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When analyzing genomic data, the researcher often encounters the situation where different genetic regulation graphs can be determined on the same dataset with several genetic regulation graph inference methods. One graph is very often compared to another with the help of databases gathering already known interactions between genes: the more known interactions an inferred graph contains, the better it is considered as. We propose a different approach, adapted from the theory of tests, to determine whether a graph fits the dataset.

Introduction

La détermination de graphes décrivant les interactions entre gènes et produits de gènes (ou graphes d'interactions génétiques) est une problématique centrale en bioinformatique et il existe plusieurs stratégies pour les déterminer. D'une part, ces graphes de régulations génétiques peuvent provenir de bases de données faisant l'inventaire de toutes les régulations observées dans des expériences de biologie. D'autre part, de plus en plus de méthodes sont développées pour inférer des graphes de régulations génétiques directement à partir de jeux de données transcriptomiques. Citons par exemple la méthode Graphical Lasso (glasso) [START_REF] Friedman | Sparse inverse covariance estimation with the graphical lasso[END_REF] qui estime la matrice de variance covariance inverse d'une classe de profils d'expression. Cette méthode fait l'hypothèse qu'un profil d'expression est une réalisation d'une variable aléatoire X suivant une loi normale multivariée de moyenne µ et de matrice de variance covariance Σ : X ∼ N (µ, Σ). En se plac ¸ant dans le cadre des modèles graphiques gaussiens [START_REF] Michael | Learning in Graphical Models[END_REF], la matrice de précision Σ -1 de la variable X permet de remonter à un graphe d'indépendances conditionnelles entre les différentes composantes de X (les gènes). Ainsi, la méthode glasso permet, à partir de profils d'expression, de déterminer un graphe d'indépendances conditionnelles entre gènes, que l'on considère comme un graphe de régulations génétiques.

Plusieurs questions se posent alors :

-comment vérifier qu'un graphe, quel que soit sa provenance, soit en adéquation avec un jeu de données transcriptomiques particulier ? -parmi plusieurs graphes, quel est le celui qui est le mieux en adéquation avec les données dont on dispose ?

La réponse que l'on apporte le plus souvent est basée sur la comparaison du graphe obtenu avec un ou plusieurs graphes provenant de bases de données. Malheureusement, les bases de données contenant ces graphes de régulations génétiques de référence sont certainement incomplètes et il est même parfois possible qu'un oeil expert y détecte des erreurs. La littérature propose des alternatives sous la forme de tests locaux d'adéquation d'un jeu de données gaussien à un graphe. C'està-dire que l'on cherche à déterminer s'il manque des arêtes dans ce graphe [START_REF] Verzelen | Goodness-of-fit tests for high-dimensional gaussian linear models[END_REF][START_REF] Verzelen | Tests for gaussian graphical models[END_REF] ou si au contraire certaines arêtes sont fausses [START_REF] Michael | Learning in Graphical Models[END_REF]. Mais de telles méthodes locales ne permettent pas de comparer plusieurs graphes entre eux, sans compter qu'elles sont coûteuses en temps de calcul. Nous proposons une approche plus globale, et certainement préliminaire aux approches précédemment citées, pour déterminer si un graphe G donné correspond de fac ¸on significative à la matrice de précision de données supposées gaussiennes multivariées. Répondre à ce problème permettra, entre autres, de déterminer parmi un ensemble de graphes inférés par des méthodes différentes, lequel correspond le mieux aux données, même si le graphe exact sous-jacent n'est pas connu. Dans le cadre des modèles graphiques gaussiens, une matrice de précision Σ -1 0 est déduite du graphe inféré G et nous calculons ensuite une statistique de sphéricité qui permet de tester l'hypothèse nulle suivante

H 0 = Σ = Σ 0 (1) 
contre l'hypothèse alternative H 1 = Σ = Σ 0 . Ainsi, nous répondons à la question posée uniquement sur la base des observations obtenues après l'expérience transcriptomique effectuée.

Pour toute la suite, nous adoptons des notations identiques à celles du livre d'Anderson [START_REF] Anderson | An introduction to multivariate statistical analysis[END_REF]. Soit une variable aléatoire de loi N (µ, Σ). On considère un échantillon de cette variable aléatoire, un individu étant noté x α , α = 1, ..., (n + 1). On veut tester l'hypothèse [START_REF] Erdős | On the evolution of random graphs[END_REF]. Les matrices A et S sont définies de la fac ¸on suivante :

A = n+1 α=1 (x α -x) (x α -x) et S = 1 n A.

État de l'art

Les tests de sphéricité font l'objet d'une littérature abondante dans le cas où le nombre d'individus est raisonnablement plus important que le nombre de variables, certains sont basés sur le critère du rapport de vraisemblance [START_REF] Anderson | An introduction to multivariate statistical analysis[END_REF]. Cependant, d'après Ledoit et Wolf [START_REF] Ledoit | Some hypothesis tests for the covariance matrix when dimension is large compared to the sample size[END_REF], le test du rapport de vraisemblance est dégénéré dans le cas où n + 1 < p.

Une autre statistique est alors proposée par Ledoit et Wolf, mais uniquement pour un test de sphéricité simple (i.e. Σ 0 = I p ), la transformation pour passer au test de H 0 dans le cas général n'est pas précisée :

W = 1 p tr([S -I p ] 2 ) - p n 1 p tr(S) 2 + p n .
Deux hypothèses supplémentaires sont nécessaires pour pouvoir approximer asymptotiquement la loi de W : i , i = 1, ..., p k les valeurs propres de Σ k . On suppose que la valeur moyenne de ces valeurs propres 2 sont toutes deux indépendantes de l'indice k.

λ = 1/p k i=1 p k λ (k) i > 0 et que la dispersion δ 2 = 1/p k i=1 p k (λ (k) i -λ)

Sous ces deux hypothèses supplémentaires, et à condition que

(λ -1) 2 + δ 2 = 0, Ledoit et Wolf ont montré que nW -p D → N (1, 4), quand n → +∞ et p → +∞, (2) où D 
→ indique la convergence en distribution.

Statistique propos ée

La première étape consiste à transformer le graphe inféré G en une matrice de précision. On note Adj la matrice d'adjacence de G, D la matrice diagonale dont chaque coefficient diagonal est le degré de connectivité du gène concerné. Le lien entre G et la matrice de précision peut se faire de la manière suivante : si les noeuds i et j ne sont pas connectés dans le graphe G, alors le coefficient en ligne i et colonne j de Σ -1 0 est nul, on voit donc que la matrice Adj remplit cette première contrainte. Une contrainte classique supplémentaire imposée à la matrice de précision est qu'elle doive être inversible (bien que cela ne soit pas nécessaire absolument) ! Une matrice de précision acceptable pour la variable X est alors

Σ -1 0 = Adj + D + I p .
Il suffit ensuite, pour tester si le graphe est en adéquation avec les données, de tester l'hypothèse

H 0 = Σ = Σ 0 .
Nous ne proposons pas pour l'instant d'utiliser la propriété 2 pour développer un test avec comme résultat une p-value. Nous allons juste nous servir de la statistique pour classer les graphes inférés les uns par rapport aux autres. La statistique est inspirée de W , mais est généralisée au cas où Σ -1 0 n'est pas forcément égal à I p grâce à la transformation proposée par [START_REF] Anderson | An introduction to multivariate statistical analysis[END_REF]. Cette nouvelle statistique est notée W :

W = 1 p tr([SΣ -1 0 -I p ] 2 ) - p n 1 p tr(SΣ -1 0 ) 2 + p n .

Simulations et r ésultats

Les résultats que nous avons obtenus sont uniquement basés sur des données simulées. Nous générons (n + 1) réalisations i.i.d d'une variable gaussienne multivariée de moyenne nulle et de matrice de variance covariance Σ 0 (de taille (p × p) avec n + 1 = 30 et p = 150. L'algorithme est le suivant :

(1) générer un graphe à p noeuds aléatoirement en utilisant le modèle d'Erdős-Rényi [START_REF] Erdős | On the evolution of random graphs[END_REF] de telle sorte que le graphe obtenu soit très épars (seulement 10 % des arêtes sont créées),

(2) considérer ce graphe, noté G ref pour générer un jeu de données gaussien multivarié de matrice de variance covariance Σ ref = (Adj + D + I p ) -1 (avec les notations adoptées dans le paragraphe précédent),

(3) obtenir des graphes dont on veut savoir s'il sont en adéquation avec les données, pour cela, utiliser la méthode glasso et contrôler la qualité des graphes par le paramètre de régularisation noté ρ de la méthode.

Le problème sur ces données simulées est donc le suivant : pour chaque ensemble de n + 1 profils d'expression simulés, la méthode glasso fournit un graphe G correspondant à une matrice de précision Σ -1 0 . La première mesure de la qualité de ce graphe à laquelle nous nous référons est τ , le taux d'arêtes communes entre G ref et G.

La figure 1(a) présente une comparaison entre la statistique W et τ . Chaque point correspond aux mesures de W et τ pour une simulation de n + 1 profils d'expression. Pour chaque valeur du paramètre ρ, nous avons généré 20 jeux de données de dimensions 30 × 150 de fac ¸on indépendante.

La figure 1(b) présente également W en fonction de τ , mais pour le même jeu de données : on dispose d'un graphe de G ref , et un jeu de données est simulé pour ce graphe, on applique ensuite la méthode glasso pour inférer des graphes de qualité variable.

Les deux figures 1(a) et 1(b) permettent de constater que l'évolution de W est décroissante en fonction de τ . Ainsi, lorsque W est grand, et même sans la connaissance du graphe sous-jacent aux données, on peut conclure au rejet de H 0 . De plus, lorsque deux graphes sont proposés pour un seul jeu de données, les statistiques obtenues sont tout à fait comparables et permettent de déterminer quel graphe est le plus en adéquation avec les données.

Une difficulté subsiste cependant, qui nous a empêché d'utiliser la propriété 2 de convergence asymptotique de W : sous H 0 , nW -p n'est pas en moyenne égal à 1. Cela remet donc en cause la validité, pour nos données simulées, des hypothèses (a) et (b) évoquées plus haut.

Conclusions et perspectives

La statistique W présentée permet de comparer plusieurs graphes inférés sur un jeu de données transcriptomiques, ce classement ayant été validé sur des données simulées gaussiennes multivariées.

Il faut maintenant travailler sur les résultats asymptotiques présentés par Ledoit et Wolf pour déterminer automatiquement un seuil sur W permettant de décider au rejet de H 0 . 

  (a) le nombre de variables et d'individus sont des fonctions croissantes d'un indice entier k, p = p k et n = n k de sorte que lim k→+∞ p k = +∞, lim k→+∞ n k = +∞ et qu'il existe un réel c > 0 tel que lim k→+∞ p k /n k = c ; (b) pour chaque indice k, X k est une matrice (n k +1)×p k de n k +1 observations i.i.d. d'une variable aléatoire gaussienne multivariée de moyenne µ k et de matrice de variance covariance Σ k . Soit λ (k)

  Pour des jeux de données indépendants, log(W ) en fonction de τ .

  Pour le même jeu de données, log(W ) en fonction de τ .

Fig. 1 .

 1 Fig. 1. W en fonction du taux d'arêtes correctement inférées par glasso. n et p sont fixés.