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Wide-band, band-pass and versatile Hybrid

Filter Bank A/D conversion for software radio
Caroline Lelandais-Perrault, Tudor Petrescu, Daniel Poulton, Pierre Duhamel and Jacques Oksman

Abstract—This paper deals with analog-to-digital (A/D)

conversion for future software/cognitive radio systems. For

these applications, A/D converters should convert wide-

band signals and offer high resolutions. In order to achieve

this and to overcome technological limitations, the A/D

conversion systems should be versatile, i.e. it should be

possible to adapt the conversion characteristics (resolu-

tion and bandwidth) by software. This work studies and

adapts Hybrid Filter Banks (HFBs) in this context. First,

HFBs, which can provide large conversion bandwidth,

are extended to band-pass sampling, thus minimizing the

sampling frequency. Then, we provide efficient ways of

improving the HFB resolution in a smaller frequency band,

only by reprogramming the digital part. Moreover, this

study takes into account the main drawback of HFBs which

is their very high sensitivity to analog imperfections. Simu-

lation results are presented to demonstrate the performance

of HFBs.

Index Terms—Analog-to-digital conversion, hybrid filter

banks, wide-band, band-pass, versatility, software radio,

cognitive radio.

I. INTRODUCTION

Future wireless systems will represent a real challenge

as well as an outstanding opportunity over the next 10-20

years. A trend of using higher data rates (up to 1 Gb/s for

instance) and high working frequencies can be noticed.

Moreover, next generation mobile communications will

have to deal with a wide range of different wireless

access systems (e.g. various standards, applications). So-

called ”software radio” introduced in 1992 [1] comes

from this need for versatile multi-standard terminals or

base stations. Then the idea of cognitive radio was ini-

tiated [2] where the terminal explore the radio spectrum

and determine the portion of the frequency band that

may be used for the communication link.

To achieve software radio needs, several flexible re-

ceivers appeared [3] [4]. In these receivers, a first stage

downconverts the appropriate communication channel.

The signal is then converted in the digital domain

through a classical A/D converter and finally digitally

processed. These receivers are a step forward compared

to traditional circuits that are individually customized.

They receive one channel at arbitrary frequency with

any modulation. But this solution does not make it

possible to perform radio spectrum sensing which is

required in cognitive radio systems. In these systems,

the A/D converter should be placed ideally directly in

RF without any frequency translation. Also, the A/D

converter should be wide-band. As an example, the set

of standards GSM, UMTS, GPS and WiFi implies the

conversion of the frequency band from 880 MHz to

2.5 GHz. Regarding the required resolution, a 14-bit

resolution is required for the GSM standard since a 9-

bit resolution is sufficient for the WiFi standard. It is

obvious that, considering the highest constraints, a 14 bit,

5 GS/s A/D converter is not realistic. Even if we knew
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Fig. 1. Illustration of future A/D conversion versatility: frequency

focusing

how to build such an A/D converter, its power dissipation

would be overwhelming. So we must reconsider the A/D

conversion in the cognitive radio context.

In order to satisfy the cognitive radio requirements,

one interesting idea could be versatile A/D converters.

Indeed, converting the whole band with a maximum

resolution is certainly not necessary and would be a

waste of energy. For example, the A/D converter could

digitize the whole band at a rather low resolution. Once

the software has explored the spectrum and found a band

corresponding to pre-determined criteria, it could change

the A/D converter parameters to improve the resolution

in that particular band (Figure 1). We call this ”frequency

focusing”.

In this work, we propose to study the Hybrid Filter

Bank A/D converters and adapt them to the cognitive

radio needs. The HFBs are multi-rate systems that use a

3-stage process: analog frequency band decomposition

through an analysis filter bank; A/D conversion; and

finally, digital reconstruction through a synthesis filter

bank. HFBs are interesting because from a given sam-

pling rate on each channel, it enlarges the conversion

bandwidth. An HFB is said to be a ”perfect reconstruc-

tion HFB” if its transfer function is a pure delay. But in

reality, perfect reconstruction is not possible. So an HFB

must be designed to approximate perfect reconstruction

as closely as possible.

In the literature, some methods synthesize jointly

the analog part and the digital part [5], [6] and [7].

These methods require the realization of given analog

transfer functions which becomes increasingly difficult

as monolithic integration dimensions decrease. Another

class of synthesis methods starts from the knowledge of

the analysis filter frequency responses and synthesizes

the best digital part. Assuming that a calibration process

makes it possible to know the analysis filter frequency

responses, this technique relaxes the constraints upon the

realization of the analog part. In [8], the author finds

the synthesis filters by calculating the inverse FFT of

the ideal synthesis filters frequency responses but this

method doesn’t offer to perform any tradeoff between

frequencies.

In this article, we propose global least mean square

synthesis methods that start from the knowledge of the

analog frequency responses. Minimizing a criterion de-

scribing the near perfect reconstruction of the HFB, these

methods can take account of the knowledge of the input

signal and also a possible tradeoff between performance

characteristics, all of which relax constraints upon the

digital part.

As above, software radio applications will lead to

the conversion of high frequency band-pass signals.

So band-pass sampling should be studied in order to

minimize the sampling frequency. Classical band-pass

theory is here extended to the HFB case. Also, HFB

synthesis methods are extended to the band-pass case.

Concerning versatility, the frequency focusing idea

may be achieved in HFBs. Global least mean square

synthesis methods have been adapted in order to synthe-

size digital filters so that the resolution is improved in a
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Fig. 2. Maximally decimated hybrid filter bank structure

smaller bandwidth. The software can therefore dynami-

cally change the resolution of an HFB by reprogramming

the digital filters with the appropriate set of coefficients.

In the software/cognitive radio context, high frequen-

cies, high resolutions, low cost, achieving a robust ar-

chitecture are a great challenge. This work shows the

very high sensitivity of HFBs to the mismatch between

their analog and digital parts. This confirms that the HFB

design methods should work for any analog frequency

response. In this respect, further research should be

carried out into calibration techniques.

In Section II, the well-known perfect reconstruction

equations are given. The main characteristics of HFBs

are defined; i.e. distortion and aliasing. HFB design

methods aimed at relaxing the analog design constraints

are presented. Section III presents HFB adaptation to

software/cognitive radio needs. First, the band-pass sam-

pling for HFBs is presented and followed by the syn-

thesis method to perform frequency focusing. Finally,

robustness regarding analog versus digital mismatch is

studied. Section II and III are illustrated with simulation

results.

II. HFB A/D CONVERTERS THEORY AND DESIGN

METHODS

A. Review of HFB theory

Figure 2 shows a maximally decimated HFB of M

channels. x(t) is the real input signal to be digitized

at 1/T rate and y(n) is the digital output of the HFB.

Hm(s) are the continuous-time analysis filter transfer

functions and Fm(z) are the discrete-time synthesis

filters transfer functions, with m ∈ {1, 2, ..., M}. The

blocks q1, ..., qM are the branch quantizers. After analog

filtering, the branch signals xm(t) are sampled at a rate

of 1/MT . Ignoring the quantizers, the Fourier transform

of the HFB output signal y(n) is [9], [10]:

Y (ejω) =
1
T

∞∑
p=−∞

Tp(ejω)X
(

jΩ − j
2πp

MT

)
(1)

with

Tp(ejω) =
1
M

M∑
m=1

Fm(ejω)Hm

(
jΩ − j

2πp

MT

)
, (2)

ω = ΩT,

where X(jΩ) is the Fourier transform of x(t), Ω the

pulsation and ω the normalized pulsation.

It is assumed that the input signal is strictly bandlim-

ited to B. In this case, the Nyquist criterion for sampling

with an effective sampling frequency of 1/T = 2B

without aliasing is fulfilled. (1) can then be rewritten

as follows:

Y (ejω) =
1
T

M−1∑

p=−(M−1)

Tp(ejω)X
(

jΩ − j
2πp

MT

)
(3)

because, for −π < ω ≤ π, only 2M − 1 terms have non

zero contributions [10]. Perfect reconstruction means that

the output y(n) is only a scaled, delayed and sampled

version of the input. Therefore, perfect reconstruction

conditions will be [9], [10]:

Tp(ejω) =





ce−jωρ , p = 0, ρ ∈ R+
∗ , c ∈ R∗

0 , p ∈ P.
(4)
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where ρ is the overall HFB’s delay, c is the scale factor

and P = {−(M − 1), ...− 1, 1, ...,M − 1}.

B. HFB performance evaluation

The perfect reconstruction conditions cannot be

achieved [5]. The HFB output signal consists of the

input signal whose magnitude and phase are damaged,

and additive parasitic aliasing signals, all of which limit

the resolution of the system. As a remark, in this work,

analog filters and A/D converters are supposed linear. So,

we don’t take into consideration nonlinear distortion like

intermodulation (except quantization when precised).

We define two major performances to characterize the

HFB quality reconstruction: the distortion function R(ω)

given in (5) and the aliasing functions Tp(ejω), p ∈ P .

R(ω) =
T0(ejω)
ce−jωρ

(5)

This distortion function has ideally a magnitude equal to

1 and a phase equal to 0.

Concerning aliasing, each Tp(ejω), p ∈ P , defines

an aliasing transfer function for which it is possible

to calculate mean and maximum values throughout the

band. This leads to 2M − 2 values and complicates the

comparison between two HFBs. We propose to calculate

a synthesis of all aliasing functions. Considering aliasing

terms as decorrelated noises, the total aliasing function

consists in summing the powers of aliasing functions:

TotalAliasing(ω) =
∑

p∈P

∣∣Tp(ejω)
∣∣2 (6)

C. HFB implementation constraints

HFB design needs analog filters, elementary A/D

converters and digital filters.

The digital part performances are essentially limited

by the processing power and the calculation accuracy.

Fortunately, technological progress will make it possible

to push back these limitations. It will always be neces-

sary, however, to minimize the size of the digital part in

order to minimize both cost and power consumption.

A/D converters limitations are essentially the sampling

frequency, the resolution and the input bandwidth. In

the case of a direct RF conversion, the input bandwidth

requirement is stronger than for an IF conversion. This

is a technological aspect that concerns the sample and

hold part of A/D converters.

Regarding the analog part, high frequency analog

filter integration is tricky. The design of the analog part

becomes increasingly difficult as the filter order or the

quality factor become higher. And above all, manufac-

turing errors of passive components may be up to 20%

and even more. Moreover, these errors change depending

on ageing and temperature. Tuning is a possible solution

to approach the desired analog filters transfer functions

but this is a costly solution. Paragraph III-C1 shows that

these phenomena affect HFB performance a lot.

Therefore the chosen strategy here is to maximally

relax the realization of the analog part. To do that,

the presented methods start from the knowledge of the

frequency responses of the analog filters and calculate

the corresponding digital filters in order to minimize the

aliasing and the distortion. Thus, easily feasible band-

pass analog filters can be chosen.

D. HFB design methods relaxing implementation con-

straints

The following methods calculate FIR synthesis filters.

Therefore, their transfer functions are:

Fm(z) =
N−1∑
n=0

fm(n)z−n, m ∈ {1, 2, ...,M}. (7)
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where fm(n) are the coefficients of the impulse response

of digital filters. In this case, the synthesis problem is

linear. So the coefficients may be found in a least square

sense.

Eight-channel HFBs have been designed with the

following methods. Paragraph II-E gives the results and

compares the methods.

1) Least mean square local approximation HFB syn-

thesis method (LMSLA): This method was first applied in

[11]. We consider more general synthesis filter frequency

responses Fm(ω). (2) becomes:

Tp(ejω) =
1
M

M∑
m=1

Fm(ejω)Hm

(
jΩ − j

2πp

MT

)
, (8)

Perfect reconstruction are:

Tp(ejω) =





ce−jωρ , p = 0, ρ ∈ R+
∗ , c ∈ R∗

0 , p ∈ P.
(9)

where ρ is the overall HFB’s delay, c is the scale factor

and P = {−(M − 1), ...− 1, 1, ...,M − 1}.

Considering K pulsation values ωk equally distributed

in [−π, π], Fm(ωk ) may be calculated by resolving

the perfect reconstruction system. Then, each Fm(ω)

frequency response is approximated by a FIR filter

Fm(ejω) frequency response.

Noting fm the vector of coefficients for the m-th

synthesis filter:

fm = [fm(0), ..., fm(N − 1)] (10)

For each branch m, the best filter coefficients values

of fm are obtained so that the actual frequency response

fits the desired K-point values in the square error sense.

The optimization algorithm is the standard Matlab one

(namely Gauss-Newton). Paragraph II-E shows that the

results are not satisfactory and can be much better using

the global approximation methods that follow.

2) Least mean square global approximation HFB syn-

thesis method - Discrete-frequency criterion (LMSGAD):

This method has been presented in [12]. Perfect recon-

struction conditions (4) are written for each of the K

pulsation values equally distributed in [−π, π] interval,

using (2) for Tp(ejω) and (7) for Fm(ejω):

Tp(ejωk) =





ce−jωkρ , p = 0, ρ ∈ R+
∗ , c ∈ R∗

0 , p ∈ P
(11)

k ∈ {1, 2, ..., K}, where:

Tp(ejωk) =
1
M

M∑
m=1

Fm(ejωk)Hm

(
jΩk − j

2πp

MT

)
.

(12)

with

ωk = ΩkT.

For a given ωk, (11) is a system of 2M − 1 complex

equations or, equivalently, 2× (2M − 1) real equations.

Hence, a linear system of 2×(2M−1)×K real equations

and M×N unknown variables results. For a matrix form

of the above equation system, the definitions of different

vectors follow:

e(ω) =
[

1 e−jω · · · e−j(N−1)ω
]

(13)

The vector of the FIR filter coefficients is:

f =
[
f1 · · · fM

]T
(14)

where AT denotes the transpose of the matrix A. The

matrix of the shifted versions of all the analog filters

Hm(jΩ) with the elementary delays of the synthesis

filters contribution is:

HK =




H(ω1)

H(ω2)
...

H(ωK)




. (15)

The matrix H(ω) may be seen in (16) for typographic

constraints. H
(p)
m (jΩ) is the 2πp/MT shifted version of

October 9, 2009 DRAFT
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Hm(jΩ):

H(p)
m (jΩ) = Hm

(
jΩ − j

2πp

MT

)
. (17)

With the following notation:

tK =




t(ω1)

t(ω2)
...

t(ωK)




(18)

where

t(ω) = cM
[

e−jωρ 0 · · · 0
]T

(19)

HR =


 Re {HK}

Im {HK}


 (20)

and

tR =


 Re {tK}

Im {tK}


 , (21)

the matrix form of the perfect reconstruction conditions

written for the given set of frequency values is:

HRf = tR. (22)

Re {A} and Im {A} denote respectively the real and the

imaginary part of the matrix A.

In the general case, the system (22) is overdetermined

and inconsistent. However, a least square solution can

be found [13]:

f = (HR
THR)−1HR

T tR (23)

which minimizes the square sum of the error vector (the

error vector’s Euclidean norm):

∆ = ‖HRf − tR‖2. (24)

3) Least mean square global approximation HFB syn-

thesis method - Continuous-frequency criterion (LMS-

GAC): Approach the perfect reconstruction for a given

pulsation consists in minimizing the following criteria:

J(ω) = ‖H(ω)f − t(ω)‖2 (25)

where H(ω), f and t(ω) are defined above. (25) is

equivalent to:

J(ω) = (H(ω)f − t(ω))†(H(ω)f − t(ω))

= f†H(ω)†H(ω)f − f†H(ω)†t(ω)

− t(ω)†H(ω)f + t(ω)†t(ω) (26)

where A† denotes the conjugate transpose of A. The

integration of J(ω) over the whole band [0, π] gives the

global criterion J :

J = f†Σf − f†α−α†f + r (27)

where:

Σ =
∫ π

0

H(ω)†H(ω)dω (28)

H(ω)=




H
(0)
1 (jΩ)e(ω) H

(0)
2 (jΩ)e(ω) · · · H

(0)
M (jΩ)e(ω)

H
(1)
1 (jΩ)e(ω) H

(1)
2 (jΩ)e(ω) · · · H

(1)
M (jΩ)e(ω)

...
...

...

H
(M−1)
1 (jΩ)e(ω) H

(M−1)
2 (jΩ)e(ω) · · · H

(M−1)
M (jΩ)e(ω)

H
(−1)
1 (jΩ)e(ω) H

(−1)
2 (jΩ)e(ω) · · · H

(−1)
M (jΩ)e(ω)

...
...

...

H
(−(M−1))
1 (jΩ)e(ω) H

(−(M−1))
2 (jΩ)e(ω) · · · H

(−(M−1))
M (jΩ)e(ω)




(16)
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α =
∫ π

0

H(ω)†t(ω)dω (29)

r =
∫ π

0

t(ω)†t(ω)dω (30)

Σ is a M × N -by-M × N matrix. α is a M − by −
N -length column vector and r is a scalar. Moreover,

because of the Hermitian characteristic of the matrix Σ

and because the digital filter coefficients are real, this

leads to:

f†Σf = fTRe(Σ)f (31)

Also, fTα = αTf , then:

J = fTRe(Σ)f − fTα− fTα∗ + r (32)

The minimum value of this criterion is found by derivat-

ing J and by cancelling this function:

∂J

∂f
= 2Re(Σ)f −α−α∗ = 0 (33)

The solution can be found by solving the following

system:

Re(Σ)f = Re(α). (34)

The solution in a mean square sense is:

f = (Re(Σ)TRe(Σ))−1Re(Σ)TRe(α) (35)

4) Slight oversampling of the input signal: We will

show that the performance is better if the input signal is

slightly oversampled.

Indeed, assuming that the input signal is band-limited

to B, the design of an HFB reconstructing a signal

sampled at 2B may lead to discontinuities of the ideal

synthesis filters frequency responses. With a limited

number of coefficients of the synthesis filters, alias-

ing will be much more important around pulsations

2πp/MT (p ∈ {−M, ..., M}). To decrease aliasing in

these areas, we may sample the signal with a slightly

higher rate of 2B/η, 0 < η < 1, with η close to 1.

Regarding design methods, this is equivalent to assuming

that the input signal is limited to the frequency band

[−η/T, η/T ]. (1/η−1) corresponds to the oversampling

ratio.

For a given HFB, oversampling of the input signal

improves its performances (see paragraph II-E). But,

the performances would be significantly improved if the

oversampling is taken into account in the design method.

To do that, let’s consider the following weighting func-

tion.

W (jΩ) =





1 ,−η
π

T
< Ω < η

π

T
ε , otherwise

(36)

where ε ∈ R+
∗ , ε << 1.

Therefore perfect reconstruction conditions will be:

TW
p (ejω) =





ce−jωρW (jΩ) , p = 0, ρ ∈ R+
∗ , c ∈ R∗

0 , p ∈ P
(37)

where

TW
p (ejω) =
1
M

∑M
m=1 Fm(ejω)Hm

(
jΩ − j2πp

MT

)
W

(
jΩ − j2πp

MT

)
(38)

with ω = ΩT .

If (17) and (19) are respectively rewritten as follows:

H(p)
m (jΩ) = Hm

(
jΩ − j

2πp

MT

)
W

(
jΩ − j

2πp
MT

)
,

(39)

t(ω) = cM
[

e−jωρW (jΩ) 0 · · · 0
]T

, (40)

(23) or (35) give synthesis filters that take into account

the input signal oversampling.

E. Simulation results of HFBs with FIR synthesis filters

Several eight-channel HFBs have been designed from

a given analysis filter bank. Considered analysis filter

frequency responses are shown in Figure 3. They cor-

respond to the frequency responses of pure resonators

whose transfer function is:

Hm(s) =

Ωm

Qm
s

s2 +
Ωm

Qm
s + Ω2

m

(41)
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Fig. 3. Analysis filter bank magnitude responses

where Ωm is the resonator frequency and Qm its qual-

ity factor. Also, a first order low-pass filter is considered

for the lowest frequencies. Its transfer function is:

H1(s) =
Ω1

s + Ω1
, Ω1 =

1
R1C1

, (42)

where Ω1 is the cut-off frequency of the filter. Each

synthesis filter has 128 coefficients.

For each synthesis, K = 512 pulsation values have

been considered for the calculations in [−π, π] interval.

Concerning the LMSGAC method, the integral terms

have been calculated by using a rectangular approxi-

mation performed on the same points as for the other

methods.

Table I gives the main characteristics of all synthesized

HFBs. Figure 4 shows the distortion and the total aliasing

magnitudes throughout the band for some HFBs. The

maximum equivalent resolution expressed in bit may be

evaluated by considering the classic 6 dB/bit formula

[14]. LMSLA HFB has a mean equivalent resolution

of 6 bit only. Moreover total aliasing function peaks

are rather high (-17 dB) which degrades the equivalent

SFDR (Spurius-Free Dynamic Range) of the HFB A/D

converter. If the signal is oversampled by 10%, the

equivalent resolution is one bit better and the aliasing

peaks are eliminated. With the LMSGAD method and
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Fig. 4. Total aliasing and distortion magnitudes of HFBs synthesized

with the LMSLA and LMSGA methods

assuming that the signal is slightly oversampled by 2%,

the mean equivalent resolution is 11 bit and even 16 bit

with an oversampling of 3%. So the LMSGAD method

is better than the LMSLA one especially because the

input signal oversampling can be taken into account

in the LMSGAD method. Compared to LMSGAD, the

LMSGAC method gives the same results. However, the

LMSGAC method is a little bit more demanding than

LMSGAD regarding calculations.

In the next sections, only the LMSGAD method is

used.

III. HFB ADAPTATION TO SOFTWARE/COGNITIVE

RADIO APPLICATION

In order to give a rough idea of the frequency need,

let’s imagine a software radio application example that

would process GSM, UMTS, WiFi and GPS standards

with a single device. To do this, the digitization system

should convert the bandwidth [880 MHz, 2.5 GHz]. This

means a very wide-band conversion. For cost and energy

consumption reasons, it is necessary to minimize the
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TABLE I

PERFORMANCES OF LOW-PASS HFBS SYNTHESIZED WITH LEAST MEAN SQUARE METHODS

LMSLA LMSLA LMSGAD LMSGAD LMSGAD LMSGAD LMSGAC LMSGAC

η = 1 η = 0.9 η = 1 η = 0.98 η = 0.96 η = 0.9 η = 1 η = 0.96

Mean total aliasing (dB) -35 -43 -35 -65 -97 -113 -35 -97

Maximum total aliasing (dB) -17 -33 -17 -53 -86 -111 -17 -86

Mean magnitude distortion (dB) −4.8 · 10−3 −7.4 · 10−4 −7.9 · 10−3 8.9 · 10−5 3.1 · 10−7 4.1 · 10−8 −7.9 · 10−3 3.1 · 10−7

Maximum magnitude distortion (dB) 0.63 0.13 0.6 2.5 · 10−2 2.1 · 10−4 1.3 · 10−5 0.6 2.1 · 10−4

Mean phase distortion (radian) −1.6 · 10−3 8.5 · 10−5 −1.7 · 10−3 1.8 · 10−5 2.8 · 10−7 4.3 · 10−9 −1.7 · 10−3 2.8 · 10−7

Maximum phase distortion (radian) 0.51 1.7 · 10−3 0.5 5.8 · 10−3 1.2 · 10−4 1.5 · 10−6 0.5 1.2 · 10−4

sampling frequency. To do this, band-pass conversion is

one solution.

A. Band-pass HFB

In classical receiver, the A/D conversion is preceded

by a downconversion performed by analog mixers. Also,

some parallel structures [15] use an analog downconver-

sion. In our work, one of the objectives is to make the

analog part as simple as possible, partly by suppressing

the downconversion stages. To do that, we chose to make

band-pass sampling.

1) Band-pass signal conversion: For a wide-band

band-pass signal x(t) bandlimited between fmax − B

and fmax, it is possible to sample at a frequency lower

than 2fmax without aliasing. At the same time, it makes

it possible to recover the signal in baseband.

Among the infinite number of terms of (1), we note

p+ the index of the term that corresponds to the signal

translated to baseband by the sampling (for positive

frequencies). The value of p+ depends on the input

signal band position and on the number of channels M .

The Fourier transform of the HFB output is then:

Y (ejω) = 1
T

p++(M/2−1)∑

p=p+−(M−1)

Tp(ejω)X
(

jΩ − j
2πp

MT

)

+
−p++(M−1)∑

p=−p+−(M/2−1)

Tp(ejω)X
(

jΩ − j
2πp

MT

)
.

(43)

Perfect reconstruction conditions become:

Tp(ejω) =





ce−jωρ , p ∈ {p+,−p+}
0 , p ∈ P ′.

(44)

P ′ = {p+−(M−1), ...p++(M/2−1)}\{p+}
⋃{−p+−

(M/2− 1), ...,−p+ + (M − 1)}\{−p+}.

The minimum sampling rate depends on fmax with

the relation given in [16]:

f (min)
s =

2fmax

n
(45)

where n is the floor value of fmax/B. This relation

is applicable for a single-rate A/D conversion. In the

HFB case, on each channel, an overlapping occurs every

2π/MT (see (1)). So, the minimum sampling frequency

is:

f (min)
s =

fmaxM

n
(46)

where n is the floor value of fmaxM/(2B). Figure

5 shows the minimum sampling frequency for a four-

channel HFB A/D converter, an eight-channel HFB A/D

converter compared to a single-rate A/D converter. For

example, for a set of applications such as GSM, UMTS,
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Fig. 5. Minimum sampling frequency for a band-pass signal with four-

channel (dashed line) and eight-channel (full line) HFB compared to

the Nyquist frequency criterion (dotted line)

GPS and WiFi, corresponding to the band [880 MHz,

2.5 GHz], the Nyquist frequency is 5 GS/s. Consider-

ing a four-channel baseband HFB, the output sampling

frequency drops to 3.33 GS/s and each A/D converter

of each branch would sample at 625 MS/s. With an

eight-channel band-pass HFB, the output sampling fre-

quency is 3.33 GS/s too and each A/D converter of each

branch can sample at 416 MS/s. Therefore, it relaxes the

constraints upon the realization and reduces the power

consumption.

The HFB design methods described in Section II-D

can easily be adapted for a band-pass sampling as

explained in [17].

2) Simulation results of a band-pass HFB: Consid-

ering the frequency band [880 MHz, 2.5 GHz], an

eight-channel band-pass HFB has been designed. The

considered analysis filter frequency responses are shown

in Figure 6. They correspond to the frequency responses

of pure resonators whose transfer function is given by

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−20

−18

−16

−14

−12

−10

−8

−6

−4

−2

0

2

Pulsation ω (x π rad/sample)

|H
m

(jΩ
)|

 (
dB

)

Fig. 6. Analysis filter bank magnitude responses

TABLE II

PERFORMANCES OF A BANDPASS HFB SYNTHESIZED WITH

LMSGA (η = 0.97)

Mean total aliasing (dB) -68

Maximum total aliasing (dB) -60

Mean magnitude distortion (dB) 1.0 · 10−4

Maximum magnitude distortion (dB) 2.7 · 10−2

Mean phase distortion (radian) −7.9 · 10−6

Maximum phase distortion (radian) 3.4 · 10−3

(41). Quality factors Qm are identical for all analysis

filters and equal to 5. Each synthesis filter has 128

coefficients.

Table II shows detailed performances of an HFB

synthesized with the LMSGAD method with an over-

sampling of 3%. Figure 7 shows the total aliasing and

the distortion magnitudes. The total aliasing mean level

is equivalent to a resolution of 11 bit.

B. Frequency focusing

Let’s suppose that an HFB A/D converter converts a

wide band signal at a resolution that could be rather

low but sufficient to give a rough idea of the commu-

nication channel to be chosen. After the choice of the

appropriate communication channel, a higher resolution

(together with a narrower bandwidth) might be required.

So the software would load a new set of synthesis filter
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Fig. 7. Band-pass HFB total aliasing (full line) and distortion (dashed

line) magnitudes

coefficients to improve the performances in the selected

frequency band as illustrated in Figure 1. We present

below a method to synthesize synthesis filters adapted

to a narrower frequency band [17].

1) Synthesis method: In the following, Bf is the

selected frequency band. To synthesize a focused HFB,

the main idea is to weight differently the values of the

LMSGAD criterion in Bf . This leads to the weighted

criterion ∆Wf
.

∆Wf
= ‖diag(wf)(HRf − tR)‖2 (47)

where:

wf =
[

wd wr · · · wr

]T
(48)

with:

wd =
[

1 1 · · · 1
]

(49)

wr =
[

Wr(ω1) Wr(ω2) · · · Wr(ωK)
]

(50)

In (47), wd is applied to the distortion term, and wr

is applied to each aliasing term. Wr(ω) is a window
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Fig. 8. Band-pass HFB total aliasing (full line) and distortion (dashed

line) magnitudes with frequency focusing in Bf = [0.1/T, 0.2/T ]

band

function that gives weighting to aliasing terms. If this

function is equal to 1 where the frequency focusing is

desired and a lower value outside that band, it makes it

possible to relax constraints in this area and to improve

the performances in the selected band. Also, if Wr(ω) is

equal to a value higher than 1 in the selected area, it re-

laxes constraints upon distortion and therefore, improves

aliasing in this area.

2) Simulation results of frequency focusing: The

band-pass analysis filter bank in Figure 6 is considered.

The previously described synthesis method is used for

a frequency focusing on Bf = [0.1/T, 0.2/T ]. The

function Wr(ω) is equal to 10 in Bf and 0.001 outside.

Figure 8 shows the total aliasing and the distortion

magnitudes of the resulting HFB. Table III shows that

a 48 dB improvement in aliasing characteristics may

be achieved within the reduced band Bf (the distortion

being almost the same).

Finally, without focusing, the best possible equivalent

resolution is 8 bit throughout the B band which may be

sufficient for the spectrum sensing mode. With frequency

focusing on Bf , the possible resolution becomes 15 bit

in Bf which is sufficient for GSM standard.
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in band Bf out of band Bf

Mean total aliasing (dB) -90 -34

Maximum total aliasing (dB) -88 -20

Mean magnitude distortion (dB) −3.7 · 10−5 2.4 · 10−6

Maximum magnitude distortion (dB) 1.4 · 10−3 1.9 · 10−2

Mean phase distortion (radian) −1.0 · 10−5 1.7 · 10−6

Maximum phase distortion (radian) 3.7 · 10−4 1.9 · 10−3

TABLE III

HFB PERFORMANCES WITH FREQUENCY FOCUSING IN Bf =

[0.1/T, 0.2/T ]

C. HFB robustness

The HFB principle is very attractive to enlarge con-

version bandwidth. But to become a realistic solution for

wide-band applications, HFBs should be robust enough.

So, it is necessary to study the HFB sensitivity to imper-

fections. The first type of imperfections is analog filters

errors. Indeed, manufacturing causes errors which make

the frequency responses different from the expected

ones. The second type of imperfections is caused by the

mismatch between A/D converters. This mismatch can

be characterized by gain, offset and phase mismatches

which are studied in [18], [8] and [19]. The third type

of imperfections is digital filtering errors. This consists

of errors caused by the quantization of the signal [20]

and the quantization of coefficients of the digital filters.

In this work, we study the effect of analog component

errors and also the effects of the quantization of digital

filter coefficients.

1) Effects of analog components realization errors:

This section studies one of the most important drawbacks

of implementing A/D converters in HFB structures: the

degradation of the HFB performances in the presence of

analog components realization errors.

In order to study the influence of realization errors, a

realistic example has been chosen. Very simple Gm-LC

������� ���	
��	� � 
������� ���	
��	� 
������
 

 

Fig. 9. (a): Resonator filter structure, (b): Low-pass filter structure

filters and Gm-C filters (Figure 9) are considered for the

band-pass filters and the low-pass filter respectively.

Their transfer functions are similar to those given in

(41) and (42). Taking into account realization errors in

the previous case, (41) and (42) become:

Hm(s) =
Ωm

Qm
(1 + ∆1m)s

s2 + Ωm

Qm
(1 + ∆1m)s + Ω2

m(1 + ∆2m)
,

(51)

m ∈ {2, ...,M},

H1(s) =
Ω1(1 + ∆11)

s + Ω1(1 + ∆11)
. (52)

In (51) and (52) ∆1m and ∆11 are the relative errors of

the coefficients of the analog filters:

∆1m =
εRmεCm + εCm + εRm

1 + εRmεCm + εCm + εRm

, (53)

∆2m =
εLmεCm + εCm + εLm

1 + εLmεCm + εCm + εLm

, (54)

where m ∈ {1, ...,M} and εRm , εCm , εLm are the

relative realization errors of the analog components of

the resonators. In order to evaluate the error effects

on the distortion and aliasing functions, a Monte Carlo

simulation with 1000 trials was performed using (53)
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TABLE IV

HFB PERFORMANCES IN THE PRESENCE OF ANALOG REALIZATION

ERRORS FOR AN ANALYSIS FILTER BANK USING RESONATORS

Analog Mean Peak Mean Peak

errors aliasing aliasing distortion distortion

(dB) (dB) (dB) (dB)

No
-151 -126 1.7 · 10−9 1.2 · 10−6

analog errors

εRm = 0.01

-45 -38 0.0004 0.05εLm = 0.01

εCm = 0.01

and (54) to compute analog filter coefficient errors. A

four-channel hybrid filter bank was considered with 128-

length FIR synthesis filters. Table IV shows the impact

of 1% error on passive component values. The aliasing

is 106 dB higher than in the case without errors, which

is equivalent to a 17 bit resolution loss.

Other filter structures were studied. Higher order But-

terworth filters were also considered since they are used

as analysis filters in some previous HFB designs [5].

Third order Butterworth filters were taken into account

for this study. Again, a Monte Carlo simulation with

1000 trials was performed for a four-channel hybrid filter

bank with 128-length FIR synthesis filters. The results

are shown in table V. The aliasing is 51 dB higher than

in the case without errors, which means a 8 bit resolution

loss.

Even with a 1% error on analog components (which

is quite optimistic in high frequency technology), the

distortion and aliasing functions are degraded so that the

equivalent resolution looses at least 8 bit.

TABLE V

HFB PERFORMANCES IN THE PRESENCE OF ANALOG REALIZATION

ERRORS FOR BUTTERWORTH ANALYSIS FILTERS

Analog Mean Peak Mean Peak

errors aliasing aliasing distortion distortion

(dB) (dB) (dB) (dB)

No
-102 -80 4.6 · 10−7 3.3 · 10−4

analog errors

εRm = 0.01

-51 -35 0.001 0.07εLm = 0.01

εCm = 0.01

2) Effects of digital filter coefficient quantization:

In this section, only the errors caused by the quantiza-

tion of the digital filter coefficients are considered. A

fixed arithmetic representation for filter coefficients is

supposed to be used and no analog realization errors are

taken into account. The error that the quantization of

the coefficients produces in the transfer function can be

easily evaluated. If the desired transfer function is:

Fm(ejω) =
N−1∑
n=0

fm(n)e−jωn, m ∈ {1, 2, ...,M} (55)

then the implemented one is:

F̃m(ejω) =
N−1∑
n=0

f̃m(n)e−jωn. (56)

The error introduced by coefficient quantization is:

Em(ejω) = F̃m(ejω)− Fm(ejω) =
N−1∑
n=0

εm(n)e−jnω,

(57)

where εm(n) = f̃m(n)− fm(n). If a rounding quantiza-

tion is used, then εm(n) ∈ [−∆
2 , ∆

2

]
, with ∆ = 2−Bq

and Bq is the length of the digital word and:

∣∣Em(ejω)
∣∣ ≤

N−1∑
n=0

|εm(n)| = N
∆
2

. (58)
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Using (2) and (57), the implemented aliasing and distor-

tion functions are:

T̃p(ejω) = Tp(ejω)+
1
M

M∑
m=1

Em(ejω)Hm

(
jΩ − j

2πp

MT

)
,

(59)

p ∈ {−(M − 1), ...− 1, 0, 1, ..., (M − 1)}.

The error appearing in the distortion and aliasing func-

tions can be written as:

ETp(ejω) = T̃p(ejω)− Tp(ejω). (60)

Let us assume |Hm(ejω)| ≤ 1 and consider a uniform

distribution of the analog filter frequency responses in

the working frequency band (e.g. resonators with equally

spaced central frequencies). In the passband of each anal-

ysis filter, the other filters present important attenuations.

Hence:

∣∣ETp(ejω)
∣∣
max

≈ 1
M

max
m,ω

∣∣Em(ejω)
∣∣ =

1
M

N
∆
2

. (61)

(61) is useful after the design phase to decide the neces-

sary number of bit for the FIR coefficient quantization.

The error introduced by coefficient quantization (61)

must be smaller than the aliasing and distortion errors

obtained in the design process.

An eight-channel HFB was considered. Equally

spaced, constant band resonators were used as analysis

filters. Tests were made for different fixed point formats

for coefficient quantization. No deterioration was noticed

in the case of the 32-bit fixed point compared to the

reference floating point. When 16-bit quantized coeffi-

cients are used, (61) results in a predicted error value of

−78 dB in the aliasing functions. The same result was

obtained in the simulation: the aliasing peak deteriorated

from the initial −112 dB to −78 dB due to 16-bit

quantization. The simulation results are summarized in

Table VI.

Concerning the digital coefficient quantization, it is

possible therefore to determine a minimum number of

TABLE VI

HFB PERFORMANCES IN THE PRESENCE OF COEFFICIENT

QUANTIZATION

Mean Peak Mean Peak

aliasing aliasing distortion distortion

(dB) (dB) (dB) (dB)

No
-122 -112 10−8 1.3 · 10−5

quantization

16 bit
-88 -78 1.2 · 10−5 6 · 10−4

fixed point

32 bit
-122 -112 10−8 1.3 · 10−5

fixed point

bit in order to limit the aliasing so that the required

resolution is obtained. In the given example, if a mean

14-bit resolution is needed, a 16-bit quantization of the

digital coefficients is sufficient. Concerning the analog

errors, the sensitivity is much more important. A solu-

tion could be to measure the analysis filter frequency

responses and to calculate the synthesis filters with the

LMSGAD method. This could be done by a calibration

process or blind estimation. Some results are given in

[21], [22] and [23]. [24] proposes an other solution that

minimizes reconstruction and realization error energies.

IV. CONCLUSION

In the context of software/cognitive radio applications,

HFBs A/D converters are an attractive solution for future

A/D conversion systems. First, HFBs make it possible

to enlarge the conversion bandwidth. Bandpass HFBs

can also be useful to minimize the sampling frequency.

This aspect is particularly interesting in the ideal desired

scheme of a direct RF conversion. Finally, HFBs offer

software controlled versatility. The presented ”frequency
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focusing” functionality is a way to improve the reso-

lution in a narrower bandwidth by reprogramming the

digital part. This is useful if the system needs to perform

alternately spectrum sensing and communication.

However, the main drawback of these structures is

their sensitivity to the mismatch between the analog

and digital parts. The presented HFB design methods

optimize the digital filters based on the knowledge of the

analog filter frequency responses. This makes it possible

to maximally relax constraints on the realization of the

analog part. It is clear that an estimation of the analysis

filter frequency responses is necessary. A complete study

of a calibration method or other solutions such as blind

estimation is a topic for further work.
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