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Abstract—This paper presents a solution to the problem of
target tracking within a sensor network. This is based on
modeling the target dynamics as a Markov process, and is
reformulated as nonlinear filtering. When the target motion is
a diffusion process, the optimal filtering involves a resolution of
the backward Kolmogorov equation. Since an explicit solution
for this partial differential equation does not exist in general, we
recover the filtering by an alternative Monte-Carlo approach.

I. INTRODUCTION

A. Sensor networks: a technology and applications

Networked sensing is an interdisciplinary domain support-
ing many researches. As to application, we consider target
tracking where sensing produces measurements such as the
azimuth angle. The tracking problem consists in estimating in
real time the target trajectory. This is based on a model for
the target motion which either derives from physics laws (i.e.
knowledge-based) or is set as a black-box prior. To improve the
estimation there are in general multiple sensors, typically here,
a sensor network. In reality sensors may measure different
quantities, or may have different precisions on the same
measurement. Besides, sensors are not synchronized so that
the measurements proceed during irregular time intervals. As
regards the technology, we are interested in a challenging tech-
nology of “smart” sensors whose role is not only measurement,
but also data processing and decision making. Target tracking
with networked sensing is mathematically reformulated in the
next subsection.

B. Stochastic filtering

A possible model for the problem is the following. We have
an Rd-valued continuous-time process X = {Xt}t≥0. We
assume that X is a Markov process, more precisely, a diffusion
process which evolves according to the stochastic differential
equation (SDE)

dXt = σ(Xt) dWt + b(Xt)dt L(X0) = µ (1)

with coefficients σ(x) =
(
σi

j(x)
)

and b(x) =(
b1(x), ...., bd(x)

)
. W = {Wt}t≥0 is a d-dimensional

Wiener process and µ is a probability distribution on Rd.

We have noisy nonlinear observations of X: an Rq-valued
discrete-time process Y = {Yn}n∈{1,2,...N} indexed at N
irregularly spaced instants t1, t2, ...., tN . There are different

ways in which the observations occur; in any case the obser-
vation process Y is related to the unobservable (state) process
X via the conditional distribution

P
(
Yn ∈ Γ|FX

n ∨ σ{Y1, ..., Yn−1}
)
,

for Γ a Borel-measurable set from Rq . FX
n and

σ{Y1, ..., Yn−1} are the σ-algebras generated respectively by
{Xt, 0 ≤ t ≤ tn} and {Y1, ..., Yn−1}.

We wish to compute the best (or optimal) estimate, in
a mean square sense, of f(Xt) given the observations
{Y1, ..., Yn} up to time t, i.e., to compute the conditional
expectation

E [f(Xt)|Y1, ..., Yn] , tn ≤ t, n ≥ 1,

for all reasonable functions f on Rd.

II. FILTERING EQUATIONS: THE OPTIMAL FILTER VERSUS
PARTICLE FILTERING

We assume that P (Xt ≤ x|Y1, ..., Yn), tn ≤ t, n ≥ 1,
possesses a density with respect to the Lebesgue measure ψ
on Rd:

Π(Xt|Y1,...,Yn)(x) :=
dP (Xt ≤ x|Y1, ..., Yn)

ψ(dx)
.

A. Observation scheme

In a wireless sensor and micro-sensor network energy
consumption is a key factor for the sensor lifetime. Optimizing
energy consumption is a challenge requiring energy-efficient
protocols. The following is a protocol which is adapted to
the application. There is only one active sensor at the same
time; the best sensor, for producing the next observation, is
that one with the most probable position with respect to the
last estimated target position density.

We single out one observation scheme: for any n ≥ 1 we
have

Yn = h(Xn, Cn), (2)

where h is a known function from Rd × Rd into Rq, and
C = {Cn}n∈{1,2,...N} is an Rd-valued discrete-time process
which represents the control. Specifically, let Xt = (X1

t , X2
t )

be the target position at time t in a plane equipped with



horizontal and vertical axes −→x 1 and −→x 2, respectively. Let
there be fixed locations xi of sensors; each sensor could be
the active sensor at an observation time tn and the control
Cn is nothing but the active sensor coordinates (C1

n, C2
n).

In a limited sensing rage we have for instance, for n ≥ 1




Y 1
n =

√
(X1

n − C1
n)2 + (X2

n − C2
n)2 + er

n

Y 2
n = arctan

(
X2

n−C2
n

X1
n−C1

n

)
+ ea

n

together with, for some t

Cn = arg max
xi

Π(Xt|Y1,...,Yn−1)(x) tn−1 ≤ t < tn

subject to the initialization t0 = 0 and ΠX0 = µ. Here the
sensor measurement Y 1 is the distance between the active
sensor and the target, and the line they form leans at an angle
Y 2 from the horizontal axis. We assume that the observation
noises er and ea are independent processes, white, Gaussian
and centered with standard deviations σr and σa, respectively.

B. Conditional density characterization: the optimal filter

Π(Xt|Y1,...,Yn)(x), tn ≤ t < tn+1, n ≥ 1, solves the
Chapman-Kolmogorov equation

Π(Xt|Y1,...,Yn)(x) =∫

u∈Rd

p(t− tn, u, x)Π(Xn|Y1,...,Yn)(u)du, (3)

where p(t, u, x) is the density of the transition function
P (t, u, Γ) of the Markov process X . But for fixed x, p(t, u, x)
solves the backward Kolmogorov equation

∂p

∂t
=

1
2

∑

i,j

aij(u)
∂2p

∂ui∂uj
(u) +

∑

i

bi(u)
∂p

∂ui
(u), t > 0,

lim
t↓0

p(t, u, x) = ε(u− x). (4)

Here aij(u) =
∑

k σi
k(u)σj

k(u) and ε(u − x) is a unit mass
at position x.

At each observation instant tn, n ≥ 1, Π(Xn|Y1,...,Yn)(x)
solves a “Bayes-like” rule, subject to ΠX0 = µ:

Π(Xn|Y1,...,Yn)(x) ∝ Π(Yn|Xn=x,Y1,...,Yn−1)(Yn)×
∫

u∈Rd

p(tn − tn−1, u, x)Π(Xn−1|Y1,...,Yn−1)(u)du

(5)

Proof of (5): Let f and g be arbitrary functions respectively
on Rd and Rq. We have

E [f(Xn)g(Yn)|Y1, ..., Yn−1] =

E [E[f(Xn)|Y1, ..., Yn]g(Yn)|Y1, ..., Yn−1] . (6)

The left hand side develops as follows:

E [f(Xn)g(Yn)|Y1, ..., Yn−1] =

E
[
f(Xn)E

[
g(Yn)|FX

n ∨ σ{Y1, ..., Yn−1}
] |Y1, ..., Yn−1

]
=

E
[
f(Xn)

∫

y

g(y)Π(Yn|FX
n ∨σ{Y1,...,Yn−1})(y) dy

|Y1, ..., Yn−1] =

E
[
E

[
f(Xn)

∫

y

g(y)Π(Yn|Xn,Y1,...,Yn−1)(y) dy |Xn−1

]

|Y1, ..., Yn−1] =

E
[∫

x

f(x)
∫

y

g(y)Π(Yn|Xn=x,Y1,...,Yn−1)(y) dy×
p(tn − tn−1, Xn−1, x) dx |Y1, ..., Yn−1] =

∫

u

∫

x

f(x)
∫

y

g(y)Π(Yn|Xn=x,Y1,...,Yn−1)(y) dy ×
p(tn − tn−1, u, x) dx Π(Xn−1|Y1,...,Yn−1)(u) du.

To calculate the right-hand side of (6) set

E[f(Xn)|Y1, ..., Yn] = G(Y1, ..., Yn).

Then

E [G(Y1, ..., Yn)g(Yn)|Y1, ..., Yn−1] =

E
[
E[G(Y1, ..., Yn)g(Yn)|FX

n ∨ σ{Y1, ..., Yn−1}]
|Y1, ..., Yn−1] =

E
[∫

y

G(Y1, ..., Yn−1, y)g(y)×
Π(Yn|Xn,Y1,...,Yn−1)(y) dy |Y1, ..., Yn−1] =

E
[
E

[∫

y

G(Y1, ..., Yn−1, y)g(y)×

Π(Yn|Xn,Y1,...,Yn−1)(y) dy |Xn−1

] |Y1, ..., Yn−1

]
=

E
[∫

x

∫

y

G(Y1, ..., Yn−1, y)g(y)×
Π(Yn|Xn=x,Y1,...,Yn−1)(y) dy ×
p(tn − tn−1, Xn−1, x) dx |Y1, ..., Yn−1] =

∫

u

∫

x

∫

y

G(Y1, ..., Yn−1, y)g(y)×
Π(Yn|Xn=x,Y1,...,Yn−1)(y) dy ×
p(tn − tn−1, u, x) dx Π(Xn−1|Y1,...,Yn−1)(u) du.



Since g is arbitrary, we deduce that

G(Y1, ..., Yn−1, Yn) ∝
∫

u

∫

x

f(x)Π(Yn|Xn=x,Y1,...,Yn−1)(Yn)×
p(tn − tn−1, u, x) dx Π(Xn−1|Y1,...,Yn−1)(u) du.

But

G(Y1, ..., Yn) =
∫

x

f(x)Π(Xn|Y1,...,Yn)(x)dx,

and f is arbitrary; this obviously leads to (5). ¦

C. The approximate filter: a Monte-Carlo particle filter

The true filter (3-5) which is the optimal solution in
a mean square sense for continuous-discrete-time nonlinear
filtering is computationally intractable. In fact, p(t, u, x) is
the solution of the backward Kolmogorov equation (4) and
we have no explicit form for this solution in general. This
section presents an approximation for the posterior distribution
P (Xt ∈ Γ|Y1, ..., Yn), tn ≤ t, n ≥ 1, as a weighted sum of
random Dirac’s measures:

P (Xt ∈ Γ|Y1, ..., Yn) ≈
K∑

k=1

wk εξk
(Γ), (7)

where the particles ξk are independent identically distributed
random variables with “the same” law as Xt; here these
particles are samples drawn from the Euler discretization of
the SDE (1). Then, for any function f on Rd, we have:

E [f(Xt)|Y1, ..., Yn] ≈
K∑

k=1

wkf(ξk), tn ≤ t, n ≥ 1.

As to the weights {wk}, they are updated only as and
when an observation Yn proceeds, each one according to the
likelihood of its corresponding particle, i.e. at each observation
instant tn

wk =
Π(Yn|Xn=ξk,Y1,...,Yn−1)(Yn)

∑K
`=1 Π(Yn|Xn=ξ`,Y1,...,Yn−1)(Yn)

,

where obviously the {ξk}’s are now samples with “the same”
law as Xn.

Now besides sampling and approximation there may be
resampling at each observation instant tn: the set of particles
is updated for removing particles with small weights and
duplicating those with important weights. We simulate K new
iid random variables according to

K∑

k=1

wk εξk
.

(This is importance resampling.) The new particles ξ(new)
k have

new weights

w(new)
k ∝ Π(Yn|Xn=ξ(new)

k
,Y1,...,Yn−1)(Yn),

and give a new approximation:

P (Xn ∈ Γ|Y1, ..., Yn) ≈
K∑

k=1

w(new)
k εξ(new)

k
(Γ).

Finally, These new particles are used to initialize the Euler
discretization scheme for the next sampling and posterior
distribution approximation.

III. DEMONSTRATION

Consider the following diffusion as the target motion:

dXt = α

(
1 0
0 1

)
Xt dt + dWt, L(X0) = µ,

with α = −0, 5. The following figure shows particular
trajectories of the state components during one unit of time.
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To evaluate the quality of filtering, a particular path of X is
simulated; Figure 1 shows the points on this simulated path
which are the true target positions at some well determined
instants. These instants of interest are called filtering instants.
Naturally, observation instants tn form a subset of the filtering
instants. So Figure 1 is useful as a reference. It shows the
sensing range and locations; here 100 sensors are deployed
and distributed randomly about a range of 8 × 8 (units of
surface), but their locations are fixed throughout.

Figure 2 shows a run on an arbitrary couple of observation
times. The circle is the true target position and the triangle
is the posterior estimate for that position. The star is the
active sensor which produces the observation, calculates the
target position estimate and decides which sensor is the next
to be activated. This figure is to illustrate the active sensor
selection before each observation.

Note the accuracy of target tracking on Figure 3 where we
plot errors on the horizontal and vertical coordinates for 1000
filtering instants (which are all observation times as well).

The following is the remainder of implementation details of
the Monte-Carlo particle filter.



• number of particles: K = 1000;

• standard deviations of observation noises: σr = 0.1 (unit
of length), σa = 1 (degree);

• time step of the Euler scheme: 0.01 (unit of time);

• probability distribution on R2, of the initial state X0:

µ = N
((

0
0

)
,

(
10−4 0

0 10−4

))
.

N(m
¯
,Σ) denotes the Gaussian law with mean the vector m

¯and covariance matrix Σ.
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Fig. 1. From top to bottom: target positions at 1000 units of time, locations
for sensors.

IV. CONCLUSION: SUMMARY AND PERSPECTIVES

Online filtering within a sensor network is considered
when applied to target tracking, for the very special case of
a diffusion (as the target motion). Observation times may
be irregularly spaced but are assumed to be rigourously
determined. A possible energy-efficient scheduling protocol
for the sensor network goes as follows. At any observation
time only one sensor is activated according to a criteria
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Fig. 2. Star: active sensor, circle: true target position, triangle: posterior
estimate.

involving the last filtering distribution, estimated before
that time. An alternative filter instead of the optimal
one is proposed since the latter is not computationally
feasible. It is based on samples drawn by discretization
of a stochastic differential equation. Here we use the well
known Euler scheme since there isn’t a significant gain with
more sophisticated discretization schemes. Throughout the
demonstration the filter is validated on a synthetic example:
a 2-dimensional Ornstein-Uhlenbeck process.

In reality there is an unknown number of targets in the
scene, so we have to estimate this number when evolving in
time, and in case of multiple targets, we also have to associate
measurements to sensors. Besides, there is another question to
answer: false alarms. In fact, we do not know whether a given
measurement is a clutter measurement or a measurement from
one of the targets. We shall address these existing problems by
proposing a stochastic hybrid differential system for modeling;
this will be developed elsewhere.
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