidential message in other communication periods. Of course, if receiver 2 is able
to access the guard interval symbols, it can extract the confidential message and the secrecy rate falls
down to zero. Although we restrict ourselves to the reduced dimension constraint in this paper, other
constraints on the limited capability at the unintended receiver such as energy consumption or hardware
complexity might provide a new paradigm to design physical layer secrecy systems.

In the case of a block transmission of N symbols followed by a guard interval of L symbols discarded

at both receivers, the frequency-selective channel can be modeled as a N x (N + L) MIMO Toeplitz

June 16, 2009 DRAFT



matrix. In this contribution, we aim at designing a practical linear precoding scheme that fully exploits the
degrees of freedom (d.o.f.) offered by this special type of MIMO channels to transmit both the common
message and the confidential message. To this end, let us start with the following remarks. One one hand,
the idea of using OFDM modulation to convert the frequency-selective channel represented by the Toeplitz
matrix into a set of parallel fading channel turns out to be useless from a secrecy perspective. Indeed, it
is known that the secrecy capacity of the parallel wiretap fading channels does not scale with SNR [7].
On the other hand, recent contributions [14], [5], [11], [12], [15] showed that the secrecy capacity of the
MIMO wiretap channel grows linearly with SNR, i.e. rlog SNR where r denotes the secrecy degree of
freedom (s.d.o.f.) (to be specified). In the high SNR regime, the secrecy capacity of the MISO/MIMO
wiretap channel is achieved by sending the confidential message in the null space of the eavesdropper’s
channel [10], [14], [11], [18], [19], [15]. Therefore, OFDM modulation is highly suboptimal in terms of
the s.d.o.f..

Inspired by these remarks, we propose a linear Vandermonde precoder that projects the confidential
message in the null space of the channel seen by receiver 2 while superposing the common message.
Thanks to the orthogonality between the precoder of the confidential message and the channel of receiver
2, receiver 2 obtains no information on the confidential message. This precoder is regarded as a single-
antenna frequency beamformer that nulls the signal in certain directions seen by receiver 2. The Vander-
2 N+L]T

Sy

monde structure comes from the fact that the frequency beamformer is of the type [1,a;,a
where a; is one of the roots of the channel seen by receiver 2. Note that Vandermonde matrices [31] have
already been considered for cognitive radios [32] and CDMA systems [33] to reduce/null interference
but not for secrecy applications. One of the appealing aspects of Vandermonde precoding is that it does
not require a specific secrecy encoding technique but can be applied on top of any classical capacity
achieving encoding scheme.

For the proposed scheme, we characterize its achievable rate region, the rate-tuple of the common
message, the confidential message, respectively. Unfortunately, the optimal input covariances achieving its
boundary is generally difficult to compute due to the non-convexity of the weighted sum rate maximization
problem. Nevertheless, we show that there are some special cases of interest such as the secrecy rate and
the maximum sum rate point which enable an explicit characterization of the optimal input covariances. In
addition, we provide the achievable d.o.f. region of the frequency-selective BCC, reflecting the behavior
of the achievable rate region in the high SNR regime, and prove that the Vandermonde precoding achieves
this region. More specifically, it enables to simultaneously transmit / streams of the confidential message

and NV — [ streams of the common message for [ < L simultaneously over a block of N + L dimensions.
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Fig. 1. Frequency-selective broadcast channels with confidential messages.

Interestingly, the proposed Vandermonde precoding can be applied to multiuser secure communication
scenarios; a) a K + l-user frequency-selective BCC with K confidential messages and one common
message, b) a two-user frequency-selective BCC with two confidential messages and one common
message. For each scenario, we characterize the achievable s.d.o.f. region of the corresponding frequency-
selective BCC and show the optimality of the Vandermonde precoding.

The paper is organized as follows. Section II presents the frequency-selective fading BCC. Section
IIT introduces the Vandermonde precoding and characterizes its achievable rate region as well as the
optimal input covariances for some special cases. Section IV provides the application of the Vandermonde
precoding to the multi-user secure communications scenarios. Section V some numerical examples of the
proposed scheme in the various settings, and finally Section VI concludes the paper.

Notation : In the following, upper (lower boldface) symbols will be used for matrices (column
vectors) whereas lower symbols will represent scalar values, (.)7 will denote transpose operator, (.)*
conjugation and ()" = ((.)T)* hermitian transpose. I,,,0,x., represents the n x n identity matrix,
n X m zero matrix. |A|,rank(A),tr(A) denotes a determinant, rank, trace of a matrix A, respectively.
x" denotes the sequence (x[1],...,x[n]). w,u,v,x,y,z denotes the realization of the random variables
W,U,V,X,Y, Z. Finally, “ <" denotes less or equal to in the positive semidefinite ordering between

positive semidefinite matrices, i.e. we have A < B if B — A is positive semidefinite.
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II. SYSTEM MODEL

We consider the quasi-static frequency-selective fading BCC illustrated in Fig. 1. The received signal

y[t], z[t] € CV*! of receiver 1, 2 at block ¢ is given by
ylt] = T(h)x[t] + nt] (D)
z[t] = T(g)x[t]|+v[t], t=1,...,n
where T(h),T(g) denotes a N x (N + L) Toeplitz matrix with the L + 1-path channel vector h =
[hL,... ho] of user 1, g = [gr,...,go] of user 2, respectively, x[t] € CV+)*1 denotes the transmit

vector, and finally n[t],v[t] ~ Ne(0,Iy) are mutually independent additive white Gaussian noise

(AWGN). The input vector is subject to the power constraint given by

—Z t]<P @

where we let P = (N + L)P. The structure of T(h) is given by

hy -+ hg 0O - 0
0
J(h) =
0
0 -~ 0 hyp - ho

We assume that the channel matrices T(h), T(g) remain constant for the whole duration of the trans-
mission of n blocks and are known to all terminals. At each block ¢, we transmit N + L symbols by
appending a guard interval of size L < N larger than the delay spread, which enables to avoid the
interference between neighbor blocks.

The transmitter wishes to send a common message message Wy to two receivers and a confidential
message W; to receiver 1. A (270 271 p) code consists of the following : 1) two message sets
Wo = {1,...,2"%} and Wy = {1,..., 2"} with the messages Wy, Wy uniformly distributed over the
sets Wy, W1, respectively ; 2) a stochastic encoder that maps each message pair (wq,w1) € (Wo, W1)
to a codeword x™ ; 3) One decoder at receiver 1 that maps a received sequence y™ to a message

(1) A)

pair (g, W1
1?)62) € Wy. The average error probability of a (2" 271 n) code is defined as

Pg 2nR0 anR,y Z Z wo, wl (3)

woEWy w1 €Wy

€ (Wp, W) and another at receiver 2 that maps a received sequence z" to a message

where P!'(wg,w;) denotes the error probability when the message pair (wg, w;) is sent defined by
A N .
P (wp,w1) = Pr ((w(()l),wl) # (wo,wy) U w(()2) + wo> )
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The secrecy level of the confidential message W, at receiver 2 is measured by the equivocation rate
R, defined as
Al
R, = EH(WHZR) 5)

which is the normalized entropy of the confidential message conditioned on the received signal at receiver
2 and available CSI.
A rate-equivocation tuple (R, R1, R.) is said to be achievable if for any € > 0 there exists a sequence

of codes (2"F0 271 ) such that, we have

P < ¢

e

Ri—R. < ¢ (6)

In this paper, we focus on the perfect secrecy case where receiver 2 obtains no information about the
confidential message Wi, which is equivalent to R, = R;. In this setting, an achievable rate region

(Ro, R1) of the general BCC (expressed in bit per channel use per dimension) is given by [3]

&= |J {(RoR):Ro< ﬁmin{I(U;Y),I(U;Z)},Rl < NiL[I(V;YW) e Z\U)]} )

p(u,0,%)
where the union is over all possible distribution U, V, X satisfying [20, Lemma 1]

UV -sX-=Y,Z 3)

where U might be a deterministic function of V. Recently, the secrecy capacity region Cs of the two-user

MIMO-BCC (1) was characterized in [16] and is given by all possible rate tuples (Ry, R1) satisfying

R < 1 N I+ HSHY| N I+ GSGH| ©)
0 = Ny ® T HKEE| I+ GKGH|
R < [log [T+ HKH| —log I + GKG|] (10)

N+ L
for some 0 < K < S with S denotes the input covariance satisfying tr(S) < P and H, G denotes the
channel matrix of receiver 1, 2, respectively. Obviously, when only the confidential message is transmitted
to receiver 1, the frequency-selective BCC (1) reduces to the MIMO flat-fading wiretap channel whose
secrecy capacity has been characterized in [14], [10], [12], [11], [15]. In particular, Bustin et al. derived its

closed-form expression under a power-covariance constraint [15]. Under a total power (trace) constraint,
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the secrecy capacity of the MIMO Gaussian wiretap channel is expressed as [19, Theorem 3] !

C=vrr U Yoo (an

S=0;tr(S)<P j=1

where {¢; }2:1 are the generalized eigen-values greater than one of the following pencil
(I+ sWHHHsl/Q,Hsl/2GGHs1/2). (12)

As explicitly characterized in [15, Theorem 2], the optimal input covariance achieving the above region is
chosen such that the confidential message is sent over r sub-channels where receiver 1 observes stronger
signals than receiver 2. Moreover, in the high SNR regime the optimal strategy converges to beamforming
into the null subspace of G [14], [5], [11], [12] as for the MISO case [14], [18]. In order to characterize

the behavior of the secrecy capacity region in the high SNR regime, we define the d.o.f. region as

A Ry R
2 _ 13
(ro,r1) = lim_ <logP’ logP> (13)

where r; denotes s.d.o.f. which corresponds precisely to the number r of the generalized eigen-values

greater than one in the high SNR.

III. VANDERMONDE PRECODING

For the frequency-selective BCC specified in Section II, we wish to design a practical linear precoding
scheme which fully exploits the d.o.f. offered by the frequency-selective channel. We remarked previously
that for a special case when only the confidential message is sent to receiver 1 (without a common
message), the optimal strategy consists of beamforming the confidential signal into the null subspace
of receiver 2. By applying this intuitive result to the special Toeplitz MIMO channels T(h), T(g) while
including a common message, we propose a linear precoding strategy named Vandermonde precoding.
Prior to the definition of the Vandermonde precoding, we provide some properties of a Vandermonde
matrix [31].

Property 3.1: Given a full-rank Toeplitz matrix T(g) € CNX(V+L) | there exists a Vandermonde matrix

'In [15], [19] the authors consider the real matrices H, G. Nevertheless, it is conjectured that for complex matrices the

following expression without 1/2 in the pre-log holds.
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\71 e CIVHDIXE for | < L whose structure is given by

1 1
ay aj
VvV, = a? a? (14)
N+L—-1 N+L—-1
L al (Ll ]

where {ay,...,a;} are the [ < L roots of the polynomial S(z) = ZZL:O gizt" with L + 1 coefficients

of the channel g. Clearly V), satisfies the following orthogonal condition
T(g)V1=Onxi (15)

and rank((fl) =1 if a1, ao,...,q; are all different.

It is well-known that as the dimension of N and L increases, the Vandermonde matrix \71 becomes
ill-conditioned unless the roots are on the unit circle. In other words, the elements of each column either
grow in energy or tend to zero [31]. Hence, instead of the brut Vandermonde matrix (14), we consider a
unitary Vandermonde matrix obtained either by applying the Gram-Schmidt orthogonalization or singular
value decomposition (SVD) on T(g).

Definition 1: We let V1 be a unitary Vandermonde matrix obtained by orthogonalizing the columns
of V1. We let Vg € CWVHEX(NHL=) pe 5 unitary matrix in the null space of V such that Vng =0.
The common message Wy, the confidential message W1, is sent along Vg, V1, respectively. We call
V = [V, V1] € CVHDXNFL) viandermonde precoder.

Further, the precoding matrix V; for the confidential message satisfies the following property.
Lemma 1: Given two Toeplitz matrices T(h), T(g) where h, g are linearly independent, there exists a

unitary Vandermonde matrix V; € CWVHLXL for 0 < | < L satistying

T(g) V1= Onxi, (16)
rank(T(h)Vy) =L (17)
Proof: Appendix L. O

In order to send the confidential message intended to receiver 1 as well as the common message to
both receivers over the frequency-selective channel (1), we consider the Gaussian superposition coding

based on the Vandermonde precoder of Definition 1. Namely, at block ¢, we form the transmit vector as

X[t] = Vyuyg [t] +Viu [t] (18)
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10

where the common message vector ug[t] and the confidential message vector wu;[t] are mutually inde-
pendent Gaussian vectors with zero mean and covariance Sy, S1, respectively. Under this condition, the

input covariances subject to
tr(So) + tr(S1) < P (19)

satisfy the power constraint (2). We let & denote the feasible set (Sp, S1) satisfying (19).

Theorem 1: The Vandermonde precoding achieves the following secrecy rate region

(Ro, R1) :
_ . Ix+H,S Hf H,S,HY
Remeov |y Ro < iy minflog PRl i log [Ty + GoSoGf
(So,S81)eF
Ry < 7 log [Iy + H S HY|

b (20)

where cov denotes the convex-hull and we let Hy = T(h)Vo, H; = T(h)V1, Gy = T(g) Vo.
Proof: Due to the orthogonal property (16) of the unitary Vandermonde matrix, receiver 2 only

observes the common message, which yields the received signals given by
y = T(h)Vollo + ‘T(h)V1u1 +n 21D
zZ = T(g)VOUO +v

where we drop the block index. We examine the achievable rate region R, of the Vandermonde precoding.

By letting the auxiliary variables U = Vgug,V =U + Vju; and X =V, we have

1 In + T(h)VeSoVET(h)H + T(h) V1S, VET(h)H|
u;y) = log 7
N+L In +T(h)ViS: Vi T(h)H|
1
[U:2) = 57 log[In + T(2)VoSoVi'T(g)"|
1 H H
I(V;Y|U) = Nl log [Iy + T(h)V1S1V{' T(h)"|
Iv;zlu) = 0
Plugging these expressions to (7), we obtain (20). O

The boundary of the achievable rate region of the Vandermonde precoding can be characterized by
solving the weighted sum rate maximization. Any point (R, R}) on the boundary of the convex region
R is obtained by solving

max YoRo+ 71 R1 (22)
(Ro,R1)ER,

for non-negative weights 7o,y satisfying o + 1 = 1. When the region R, obtained without convex
hull, is non-convex, the set of the optimal covariances (S{, S7) achieving the boundary point might not

be unique. Fig. 2 depicts an example in which the achievable rate region R, is obtained by the convex
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11

Fig. 2. Achievable rate region R obtained by the convex-hull on R.

hull operation on the region R, i.e. replacing the non-convex subregion by the line segment A, B. For
the weight ratio -1 /o corresponding to the slope of the line segment A, B, there exist two optimal sets
of the covariances yielding the points A and B (which clearly dominate the point C). These points are the
solution to the weighted sum rate maximization (22). In summary, an optimal covariance set achieving

(22) (might not be unique) is the solution of

R Ry = in{Ry1, R R 23
s, 0o + 1Ry SE 0 min{ Ro1, Ro2} + 71 R1 (23)
where we let
1 ‘IN + H()S()Hé_[ + HlslH{I‘
Ry1(So, S = lo
01(So, S1) N+L % Iy + H,SHF|
1 H
ROQ(SO) = NI log ‘IN + G()S()GO ‘
1 H
Rl(Sl) = N+1L log ‘IN + H181H1 }

Following [34, Section II-C] (and also [7, Lemma 2]), we remark that the solution to the max-min
problem (23) can be found by hypothesis testing of three cases, Ry1 < Ro2, Ro2 < Ro1, and Rg; = Roo.
Formally, we have the following lemma.

Lemma 2: The optimal (S, ST), solution of (23), is given by one of the three solutions.

1) Case I : (Sf,S7) maximizes

Iy + H S HI + HySoH{|

+ v, log [Ty + H;S;H 24
Iy +H; S HY| THEB N 1SUHT &Y

J1(S0,81) = o log

and satisfies Ro1(S{, ST) < Ro2(S7).

June 16, 2009 DRAFT
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2) Case 2 : (S§,S7) maximizes
f2(S0,81) = 10 log [In + GoSoG{'| + 71 log | Iy + H S HY| (25)

and satisfies Ro2(S7) < Ro1(Sg, S7).
3) Case 3 : (S§, ST) maximizes

Iy +HS1HY + HySoHY |
Iy + HlslH{I|

+7 log [Ty +H;S;HY |

f3(S0,S1) = 70 |flog + (1 —0)log [Ix + GoSoG{'| | (26)

and satisfies Ro1(S§, ST) = Ro2(S7) for some 0 < 0 < 1.

Before considering the weighted sum rate maximization (23), we apply SVD to H; € CV LGy e
(CNX (N+L-I)

H = UyAuVi? 27
Go = UyA,oVye!

where U1, Uy € CVN*N v, e C™, and Vg € CINFL=DOx(N+L=1) are unitary, Ay, Ago contain
positive singular values {\/)\? é:l’ { )\Zgo}ﬁ\; J{L*l , respectively. Following [7, Theorem 3], we apply
Lemma 2 to solve the weighted sum rate maximization.
Theorem 2: The set of the optimal covariances (Sf, S7), achieving the boundary of the achievable rate
region R, of the Vandermonde precoding, corresponds to one of the following three solutions.
1) Case 1 :(S§,St) = (S§,Sh), if (S, S1), solution of the following KKT conditions, satisfies
Ro1(Sg,S1) < Roa(S))-

YH{T " Ho + o = plni (28)
YHATH, + (v — o) HI Iy + HiS HI)™TH, + @, = uI; (29)

where tr(¥;S;) = 0 with a positive semidefinite ¥; for ¢ = 0,1, p > 0 is determined such that
tr(So) + tr(S1) = P, and we let T' = Iy + HoSoHE + H;S;HE.
2) Case 2 :(S§,S7) = (S3,S?) if the following (S3,S?) fulfills Ro2(S?) < Ro1(SE, S?).

We let S3 = VQOSOV% and S? = V;,;S1 VL where Sy, S; are diagonal with the i-th element

given by
1
BN .
Y1 ].:| .
pl,i = |:— s 2217...,l
peooAN
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. . N+L—1 l _ D
where © > 0 is determined such that 21:1 Do, + Zi:l p1i = P.
3) Case 3 : (S§,ST) = (S3,S39), if (S3,S3), solution of the following KKT conditions, satisfies
RY,(S3) = RS, (SE,S3) for some 0 < 6 < 1.

OHIT 'Hy + (1 - 0)GL (In + Goso(;g;f)‘1 Go+ Py = pInir_ (31)
YOHATH; + (v — y00)HI (In + H131H{{)_1 Hi+ ¥ =ul; (32)

where tr(¥;S;) = 0 with a positive semidefinite ¥; for ¢ = 0,1, p > 0 is determined such that
tr(So) + tr(S1) = P.
Proof: Appendix 11 [
Remark 3.1: Due to the non-concavity of the underlying weighted sum rate functions, it is generally
difficult to characterize the boundary of the achievable rate region R except for some special cases. The
special cases include the corner points, in particular, the secrecy rate for the case of sending only the
confidential message (v; = 1), as well as the maximum sum rate point for the equal weight case (79 = 71)-
It is worth noticing that under equal weight the objective functions in three cases are all concave in Sg, St
since fi is concave if v1 > 79 and f3 is concave if 3 > v and 0 < 6 < 1.
The maximum sum rate point 79 = 7; can be found by applying the following greedy search [7].
Greedy search to find the maximum sum rate point
1) Find Sy, S; maximizing f; and check Rgpe < Rpp. If yes stop. Otherwise go to 2).
2) Find Sp, S; maximizing fo and check Ry < Rgp. If yes stop. Otherwise go to 3).
3) Find Sy, S; maximizing f3 and check Rgl = Rgl for some 0 < 6 < 1.
For the special case of y; = 1, Theorem 2 yields the achievable secrecy rate with the Vandermonde
precoding.

Corollary 3.1: The Vandermonde precoding achieves the secrecy rate

RyIm = max

logdet (Iy + T(h)VS;VIT(h)H 33
s,:tr(s;)<P N+ L & (N (M)V1iS: Vi ()> 33)

1

L
= N1I > log(uAt)+
=1

where the last equality is obtained by applying SVD to H; = T(h)V; and plugging the power allocation
of (30) with vo = 0,~; = 1, yu is determined such that S| p1; < P.
Finally, by focusing the behavior of the achievable rate region in the high SNR regime, we characterize

the achievable d.o.f. region of the frequency-selective BCC (1).
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Fig. 3. d.o.f. region (lo, 1) of frequency-selective BCC.

Theorem 3: The d.o.f. region of the frequency-selective BCC (1) with (VN + L) x L Toeplitz matrices

T(h),T(g) is given as a union of (rg,r1) = ﬁ(lo, [) satisfying

[ <L (34)

where [g, ! denote non-negative integers. The Vandermonde precoding achieves the above d.o.f. region.
Proof: The achievability follows rather trivially by applying Theorem 1. By considering equal power
allocation over all N + L streams such that S = PIyy1_;,S; = PI;, we obtain the rate tuple (R, R;)

where Ry < min(Ry1, Ro2)

1 In 4+ PT(h)VoVET(h)H + PT(h)VVIT(h)?|
Roy = log H H
N+L Iy + PT(h)V;VET(h)H|
1 H H
Ry = 57 log|[Iv + PT(g) Vo V(' T()"|
1 H H
R < NI log [Iy + PT(h)V,V{T(h)"|

We first notice that the pre-log factor of log [I+ PA| as P — oo depends only on the rank of A. From

Lemma 1, we obtain

rank(T(h)V; Vi T(h)")

rank(T(h)Vy) =1 (36)

rank(T(g) VoV T(g)™)

rank(T(g)Vo)

—
o
Nl

rank(T(g)[VoV1])

—
=

= rank(T7(g)) =N 37)
rank(T(h)(VoVE + VivihT(h)?) = rank (T(h)VVHT(h)H)
® rank(T(h)) = N (38)
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where (a) follows from orthogonality between T(g) and V1, (b) follows from the fact that V. = [V, V]
is unitary satisfying VVH = I. Notice that (36) yields r; = ﬁ For the d.o.f. rg = NZ—JOFL of the

common message, (36) and (38) yield
lp = rank(T(h) (Vo VI 4+ Vi VI T(h)H) — rank(T(h) Vi VET(h)H) = N — 1 (39)

which is dominated by the pre-log of Ry in (37). This establishes the achievability.

The converse follows by noticing that the inequalities (34) and (35) correspond to trivial upper bounds.
The first inequality (34) corresponds to the s.d.o.f. of the MIMO wiretap channel with the legitimate
channel T(h) and the eavesdropper channel T(g), which is bounded by L. The second inequality (35)
follows because the total number of streams for receiver 1 cannot be larger than the d.o.f. of T(h), i.e.
N. O

Fig. 3 illustrates the region (I, ly) of the frequency-selective BCC over N + L dimensions. We notice
that the s.d.o.f. constraint (34) yields the line segment A, B while the constraint (35) in terms of the total

number of streams for receiver 1 yields the line segment B,C.

IV. MULTI-USER SECURE COMMUNICATIONS

In this section, we provide some applications of the Vandermonde precoding in the multi-user secure
communication scenarios where the transmitter wishes to send confidential messages to more than one
intended receivers. The scenarios that we address are ; a) a K + 1-user frequency-selective BCC with
K confidential messages and one common message, b) a two-user frequency-selective BCC with two
confidential messages and one common message. For each scenario, by focusing on the behavior in
the high SNR regime, we characterize the achievable s.d.o.f. region and show the optimality of the

Vandermonde precoding.

A. K+1-user BCC with K confidential messages

As an extension of Section III, we consider the K + l-user frequency-selective BCC where the
transmitter sends K < L confidential messages W1, ..., Wk to the first K receivers as well as one
common message Wy to all receivers. Each of the confidential messages must be kept secret to receiver
K + 1. Notice that this model, called multi-receiver wiretap channel, has been studied in the literature
([25], [26], [23], [24], [22], [20] and reference therein). In particular, the secrecy capacity region of
the Gaussian MIMO multi-receiver wiretap channel has been characterized in [26], [24] for K = 2, an

arbitrary K, respectively, where the optimality of the S-DPC is proved.
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The received signal y; of receiver k and the received signal z of receiver K + 1 at any block are given

by

Y = ‘J'(hk)x—l—nk, k=1,....K (40)
z = T(gx+v (41)
where x is the transmit vector satisfying the total power constraint and nj,...,ng,v are mutually

independent AWGN with covariance I. We assume that the K + 1 vectors hy, ..., hg, g of length L +1

are linearly independent and perfectly known to all the terminals. As an extension of the frequency-

selective BCC in Section II, we say that the rate tuple (Rg, Ry, ..., Rx) is achievable if for any ¢ > 0
there exists a sequence of codes (270, 2nfa 2nfx p) such that
Pr<e 42)
1
> Ry——HWx|Z") <e, KCA{1,...,K} (43)
ke K
where we denote Wy = {Vk: € K, Wy} and define
k
Pl= —eee 3 3 Pr (U@ ) # (o, wr) ) (44)
H 2 * woEWp wrg €Wk

An achievable secrecy rate region (Rj, Ry) for the case of K = 2, when the transmitter sends two
confidential messages in the presence of an external eavesdropper, is provided in [25, Theorem 1]. This
theorem can be extended to an arbitrary K while including the common message. Formally we state the
following lemma.

Lemma 3: An achievable rate region of the K+1-user BCC, where the transmitter sends /K confidential
messages intended to the first K receivers as well as a common message to all users, is given as a union

of all non-negative rate-tuple satisfying
Ry < min{l(U;Z2), mkin I(U;Yy)}

Ry < I(VigYlU) —1(Viz Z|U), k=1,....K

| K]
Y R < D I(VisWi|U) - ZI Ve Va—plU) = I(Vae; Z|U),
keX keX
VK C{1,... ,K},Vw (45)

where 7 denotes a permutation over the subset K, |X| denotes the cardinality of K, we let Voc = {Vk €

K, Vi }, and the random variables U, V1, ..., Vg, X, Y1,..., Yk, Z satisfy the Markov chain
uVvi,....Vg = X —-Y1,....Yg, Z. (46)
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Bl
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L L\|l‘

Fig. 4. s.d.o.f. region (lo,l1,l2) over N + L dimensions of three-user frequency-selective BCC.

Proof: Appendix IIL O
Notice that the second term of the last equation (45) can be also expressed by
1]
> I(Vi(yi Vaqys - Ve |U) = Y HWR|U) — H(V|U). VX C{1,..., K}V
j=2 keX

It can be easily seen that without the secrecy constraint the above region reduces to the Marton’s achievable
region for the general K -user broadcast channel [35].

In order to focus on the behavior of the region in the high SNR regime, we define the s.d.o.f. region
as

Ry . Ry
r, = lim

= 1i k=1,....K
P log P’ P—oo log P’ Y

7o

where rg denotes the d.o.f. of the common message and 7, denotes the s.d.o.f. of confidential message
k. As an extension of Theorem 3, we have the following s.d.o.f. region result.
Theorem 4: The s.d.o.f. region of the K +1-user frequency-selective BCC (40) is a union of (g, r1,...,7x) =

w5z (o, 11, - .-, ) satisfying

K
Sh<i 47)
k=1

K

lo+> k<N (48)
k=1

where {lo,[1,...,lx} are non-negative integers. The Vandermonde precoding achieves this region.

Proof: Appendix IV. [
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N+L=6, N=4
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Fig. 5. Equivalent MIMO interpretation for three-user frequency-selective BCC with two confidential messages.

Fig. 4 illustrates the region (lo, 1, l2) for the case of K = 2 confidential messages. It can be easily seen
that the constraint (48) in terms of the total number of streams for the virtual receiver yields the subspace
C, B1, By while the s.d.o.f. constraint (47) for the virtual receiver yields the subspace A;, As, B, Bi.
We remark that for the special case of one confidential message and one common message (K = 1), the
region reduces to Fig. 3.

Remark 4.1: When only the K confidential messages are transmitted to the K intended receivers
in the presence of the eavesdropper, the s.d.o.f. region has the equivalent MIMO interpretation [36]. More
specifically, the frequency-selective BCC (40) is equivalent to the MIMO-BCC where the transmitter with
N + L dimensions (antennas) sends messages to K receivers with N antennas each in the presence of the
eavesdropper with N antennas. The secrecy constraint (orthogonal constraint) consumes N dimensions
of the channel seen by the virtual receiver and lets the number of effective transmit antennas be L. The
resulting channel is the MIMO-BC without secrecy constraint with L transmit antennas and K receivers
with N antennas each, whose multiplexing gain is min(L, KN) = L (we assume L < N). Fig. 5
illustrates the example with K =2, N =4, L = 2.

B. Two-user BCC with two confidential messages

We consider the two-user BCC where the transmitter sends two confidential messages Wy, Wy as well
as one common message Wy. Each of the confidential messages must be kept secret to the unintended
receiver. This model has been studied in [17], [18], [19] for the case of two confidential messages and
in [20] for the case of two confidential messages and a common message. In [19], the secrecy capacity

region of the MIMO Gaussian BCC was characterized. The received signal at receiver 1, 2 at any block
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is given respectively by
yi = T(h)x+m (49)
Yo = ‘T(hg)X + no

where x is the input vector satisfying the total power constraint and n;, ny are mutually independent
AWGN with covariance Iy. We assume the channel vectors hy, hy are linearly independent.
We say that the rate tuple (Ry, R1, R2) is achievable if for any € > 0 there exists a sequence of codes

(2nfio gnfa onk: n) such that
P < (50)
Ry~ HOWIYE) < e Ry~ -HW[¥) < ¢ &)
where we define the average error probability as

e :nlaR SO Y P ) # (wo,w) U@, @) £ (wown)) (52
k=0

woEWo w1 EWy wa €W,

where (wél), w), (w((f’, ws) is the output of decoder 1, 2, respectively. A secrecy achievable rate region

of the two-user BCC with two confidential messages and a common message is given by [20, Theorem

1]
Ry < min{I(U;1),I(U;Y2)} (53)
Ry < I(Vi;|U) — 1(Vi; Y2, Va|U)
Ry < I(Va;Ya|U) — I(Va; Y1, V1|U)
where the random variables satisfy the Markov chain
UV,Vo - X —Y1,Y5. (54)

We extend Theorem 3 to the two-user frequency-selective BCC (49) and obtain the following s.d.o.f.
result.

Theorem 5: The s.d.o.f. region of the two-user frequency-selective BCC (49) is a union of (rg,r1,72) =

ﬁ(lo,ll,lg) satisfying
I, <L, k=12 (55)
lo+1lx <N, k=1,2 (56)
where {lo,[1,l2} are non-negative integers. The Vandermonde precoding achieves the region.
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Fig. 6. s.d.o.f. region (lo,l1,l2) over N + L dimensions of K = 2-user frequency-selective BCC.

N+L=6, N=4

;=2

e
<

L
U
[

e
e

Fig. 7. Equivalent MIMO interpretation for the two-user frequency-selective BCC with two confidential messages.

Proof: Appendix VL O
Fig. 6 represents the s.d.o.f. region (lo,l1,l2) over N + L dimensions of the two-user frequency-
selective BCC. The per-receiver s.d.o.f. constraints (55) yield the subspace Ay, By, F, F' for user 1 and
the subspace Ao, By, E, F' for user 2. The constraints (56) in terms of the total number of streams per
receiver yield the subregion C, By, E for user 1 and the subregion C, By, ¥ for user 2. For the special
case of one confidential message and one common message, the region reduces to Fig. 3.
Remark 4.2: Comparing Theorems 4,5 as well as Figs. 4,6 for K = 2, it clearly appears that the
s.d.o.f. of K + 1-user BCC with K confidential messages is dominated by the s.d.o.f. of K-user BCC
with K confidential messages. In other words, the s.d.o.f. region critically depends on the assumption

on the eavesdropper(s) to whom each confidential message must be kept secret.
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Remark 4.3: When only two confidential messages are transmitted in the two-user frequency-
selective BCC, the set of the s.d.o.f. has the equivalent MIMO interpretation [36]. More specifically,
the frequency-selective BCC (40) is equivalent to the MIMO-BCC where the transmitter with N + L
dimensions (antennas) sends two confidential messages to two receivers with /N antennas. The secrecy
constraint consumes N dimensions for each MIMO link and lets the number of effective transmit
antennas be L for each user. The resulting channel is a two parallel L x N point-to-point MIMO channel
without eavesdropper. Notice that the same parallel MIMO links can be obtained by applying the block
diagonalization on the MIMO-BC without secrecy constraint [36]. In other words, the secrecy constraint
in the BCC with inner eavesdroppers is equivalent to the orthogonal constraint in the classical MIMO-BC.

Fig. 7 shows the example with N =4, L = 2 and K = 2 confidential messages.

V. NUMERICAL EXAMPLES

In order to examine the performance of the proposed Vandermonde precoding, this section provides

some numerical results in different settings.

A. Secrecy rate vs. SNR

We evaluate the achievable secrecy rate RYY™ in (33) when the transmitter sends only a confidential
message to receiver 1 (without a common message) in the presence of receiver 2 (eavesdropper) over
the frequency-selective BCC studied in Section III.

a) MISO wiretap channel: For the sake of comparison (albeit unrealistic), we consider the spe-
cial case of the frequency-selective wiretap channel when receiver 1 has a scalar observation and the
eavesdropper has N observations. This is equivalent to the MISO wiretap channel with the receiver 1
channel h € CP*V+L) and the eavesdropper channel T(g) € CN*(N+L) Without loss of generality, we
assume that the observation at receiver 1 is the first row of T(h). We consider that all entries of h, g are
iid. ~ Ne(0, %H) and average the secrecy rate over a large number of randomly generated channels
with N = 64, L = 16. In Fig. 8, we compare the optimal beamforming strategy [10], [14], [13] and the
Vandermonde precoding as a function of SNR P. Since only one stream is sent to receiver 1, the s.d.o.f.

is ﬁ In fact, the MISO secrecy capacity in the high SNR regime is given by

log (1 +(N+L)P max yh¢|2> (57)
: =0

N+ L D:T(g)P=

where ¢ € CWNHLXT g the beamforming vector. The Vandermonde precoding achieves

log (1 + (N + L)P max, \hvlﬂ-]2> : (58)

N+L
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CWVH+L)XL orthogonal to T(g). Clearly, there exists a constant

where v1 ; denotes the i-th column of V1 &
gap between (57) and (58) due to the suboptimal choice of the beamforming vector.

b) MIMO wiretap channel: We consider the frequency-selective wiretap channel with N = 64, L =
16. Although there exists a closed-form expression under a power-covariance constraint [15], the secrecy
capacity under a total power constraint in (11) is still difficult to compute (especially for a large dimension
of N and L) because it requires a search over all possible power covariances constraints. Therefore,
in Fig. 9, we compare the averaged secrecy rate achieved by the generalized SVD scheme [5] and the

Vandermonde precoding. We assume that all entries of h, g are i.i.d. ~ Ne(0 . For the Vandermonde

1
’T"rl)

precoding, we show the achievable rate with waterfilling power allocation (33) and equal power allocation

(36) by allocating p = W to L streams. As observed, these two suboptimal schemes achieve the
same s.d.o.f. of ﬁ = % although the generalized SVD incurs a substantial power loss. The result agrees

well with Theorem 3. We remark also that the optimal waterfilling power allocation yields a negligible

gain.

B. The maximum sum rate point (Ry, R1) vs. SNR

We consider the frequency-selective BCC with one confidential message to receiver 1 and one common
message to two receivers. In particular, we characterize the maximum sum rate-tuple corresponding to
~v0 = 71 on the boundary of the achievable rate region R,. Fig. 10 shows the averaged maximum sum
rate-tuple (Rp, R1) of the Vandermonde precoding both with optimal input covariance computed by the
greedy algorithm and with equal power allocation. We remark that there is essentially no loss with the

equal power allocation.

C. Two-user secrecy rate region in the frequency-selective BCC

We consider the two-user frequency-selective BCC where the transmitter sends two confidential mes-
sages (no common message) of Section I'V-B. For the sake of comparison (albeit unrealistic), we consider
the special case of one observation N = 1 at each receiver. Notice that the two-user frequency-selective
BCC is equivalent to the two-user MISO BCC with hy, hy € C*HD) whose secrecy capacity region
is achieved by the S-DPC scheme [18]. The proposed Vandermonde precoding achieves the secrecy rate

region given by all possible rate-tuples (R, R2)

R <
=711

log(1 4+ p1 max |hyvy,|?)
i=1,...,L

1
Ry < 7= log(1+p2 max lhyvoi|?)
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(N+L)*L grthogonal to

satisfying p1 4+ p2 = (L +1)P where vy ;, va; denotes the i-th column of V; € C
hy, Vo € CWWHL*L orthogonal to hj, respectively. Fig. 11 compares the averaged secrecy rate region
of the Vandermonde precoding, zero-forcing beamforming, and the optimal S-DPC scheme for L = 5

where all entries of hy, hy are i.i.d. ~ Ne(0 . As observed, the Vandermonde precoding achieves

1
 TH1)
the near-optimal rate region. As the number of paths L increases, the gap with respect to the S-DPC
becomes smaller since the Vandermonde precoding tends to choose the optimal beamformer matched to

the channels.

VI. CONCLUSIONS

We considered the secured communication over the frequency-selective channel by focusing on the
frequency-selective BCC. In the case of a block transmission of N symbols followed by a guard interval of
L symbols discarded at both receivers, the frequency-selective channel can be modeled as a N x (N + L)
Toeplitz matrix. For this special type of MIMO channels, we proposed a practical yet order-optimal
Vandermonde precoding which enables to send | < L streams of the confidential messages and N — [
streams of the common messages simultaneously over a block of N + L dimensions. The key idea here
consists of exploiting the frequency dimension to “hide” confidential information in the zeros of the
channel seen by the unintended receiver similarly to the spatial beamforming. We also provided some
application of the Vandermonde precoding in the multiuser secured communication scenarios and proved
the optimality of the proposed scheme in terms of the achievable s.d.o.f. region.

We conclude this paper by noticing that there exists a simple approach to establish secured commu-
nications. More specifically, perfect secrecy can be built in two separated blocks ; 1) a precoding that
cancels the channel seen by the eavesdropper to fulfill the equivocation requirement, 2) the powerful off-
the-shelf encoding techniques to achieve the secrecy rate. Since the practical implementation of secrecy
encoding techniques (double binning) remains a formidable challenge, such design is of great interest

for the future secrecy systems.
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APPENDIX |

PROOF OF LEMMA 1

In this appendix, we consider the rank of T(h)V; where V satisfies the orthogonality T(g)V; = 0.

By letting vy ; denote the i-th column of Vi we have Vi = [vy1,..., vy ] for the case of | = L. We
define the matrix G orthogonal to V; by appending L — [ rows v{{lﬂ, e ,v{{L to T(g)
T(g)
G — V{_{H-l
| Vi

Notice that all N + L — [ rows are linearly independent. By definition of V1, it is not difficult to see
that G and V¥ form a complete set of basis for a NV + L-dimensional linear space. Indeed for [ = L
the matrix G reduces to J(g), while [ < L, a subset of a projection matrix onto the null space of T(g)

are appended to T(g). Hence T(h) can be expressed as

T(h) = Hg + Hy = AG 4+ BV (59)
where Hy; is the projection of T(h) onto the row vectors of G with a N x (N + L —1[) coefficient matrix
A, Hy is the projection of T(h) onto the row vectors of Vi with a NV x [ coefficient matrix B.

rank(T(h)V;) = rank((AG +BVI)V))
2 rank(B)
= rank(BV{V,B¥) = rank(Hy)
9y

where (a) follows from the orthogonality GV; = 0 and VIV, = I, (b) follows from rank(BB) =
rank(B). The equality (c) is obtained as follows. We notice

H Hy + H Th) |
nk | | @ g | TV EHE T @ v s Lo L= N L (60)
G G G

where in (d) adding Hg does not change the rank, (e) follows because any set of N + L rows taken
from T(h), G are linearly independent (from the assumption that h, g are linearly independent). Since

Hy is orthogonal to G, (60) yields
rank Hy) =N+ L—-(N+L—-1)=1
which establishes (c).
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APPENDIX II

PROOF OF THEOREM 2

We consider the following three cases given in Lemma 2.

Case 1 Supposing Ry1 < Rp2, we consider the objective function f; in (24). The objective is concave
only when ;1 > ~y. Nevertheless, we consider the KKT conditions which are necessary for the optimality.
It can be easily shown that the KKT conditions are given by (28) and (29) where ¥; > 0 is the Lagrangian
dual matrix associated to the positive semidefiniteness constraint of S; for ¢ = 0,1 and p > 0 is the
Lagrangian dual variable associated to the total power constraint. It clearly appears that for v; > 7 the
objective is concave in Sy, S; and the problem at hand is convex. In this case, any convex optimization
algorithm, the gradient-based algorithm [37] for example, can be applied to find the optimal solution
while the algorithm converges to a local optimal solution for v; < ~p.

Case 2 : Supposing Rpe2 < Rp1, we consider the objective function fo in (25). Since the problem
is convex (fy is concave and the constraint is linear in Sp,S1), the KKT conditions are necessary and

sufficient for optimality. We form the Lagrangian and obtain the following KKT conditions

G (Iy + GoSoGH) ™ Go+ Wo = ply 1
wHY (Iy + H S HY) 7 Hy + W) = 4l
tr(Sp) + tr(S;) = P

tr(¥;S;) =0, i=0,1

where W; > 0 is the Lagrangian dual matrix associated to the positive semidefiniteness constraint of
S; for ¢ = 0,1 and p > 0 is the Lagrangian dual variable associated to the total power constraint. By
creating /N parallel channels via SVD on Gg, H; in (27), we readily obtain the solution (30).

Case 3 For 0 < 0 < 1, we consider the objective function f3 in (26). In the following we focus on
7o > 0. Notice that if 79 = 0 we have Ry = Rz = 0 which yields the corner point (0, R{*™) where
R‘l’dm denotes the secrecy rate characterized in (33). The KKT conditions, necessary for the optimality,
are given by (31) and (32) where ¥; > O is the Lagrangian dual matrix associated to the positive
semidefiniteness constraints for ¢ = 0,1 and u > 0 is the Lagrangian dual variable associated to the
total power constraint. The gradient-based algorithm [37] can be applied to find the solution satisfying
these KKT conditions. Although this algorithm yields the optimal and unique solution for v; > 7o, the

algorithm converges to a local optimal solution for ~v; < 0.
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APPENDIX III

PROOF OF LEMMA 3

This section provides the achievability proof of the region (45). We extensively use the notation
AE”)(PX,Y) to denote a set of jointly typical sequences x,y of length n with respect to the distribution
P(x,y). We let € > 0 which is small for a large n.

a) Codebook generation: Fix P(u), P(vi|u),..., P(vg|u) and P(z|u,v1,...,vk). The stochastic
encoder randomly generates

« a typical sequence u(wyp) according P(u") = [[_, P(u;) where wy € {1,..., 2"~}

o foreach u” and k = 1,..., K, 2"U(VisYelU)=9) jjd. codewords vy (wy, ji) each with P(v|u®) =

[T, P(v}|u;), where the indices are given by
W, € {17 sty 2n(R1_€)}7jk S {17 e 72n([(Vk;ZIU)_€)}.

Next, distribute the 2"/ (Vei¥elU)=¢) codewords into 2% bins such that each bin contains 2" (Vi:Z|U)—¢)
codewords.

b) Encoding: To send the messages wg,ws, ..., wy, we first choose randomly the index wg and
the corresponding codeword u(wyp). Given the common message u(wp) and randomly chosen K bins

wi, ..., Wk, the encoder selects a set of indices ji,...,jx such that

(u(wo), vi(wi, 1), - - -, Vi (Wi, jr)) € AP (Puv,. . vie) (61)

If there are more than one such sequence, it randomly selects one. Finally the encoder selects x according
to P(z|vi,...,vK).
c) Decoding: The received signals at the K legitimate receivers are y7, ...,y the outputs of the

channels P(y7|x") =[]\, P(yp|z™) for any k. Receiver k first chooses w(()k) such that
(u(w(()k)),Yk) e A" (Pyy,) (62)

if such a w(()k) exists. Then, for a given w(()k) it chooses wj, so that

(u(wk), vi(wy, jx), y1) € A" (Pyv, v,) (63)

if such v, exists.
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d) Error probability analysis: Without loss of generality, we assume that the message set is wg =

wy = --- = w = 1. We remark that an error is declared if one or more of the following events occur.

o Encoding fails

[1>2

By = {(u(1),vi(L,51); .-, vk (1, jK)) € A™ (Puvi...vi)}- (64)

From [38] we have P(E;) <, if

K K K
Y R <D IV YilU) =) I(Ve(yi Vaarys - V- |U) = I(Vi,... Vi Z|U)  (65)
k=1 k=1 j=2

o Decoding step 1 fails ; there does not exist a jointly typical sequence for some k, i.e.

EE 2 {(u(1), vi(1,51), k) ¢ A™(Puvv.)}- (66)

From joint typicality [39] we have P(E%) < e for any k.

o Decoding step 2 fails ; there exits other sequences satisfying the joint typicality for some k
A .
EY = {Y(wo, wy) # (1,1), (w(wo), vi(wr, 1), yx) € A" (Puviv)}- 67)

From [38] we have P(E¥) < e if Ry, < I(Vi; Y3|U) — I(Vi; Z|U) — € for any k.
Hence, the error probability P = P(E1 J(UkEar) U(UkEsi)) < € if the rate-tuple satisfies (2?).

e) Equivocation calculation: To prove the equivocation requirement

S Re— H(WilZ") < S K C {1, K (68)

keX

€
n

June 16, 2009 DRAFT



28

we consider H(Wq|Z™) where we denote Wy = {Wy, k € K}. Following the foot steps as the proof
of [25, Theorem 1], we have

(a
H(Wx|Z™) > H(Wx|Z",U")

Nasg

H(Wqe, ZMU™) — H(Z™|U™)

H(Woe, Vi, 2 |U™) — H(Vie|Wac, 2°,U") = H(Z"|U™)

H (W, VRU™) + H(Z"|Wa, Vi, U™) — H(VE| W, 2", U™) — H(Z"|U™)

—
=
N

> H(Wy, VRIU™) + H(Z"|Wae, VR, U) — ne' — H(Z™)

O H(Wae, VU™ + H(Z"|VE,U™) — né' — H(Z"|U™)

(d)

> H(VRU™) + H(Z"|VE, U™ —né — H(Z™|U™)

= HVRU™) — (Vg Z™U™) — né'

© K]

= Y HWVUM ZI iV Vi U™ = (Vs ZMU™) = né
keX

0 1]

> D CIVEYRU™) = IV Vi - Vi U™ = IV Z27U™) = neé
kex j=2

> n Z Ry, — né

keX

where (a) follows because the conditioning decrease the entropy, (b) follows from Fano’s inequality [39]
stating that for a sufficiently large n we have
H(V|Wae, Z",U™) < 14+ nP, Y " 1(Vi; ZU) < né
keX
where Péfé?w denotes the eavesdropper’s error probability when decoding Vi with side information on
Wi at the rate ), q- I(Vi; Z|U). It can be easily shown that Pe(fégw — 0 as n — oo. (c) follows from the
Markov chain Wy — Vg — Z", (d) follows by ignoring a non-negative term H(Wsc|V), (e) follows
x .

because H(VZ|U") = > cac H(VMU™) — Z‘j:|2 I(V:(j); Vi V:(jfl)]U”) for any permutation 7
over the subset X, (f) follows because H (V*|U") > I(V}*; Y;*|U") for any k.

APPENDIX IV

PROOF OF THEOREM 4

The achievability follows by extending Theorem 3 to the case of K confidential messages. First we

remark that as a straightforward extension of Lemma 1 the following lemma holds.
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Lemma 4: For Y1 I, < L, there exists a matrix [V1,..., V] with S 1 [, orthonormal columns

with size N + L satisfying

T(g)VkZOlek, k::1,...,K (69)
rank | T(hp) (> V,VINThp)T | =3 1, vKC{1,... K} (70)
jeX jeX

where [;, denotes the number of columns of V;
A sketch of proof is given in Appendix V.

We let Vi be unitary matrix with N + L — Zszl l;, orthonormal columns in the null space of

[V1,..., Vk]suchthat VI [V, ..., V] = 0. In other words, the Vandermonde precoder V = [V, ..., V]

is a squared unitary matrix satisfying VV# = Iy, ;. Based on the Vandermonde precoder V, we

construct the transmit vector x as

K
x=> Vi (71)
k=0
where ug, uy, . . ., ug are mutually independent Gaussian vectors with zero mean and covariance Sg, S1, . ..

satisfying Zfi otr(S;) < (N + L)P. From the orthogonality properties (69), the received signals become
Ye = ‘T(hk)VoU.o -+ T(hk)Vkuk + ‘T(hk> Z Vjuj +n;, k=1,...,K
i#k
z = T(g)Vouy +v
where receiver k observes the common message, the intended confidential message, and the interference
from other users, while receiver K + 1 observes only the common message. By letting U = Vjuy,
Vi=U+Viu,fork=1,... K, X =U+ Z,Ile Vi and considering the equal power allocation to all

N + L streams, we readily obtain

. 1My I (S5 VoY) T -
k) = 0g )
NHL Iy + PT(y) (S0, ViV ) T )

1

I(U;2) = 7 log Iy + PT(g)VoVi'T(g)”| (73)
) Ly + PT(0,) (21, V, VI T(0y) |

I(Vi; Yi|U) = log , Vk (74)

VAL 7y + PT0) (0 o Vi V)T (00|
I(Va; ZIU) = 0, VKC{l,..., K} (75)
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and we also have H(Vy|U) = >, .o H(Vx|U) from the independency between V1, ..., Vi conditioned
on U. Plugging this together with (74) and (75) into (45), we have

Ry <I(VisYilU), k=1,...,K

S Ry <) IV YilU).

keX keX
In order to find the d.o.f. region, we notice

rank(T(g) VoVET(g)) = rank(T(g)Vo)

= rank(T(g)[VoVi,..., Vk])

= rank(T(g)) =N (76)
K
rank | T(hx)(O_V; VI T(h)" | = rank(T(hy)VVHT(hy)")
§=0
' ank(T(hy)) = N 77)
K K
rank [ T(h) (3 V, VT | € ST (78)
j=1 i=1
K K
rank | T(h)( S VvV TmeH | €S (79)
J=L3#k j=1,7#k

where (a) follows from orthogonality between T(g) and Vy for k£ > 1, (b) follows from the fact that
V = [Vy...Vg] is unitary satisfying VVH =1, and (c) follows from Lemma 4. From (77) and (78),

we readily obtain ry < %lel’“, which is dominated by (76). Combining (78) and (79), we obtain

T < Nli 7 for k=1,..., K. This completes the achievability.

The converse follows by a natural extension of Theorem 3 to the K + 1-user BCC. To obtain the
constraint (47), we consider that the first K receivers perfectly cooperate to decode the K confidential
messages and one common message. By treating these K receivers as a virtual receiver with KN
antennas, we immediately obtain the bound (47) corresponding to the s.d.o.f. of the MIMO wiretap
channel with the virtual receiver channel [T(h;)7,..., T(hx)?]? and the eavesdropper channel T(g).

The bound (48) is obtained by noticing that the total number of streams that receiver k can decode is

limited by the d.o.f. of T(hy), i.e. N. Namely, we have the following K inequalities
lo+lxk <N, k=1,... K (80)

which yields Iy < N — maxy, lj,. Further by letting I, = L for any k € {1,...,K} and and [; = 0 for
any j # k, we obtain [p < N — L. Adding the last inequality and (47), we obtain (48). This establishes
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the converse.

APPENDIX V

PROOF OF LEMMA 4

We consider rank (7 (hg) ZjeijVf‘T(hk)H) forasubset X C {1,..., K} Firstweletveq,...,ver
denote L orthonormal columns that form a unitary Vandermonde matrix orthogonal to J(g). For any
subset L C {1,...,L}, we let V. be the unitary matrix formed by |L| columns corresponding to
the subset L taken from v.1,...,V. . Since a unitary matrix formed by {V}}xex for any K can be
expressed equivalently as V. ¢, we consider rank(T(hy)V LVfL‘T(hk)H ). For a given £, we let V=
denote a unitary matrix composed by L — |£| columns corresponding to the complementary set L such
that L+ L = {1,...,L}. In order to derive the rank, we follow the same approach as Appendix I. We

define the matrix G € CNFTL=IEDXINFL) orthogonal to V. . by appending sz to T(g)

T(g)
H
V&

Gg =

where the N + L — |L| rows are linearly independent. Since G and VfL form a complete set of a
N + L-dimensional linear space, T(hy) can be expressed as

T(hi) = ApcGe +Bre VI, k=1,... K (81)

where Ay, o, By ¢ is a coefficient matrix with dimension N x (N + L — |£L

), N x |L| respectively. By
recalling that any set of NV + L rows taken from T(hy), T(g) are linearly independent for k =1,..., K
(from the assumption that g, hy, ..., hx are linearly independent), we can repeat the same argument as

Appendix I and obtain
rank(T(hy) Ve o VI T (b)) = |L], VL C{1,...,L},k=1,...,K

which yields the result.

APPENDIX VI

PROOF OF THEOREM 5

The achievability follows by generalizing Theorem 3 for the case of two confidential messages. We
remark that by symmetry Lemma 1 for one beamforming matrix V1 can be trivially extended to two

beamforming matrices V; and Vs. Namely, we have
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Lemma 5: For [y < L and [, < L, there exists V, with [ orthnormal columns for k£ = 1, 2 satisfying
T(hy)Vj =0nyi,, k=1,2,7#k (82)
rank(‘J’(hk)Vk) = lk, k= 1, 2 (83)
Further, we let V be a unitary matrix with M = N + L — rank([V1V3]) orthonormal columns in
the null space of [V1Va] such that V[V V3] =0 Mx(i,+12)- We construct x by Gaussian superposition
coding based on the the Vandermonde precoder V, V; and Va. From (82), each user observes the vector
of its confidential message and that of the common message, i.e.

yi1 = T(h)(Voug+ Viuy) +n;g (84)

y2 = ‘T(hz)(VoUo + V2u2) + ny

By letting U = Voug, Vi, = U+ Vu for k = 1,2, X = V; + V5 and considering equal power allocation

to all streams with p = ](\flvﬁﬂi, we readily obtain
I(U' Yk) _ 1 log |IN + p‘T(hk)(VOVéLI + VkaH)‘T(hk)H|
, N+L ’IN + pT(hk)Vle{;{T(hk)H|
1
I(Vi; Yy = log |1 h HT(hy)?
(Vi Yi|U) Nz los Iy + pT(he) ViV T ()|

I(V; Y2, olU) = 1(Va;Y1,Vi|U) =0

We remark
rank(T(hy) Vi VET(hp)?) = rank(T(hy) Vi) =1, k=1,2
VH
rank(T(hy) (Vo VY + Vi V)T (h)®) = rank | T(hy)[VoVi] i’q T(hy)
Vk

= rank(T(h)[VoViV;])

O ank(T(hy)) = N

where (a) follows from orthogonality between T(hy) and V; for j # k, (b) follows because [V(V1Vy]
or [V(V2 V] spans a complete N + L-dimensional space. These equations yield o+ < N for k =1,2.
This establishes the achievability.

The converse follows by noticing that the constraints (55) and (56) correspond to trivial upper bounds.
To obtain (55), we consider the special case when the transmitter sends only one confidential message
to one of two receivers in the presence of the eavesdropper. When sending one confidential message

to receiver 1, the two-user frequency-selective BCC reduces to the MIMO wiretap channel with the
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legitimate channel J(h;) and the eavesdropper channel T(hy), whose s.d.o.f. is upper bounded by L.

The same bound holds for receiver 2 when transmitting one confidential message to receiver 2 in the

presence the eavesdropper (receiver 1). The upper bounds (56) follow because the total number of streams

per
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receiver is limited by the individual (N + L) x N MIMO link. This establishes the converse.
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Fig. 8. Achievable secrecy rate with one observation at receiver 1 and N = 64, L = 16 (MISO wiretap channel).
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Fig. 9. Achievable secrecy rate with N = 64, L = 16 (MIMO wiretap channel).
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Fig. 11. Achievable secrecy rate region N = 1, L = 5 (MISO-BCC).
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