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Abstract. In this paper, we present a manifold clustering method for
the classification of fibers obtained from diffusion tensor images (DTI) of
the human skeletal muscle. Using a linear programming formulation of
prototype-based clustering, we propose a novel fiber classification algo-
rithm over manifolds that circumvents the necessity to embed the data
in low dimensional spaces and determines automatically the number of
clusters. Furthermore, we propose the use of angular Hilbertian metrics
between multivariate normal distributions to define a family of distances
between tensors that we generalize to fibers. These metrics are used to
approximate the geodesic distances over the fiber manifold. We also dis-
cuss the case where only geodesic distances to a reduced set of landmark
fibers are available. The experimental validation of the method is done
using a manually annotated significant dataset of DTI of the calf muscle
for healthy and diseased subjects.

1 Introduction

Diffusion Tensor Imaging (DTI) has started to become more ubiquitous in other
fields than brain white matter study [1]. Indeed, this modality has been used for
other anatomical regions such as the tongue [2] and the human skeletal muscles
[3]. The latter are of particular interest because they present an architecture
of elongated myofibers with well known anatomy. Furthermore, the study of
the effects of myopathies (neuromuscular diseases) on water diffusion in muscle
tissues is essential to assess the possibility of the use of DTI in a diagnosis
procedure and early detection of diseases. Since myopathies result in an atrophy
and weakness of the muscle, we expect an alteration of the diffusion properties
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among diseased subjects. It is therefore important to cluster fiber tracts for local
statistical analysis of diffusion information.

DTI previous studies of the human skeletal muscle [3,4] provided a com-
parative study between subjects and different muscle regions of scalar values
derived from tensors like trace, fractional anisotropy, etc. They also evaluated
experimentally the physiological cross-sectional area (PCSA), which is an impor-
tant measure of muscle architecture since it is related to the maximum muscle
force. However little emphasis was put on muscle segmentation in comparison
with brain white matter, where several approaches were proposed. The use of
graph theory and manifold learning has been extensively explored in the pre-
vious literature. For instance, in [5] the distribution of points along each fiber
tract is considered to be Gaussian, which allows to derive a Euclidean distance
between each pair of fibers. Fiber bundling is done using a normalized cut. In
[6], the affinity between fibers is based on the symmetrized Hausdorff distance
and spectral clustering is achieved using an eigenanalysis of the affinity ma-
trix and k-means in the embedding space. The method presented in [7] relies on
Laplacian Eigenmaps and similarity between fibers is determined using their end
points. In [8], the authors construct a graph-based distance between fiber tracts
where both local and global dissimilarities are taken into account. The consid-
ered distance is then incorporated in a Locally Linear Embedding framework
and clustering is done using k-means. Curve modeling has attracted attention
and was handled in [9] by defining a spatial similarity measure between curves
and using the Expectation-Maximization algorithm for clustering. The method
proposed in [10] considers the simultaneous use of medoid-shift clustering and
Isomap manifold learning and proposed to include prior knowledge in the seg-
mentation process using a white matter fiber atlas. Mean-shift was also used
in [11] where each fiber is first embedded in a high dimensional space using
its sequence of points, and kernels with variable bandwidths are considered in
the mean-shift algorithm. More recently, fibers were represented in [12] using
their differential geometry and frame transportation and a consistency measure
was used for clustering. Another class of methods suggested to circumvent the
limitation of unsupervised clustering where the obtained segmentation may not
correspond to anatomical knowledge. They opt for supervised algorithms that
try to achieve a clustering consistent with a predefined atlas. Expert manual
labeling of the fibers for one subject provides an atlas in [13]. This is followed
by the registration of B0 images and a hierarchical classification of fibers where
the B-spline coefficients of the curves are considered to measure curve similarity.
In [6], a Nystrom approximation of the out-of-sample extension of the spectral
embedding is considered to build an atlas of fibers.

We can note that the existing literature puts a lot of emphasis on mani-
fold embeddings. They are considered crucial to reflect faithfully the diffusion
process modeled by tensors and fibers, and proved to be useful for a more ac-
curate analysis of DTT information [14]. However, the use of embeddings and
common clustering techniques like k-means requires to choose the dimension of
the embedding and the number of clusters. It would be preferable to obtain the



number of clusters as a result of the clustering algorithm, especially when the
inter-subject variability (which is rather important for skeletal muscles) may re-
quire the use of different numbers of clusters across patients. Moreover, selecting
the embedding dimension is an issue since a too low dimension will result in in-
formation loss and a too high dimension will include an important dispersion in
the data. Furthermore, clustering on the manifold directly is a tricky issue since
one has to compute intrinsic means on submanifolds where an explicit expression
of geodesic distances is not necessarily available. Another issue is the sensitivity
of methods like k-means to initialization and the possible failure of the medoid-
shift technique to determine correctly the modes of a density[15]. Besides, when
dealing with fiber similarities, the prior art seems to discard the information
provided by the tensor field when considering metrics between fibers. In [16], we
proposed a kernel between tensors primarily, generalized it to fiber tracts and
used k-means clustering after kernel PCA and Isomap embedding. In this paper,
we propose a method that performs manifold clustering of fibers without resort-
ing to manifold embeddings or computations of intrinsic means. It is based on
a linear programming (LP) technique [17] and uses the geodesic distances from
the fibers to a reduced set of landmark fibers to perform the clustering. Unlike
k-means, the algorithm provides automatically the number of clusters, is not
sensitive to initialization and the class centers are chosen as examplars from the
dataset. As far as fiber similarity is concerned, we develop the viewpoint that we
proposed in [16] and build Hilbertian angular metrics between fibers. These are
derived from their counterparts between tensors, providing a more general and
much simpler formulation than [16]. The metrics are incorporated afterwards in
the Dijkstra algorithm to approximate the geodesic distances along the manifold
of fibers.

The remainder of the paper is organized as follows: in section 2, we present the
clustering method and develop the landmark-based geodesic clustering costs. In
section 3, we discuss and derive the family of Hilbertian angular metrics between
tensors and propose their extension to fiber tracts. Section 4 is dedicated to the
experimental results and we discuss the perspectives of this work in section 5.

2 Manifold Clustering via Linear Programming

Clustering refers to the process of organizing a set of objects into groups such that
the members of each group are as similar to each other as possible. A common
way of tackling this problem is to formulate it as the following optimization task:

given a set of objects V = {p1,...,pn}, endowed with a distance function d(-,-)
that measures dissimilarity between objects, the goal of clustering is to choose
K objects from V, say, {q1,...,qx} (these will be referred to as cluster centers

hereafter) such that the obtained sum of distances between each object and its
nearest center is minimized, or:

min VZmilnd(n qi) - (1)
peY

q1,--,qK €



An important drawback of the above formulation is that it requires the number
of clusters K to be provided beforehand, which is problematic as this number
is very often not known in advance. Note that a wrong value for K may have
a very negative effect on the final outcome. One would thus prefer K to be
automatically estimated by the algorithm as a byproduct of the optimization
process. To address this issue, we will let K be a variable here, and, instead
of (1), we will use the following modified objective function, which additionally
assigns a penalty g(g;) to each one of the chosen cluster centers g;:

K

min  min Z miin d(p,q;) + Z g(@) | - (2)
peY

K qi,.-.9x €V ‘
=1

But, even if K is known, another serious drawback of many of the existing
optimization-based techniques for clustering is that they are particularly sen-
sitive to initialization and thus may get easily trapped in bad local minima.
For instance, K-means (one of the most commonly used clustering methods) is
doomed to fail if its initial cluster centers happen not to be near the actual clus-
ter centers. To deal with that, here we will rely on a recently proposed clustering
algorithm [17], which has been shown to yield approximately optimal solutions
to the NP-hard problem (2). This algorithm relies on reformulating (2) as an
equivalent integer program, whose LP-relaxation (denoted as PRIMAL hereafter)
has the following form:

PRIMAL = m}in Z d(p, q)xpg + Z 9(q)Tqq (3)
p,q€V,p#q qEV
s.t. quv Tpg =1, Tpg < Tgq, Tpg =0 (4)

If constraints x,, > 0 are replaced with z,, € {0,1}, then the resulting integer
program is equivalent to clustering problem (2). In this case, each binary variable
Zpq with p # ¢ indicates whether object p has been assigned to cluster center g
or not, while binary variable x4, indicates whether object ¢ has been chosen as
a cluster center or not. Constraints » qev Tpg = 1 simply express the fact that
each object must be assigned to exactly one center, while constraints x,, < x4
require that if p has been assigned to ¢ then object ¢ must obviously be chosen
as a center. The most crucial issue for tackling this integer LP is setting the
variables x4 correctly, i.e, deciding which objects will be chosen as centers. To
this end, the so-called stability of an object has been introduced in [17]. This is a
measure which tries to quantitatively answer the following question: how much
does one need to further penalize an object to ensure that it will never be selected
as an optimal cluster center? Intuitively, the greater the stability of an object,
the more appropriate that object is to become a cluster center. For having a
practical algorithm based on object stabilities, an efficient way of estimating
them is required. It turns out that this can indeed be done very fast by moving
to the dual domain and appropriately updating a solution of a dual relaxation to
PRIMAL. Since each dual cost provides a lower bound to the cost of the optimal



clustering, an additional advantage of working in the dual domain is the ability
to provide online optimality guarantees and to avoid bad local minima. We refer
the reader to [17] for more details.

We now discuss the case where the objects lie on a manifold. This implies the
use of the geodesic distance as a similarity measure. Ideally this distance should
correspond to the pairwise cost d(p,q) for p # ¢ in the linear programming
formulation proposed in (3). A first possible choice is to compute the geodesic
distances between all the pairs of points using the Dijkstra algorithm in an
Isomap-like fashion, as suggested in [10]. The shortest path is found using a
local approximation of the geodesic distance, for example a Euclidean distance.
The pairwise cost d(p, q) is set to d(p, ¢) = dg4(p, q) where d is the corresponding
geodesic distance. However, inspired by the landmark Isomap algorithm [18], we
can compute the geodesic distances from all the data points to a reduced set
of randomly selected landmarks. This will reduce the computational load that
a full computation of the geodesic distances between every pair of data points
would entail. Let (I;,)m=1..n, be a set of such chosen n; landmarks. We would
like to replace dy(p, q) by a reasonable approximation. Given that the geodesic
distance between two points is the length of the shortest path linking these
points, we note the following Ym € [1...ny], |dg(p,Im) — dg(gq,lm)| < dg(p,q) <
dg(p,lm) + dg(q, lm), which implies

sup |dg(p, lm) — dg(q,lm)\ < dg(Pv q) < igf(dg(p, lm) + dg(‘]v Im)) (5)

This provides a lower bound and an upper bound to the cost dy(p, ¢) in the case
where only the geodesic distances to some landmarks are computed. Note that
in the particular case where p and ¢ are landmarks dy(p, ¢) = sup,), |dg(p, ) —
dg(q,ly)| = infy, (dg(p, lm) +dg(q, lin)). On the other hand we can also note that

inf(dy(p, Im) + dg(q,1m)) = 2n < dy(p,q) (6)
dg(p,q) < sup |dy (D, Im) — dg(q, lm)| 421 (7)

where n = inf,, min(dy(p, ), dg(q,1n)). Therefore it makes sense to replace
the cost d4(p,q) whether by its upper bound or its lower bound, since both
approximate the cost up to 2n. A byproduct of inequalities (6) and (7) is that
both approximations are exact if p or ¢ are landmarks, since in that case we
have n = 0.

It is interesting to note in this setting that the lower bound is the L* norm
between the distance-to-landmarks representation of p and ¢. Indeed, let up
(resp. ug) be the n;-dimensional vector of geodesic distances of p (resp. g) to the
landmarks

up = [dg(p, 1), -, dg(p, )]s ug = [dg (g 1), -, dg(g, 1))’ (8)

By definition, sup,), |dg(p,lmn) — dg(q, )| = |[up — ug||ec. Thus the lower bound
approximation has the advantage of defining a metric cost. Intuitively, for a num-
ber of landmarks sufficiently larger than the intrinsic dimension of the manifold,



the distance vector representation will provide a good characterization of the
points on the manifold.

In order to apply the clustering framework to fiber tracts, we will define a
Euclidean structure over the fiber domain. For this purpose, we show in the
next section how to map the fibers to a Hilbert space and derive corresponding
metrics that will provide a local approximation of the geodesic distance.

3 From Metrics on Tensors to Metrics on Fibers

In this section, we build a family of Hilbertian metrics between fibers that will
be incorporated in the Dijkstra algorithm to find the shortest path (and thus d)
between two elements of the fiber set. The starting point is to consider angular
distances between diffusion tensors based on Gaussian probability densities and
generalize these distances to the fiber domain.

3.1 Multivariate Normals: a Subset of the Exponential Distributions
Family

The structure of the set of multivariate normal distributions M as a statistical
manifold endowed with the Fisher information geometry was discussed in [19],
where a closed-form solution of the geodesic distance over this manifold is avail-
able for the particular case of Gaussian distributions with common mean. Here
we view the multivariate normal distributions as a subset of the exponential dis-
tributions family. Let us consider a normal probability density p. In this context,
given the exponential decay of the distribution, it is interesting to notice that
not only p is an element of the Hilbert space L? of square integrable functions
but any power p®, with « a strictly positive real number is also square inte-
grable. This motivates the use of normalized probability product kernels [20] to
define a family of angular similarities between multivariate normal distributions.
Indeed, considering two elements p; and p2 of M and o € R, we can define the
following similarity Cy(p1,p2) between p; and po as follows:

J p1(x)*pa(x)*dx

fpl(x)Qadx\/fpg(x)Qadx

C,, is simply the normalized L? inner product between p$ and pg. It is therefore
the cosine of the angle between p{ and p§. It defines a Mercer kernel over the
space of multivariate normal distributions, i.e. for any subset (p;);=1..n of M,
the Gram matrix G of C,, with entries G;; = Co(p;, pj) is semi-definite positive.
The Mercer property allows the construction of a mapping ¢, associated with
the kernel C, that provides an embedding of M in the Reproducing Kernel
Hilbert Space (RKHS) H,, such that Cy(p1,p2) =< ¢a(p1), Pa(p2) >4, , where
< .,. >, is the inner product of H,. Given that C, is a normalized scalar
product, i.e. Co(p,p) = 1, we can define the following Hilbertian metric dy,, :

Aoy, (P1,12) = V/Ca(p1,p1) — 2Ca(p1,p2) + Calp2. p2) = /2 — 2Co(p1, p2)
(10)

9)

Ca(p1,p2) =
v




In the following subsection, we derive the closed-form expression of C,, and
do |7, for normal distributions that model a local diffusion process.

3.2 Explicit Derivation of the Angular Distances

Let us consider the Gaussian distribution p that models the motion distribution
of water protons at a location x with a tensor D. Given a diffusion time ¢, the
probability of displacement from the position x to the position y is provided by
the following equation:

p(y\x,t, D) = dw eXp(— (y - X) ]Z; (y — X)

) (11)

We now consider two normal distributions p; and py with parameters (z1,Dy)
and (z2,Ds2) respectively. Based on [20] and (11), we can see that C, is the
product of two terms:

Ca(pr,p2) = C™*" (D1, D2) O3 (py, po) (12)
where
3 det(Dl)% det(Dz)%
det(D; + D3)
ospatial () py) = exp (_%(x’inlxl + XEDQIXQ)) X
exp (37 (D131 + D5 ) (D7 4 D517 (D 3 4+ Dy o)) (13)

Cgensor (D17 Dg) -9

We notice that C$P4%! has a much simpler expression. Indeed, using the follow-
ing inversion properties

(D;+Dy) ' =Dy - DDy + DY) 'DYY (14)
(D1 +D,)"' =D;' - D; /(D7 + D) 'Dy! (15)

we obtain the following compact expression for Cspatial.

Cspatial() py) = exp (—%(xl —x2) (D1 + Do)t (x; — xz)) (16)
We can see that C°"%°T is a tensor similarity term and is independent of the
parameter o while C5P9%@! is a spatial connectivity term where appears the Ma-
halanobis distance between the locations x; and xs with respect to the sum
of tensors (D; 4+ Dsy). Therefore C, takes into account the tensor affinity as
well as the spatial position. This is crucial since the combination of spatial and
diffusion information allows for a better modeling of the interactions between
tensors and favors a generalization to the fiber domain, as will be discussed in
the next subsection. The diffusion time ¢ is important to weight the contribution
of each term and t — oo corresponds to the case where the spatial interaction is



not taken into account. Furthermore, there is a striking similarity between the
proposed family of measures since o appears as a scale parameter in the expo-
nential function. Given the present formulation, we can conclude that changing
the parameter o amounts to a rescaling of the diffusion time ¢. The derivation
of the metrics dy|x, is handily done using (10).

In the next subsection, we show how the Mercer property of C, allows the
definition of angular similarities between fiber tracts.

(b) (c)

Fig. 1. Axial, coronal and sagittal views of fiber segmentation obtained with the lower
bound approximation for (a) a healthy subject in 10 classes (b) a diseased subject in 3
classes. The parameter 3 was set to 10 in both cases. In (c) the ground truth segmenta-
tion of (a) with the following muscles: the soleus (cyan) , lateral gastrocnemius (red),
medial gastrocnemius (magenta), posterior tibialis (yellow), anterior tibialis (green),
extensor digitorum longus (purple), and the peroneus longus (blue).

3.3 Angular Similarities between Fibers

A fiber tract is obtained by following the principal directions of diffusion of the
tensor field starting from an initial location. It is therefore natural to represent
a fiber F as a sequence of Gaussian probability measures (p;);=1..ny where N
is the number of points of the fiber. Every probability measure (p;) has a pair
of parameters (x;,D;) where x; is the spatial location and D, is the tensor
at x; when the tensor field is supposed to be continuous. When considering
the mapping ¢, of these measures in the RKHS H,,, we can represent F as a



weighted average of (¢q(p;))i=1..n, 1.e. F = Z _ wida(pi). A straightforward
choice of weights is Vi, w; = .

Let us consider a fiber F; (resp. Fy) represented using a set of probabilities

(pgl))izl...z\ﬁ (resp. (pEQ))i:L,_M) and weights w( ) (2 ))

similarity C,, between F; and Fs is defined as follows:

<y 1w<”¢a< ), w® %(pJ >>Ha
[ e, [ o0,

(resp. w; The angular

Co(F1,Fy) = (17)

Using the bilinearity of the inner product < .,. >4, we can express C using
C, :

SV S W@, (0, p?)
322 wiou G, [52w%ou6)

Ca (F1,Fq) = (18)

Ha

where sz f w (k) H = \/Z EN’“l w, w(k)C (pl 7pgk)) for k =
{1,2}. Again the correspondlng Hilbertian metric between fibers is derived in a

similar way to (10). Note that the present formulation endows the fiber domain
with an Euclidean structure without resorting to a dimensionality reduction step.

4 Experimental Validation

Thirty subjects (twenty healthy subjects and ten patients affected by myopathies)
underwent a diffusion tensor imaging of the calf muscle using a 1.5 T MRI scan-
ner with the following parameters : repetition time (TR)= 3600 ms, echo time
(TE) = 70ms, slice thickness = 7mm and b value of 700s.mm ™2 with 12 gradient
directions and 13 repetitions. The size of the obtained volumes is 64 x 64 x 20
voxels with a voxel resolution of 3.125 mm x 3.125 mm x 7 mm. T1-weighted
volumes were simultaneously acquired, so they are naturally registered to the
diffusion images. They were afterwards manually segmented by an expert in 7
classes [Fig.1 (c)].

Fiber tracts were reconstructed using [21], based on a manual region of in-
terest. To obtain the ground-truth class of each fiber, we counted the number
of voxels belonging to each muscle group that the fiber crosses and assigned
the latter to the majority class. In our experiments we set the diffusion time
to t = 2 10* and the parameter « in the fiber metric to o = 1. To compute
the Hilbertian metrics between fiber tracts, the weights w; of each fiber F in
(18) were chosen as the inverse of the number of points in F. We selected 30%
of the fibers as landmarks and for the computation of the geodesic distances
using the Dijkstra algorithm, we considered a k-NN graph where k£ was set to
k = 12. The cost g(F) of choosing a fiber F as a class center in (3) was set
to a constant g = 3 p1 (dg(Fi, Fj), ;) where piy is the statistical median. We
tested the following values of 3: {7,10,13}. For a quantitative assessment of the



method, we measure the dice overlap coefficient between the obtained segmen-
tation using the proposed method and the ground-truth segmentation provided
by the expert. For the sake of comparison, we evaluate also the performance
of k-means clustering using the same metric and a manifold embedding. The
dimensionality of the embedding is chosen to be the number of clusters obtained
by our method, which is a common choice in embedding-based approaches. The
k-means algorithm is run 50 times and each time we compute the dice overlap
of the clustering result with the ground-truth segmentation. We consider both
the average dice coefficients over the restarts of the k-means algorithm and the
dice coefficient of the clustering with the least distortion. We run the following
experiments:

1. We compute all the geodesic distances between every pair of points and use
them for linear programming clustering. We compare the obtained result
with an Isomap embedding followed by k-means.

2. We compute the geodesic distances to a set of landmarks and use the lower
(resp. upper) bound approximation for linear programming clustering. We
compare the obtained result with a landmark-Isomap embedding followed
by k-means.

We provide in [Fig.2 (a), (b), (c)] the boxplots showing the distributions of the
dice coefficients for the thirty subjects using different values of § for our al-
gorithm, compared with k-means after manifold embedding. We can note that
linear programming clustering performs significantly better than the average
score achieved by k-means both for a full and landmark-based computation of
the geodesic distances. Furthermore, it achieves results equivalent to the best k-
means with an average dice coefficient of approximately 0.8 and in some cases it
improves marginally the dice overlap. The advantage is that our result is repro-
ducible, i.e. unlike k-means it is not sensitive to initialization. When comparing
the three versions of linear programming clustering, we can see in [Fig.2 (d)] that
the lower bound and upper bound approximations perform similarly apart from
the case § = 10 where the lower bound approximation performed better, which
may be explained by the metricity of the corresponding cost. The full computa-
tion yields slightly better results than the approximations. This corroborates the
analysis provided is section 2. For qualitative evaluation, we show in [Fig.1 (a)]
(resp. [Fig.1 (b)]) a clustering result obtained for a healthy (resp. diseased) sub-
ject for B = 10. Ground truth segmentation for the healthy subject is provided
in [Fig.1 (c)]. There are too few fibers in [Fig.1 (b)] because the tractography
fails to recover fibers through the manual region of interest. This is due to the
presence of tensors with very low determinant (low diffusion). It is interesting
to note that with the same parameter § = 10, the algorithm found ten clusters
for the healthy subject while it found only three for the diseased patient, which
seems to reflect the advantage of letting the number of clusters a variable of
the optimization problem. Note also how the soleus (in cyan in [Fig.1 (¢)]) is
subdivided in an anterior and a posterior part in [Fig.1 (a)], which is consistent
with its anatomy of oblique fibers converging towards a central aponeurosis.
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Fig. 2. Boxplots of dice overlap coefficients for the thirty subjects. Each row corre-
sponds to a value of 3, from top to bottom ( takes the following values 7 , 10 and
13. (a) LP clustering using full computation of distances (LP-FC), comparison is done
with respect to the average score of k-means (AV-KM) and the score of the k-means
clustering with least distortion (MAX-KM) after manifold embedding. (b) LP clus-
tering using lower bound approximation (LP-LLWBD). (c¢) LP clustering using upper
bound approximation (LP-LUPBD). (d) Comparison between LP-FC, LP-LLWBD and
LP-LUPBD.

5 Conclusion

In this paper, we proposed a novel manifold-based fiber clustering approach
where there is no need to perform an embedding in a low dimensional space or
to select the number of clusters. We applied the method to the bundling of the
fibers of the human skeletal muscle. We also developed the theoretical aspects
of angular distances between multivariate normal distributions that model local
diffusion processes and showed that the RKHS formulation allows for the def-
inition of corresponding metrics between fiber tracts. These metrics were used
to approximate the geodesic distances on the fiber manifold using the Dijkstra
algorithm. A procedure of landmark selection should be investigated based on
the bounds tightness in (6) and (7), as well as other metrics and structures over
the fiber domain. Based for example on the metric in (10), the method can also
be used for a clustering at the tensor level.

References

1. Bihan, D.L., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N.,
Chabrait, H.: Diffusion tensor imaging: Concepts and applications. Journal of
Magnetic Resonance Imaging 13 (2001) 534-546



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Gilbert, R.J., Napadow, V.J.: Three-dimensional muscular architecture of the hu-

man tongue determined in vivo with diffusion tensor magnetic resonance imaging.
Dysphagia 20 (2005) 1-7

Galban, C.J., Maderwald, S., Uffmann, K., de Greiff, A., Ladd, M.E.: Diffusive
sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging
study of the human calf. European Journal of Applied Physiology 93(3) (2004)
253 — 262

Damon, B., Ding, Z., Anderson, A., Freyer, A., Gore, J.: Validation of diffusion ten-
sor MRI-based muscle fiber tracking. Magnetic Resonance in Medicine 48 (2002)
97-104

Brun, A., Knutsson, H., Park, H.J., Shenton, M.E., Westin, C.F.: Clustering fiber
tracts using normalized cuts. In: MICCAI (2004)

ODonnell, L., Westin, C.F.: Automatic tractography segmentation using a high-
dimensional white matter atlas. IEEE TMI 26(11) (2007) 1562-1575

Brun, A., Park, H.J., Knutsson, H., Westin, C.F.: Coloring of DT-MRI fiber traces
using Laplacian eigenmaps. In: EUROCAST. (2003)

Tsai, A., Westin, C.F., Hero, A.O., Willsky, A.S.: Fiber tract clustering on mani-
folds with dual rooted-graphs. In: CVPR. (2007)

Maddah, M., Grimson, W., Warfield, S., Wells, W.: A unified framework for cluster-
ing and quantitative analysis of white matter fiber tracts. Medical Image Analysis
12(2) (2008) 191-202

Wassermann, D.; Deriche, R.: Simultaneous manifold learning and clustering:
Grouping white matter fiber tracts using a volumetric white matter atlas. In:
MICCATI 2008 Workshop - Manifolds in Medical Imaging: Metrics, Learning and
Beyond. (2008)

Zvitia, O., Mayer, A., Greenspan, H.: Adaptive mean-shift registration of white
matter tractographies. In: ISBI. (2008)

Savadjiev, P., Campbell, J.S.W., Pike, G.B., Siddiqi, K.: Streamline flows for white
matter fibre pathway segmentation in diffusion MRI. In: MICCAL (2008)
Maddah, M., Mewes, A.U.J., Haker, S., Grimson, W.E.L., Warfield, S.K.: Au-
tomated atlas-based clustering of white matter fiber tracts from DTMRI. In:
MICCAL (2005)

Verma, R., Khurd, P., Davatzikos, C.: On analyzing diffusion tensor images by
identifying manifold structure using isomaps. IEEE TMI 26(6) (2007) 772-778
Vedaldi, A., Soatto, S.: Quick shift and kernel methods for mode seeking. In:
ECCV. (2008)

Neji, R., Paragios, N., Fleury, G., Thiran, J.P., Langs, G.: Classification of ten-
sors and fiber tracts using Mercer-kernels encoding soft probabilistic spatial and
diffusion information. In: CVPR. (2009)

Komodakis, N., Paragios, N., Tziritas, G.: Clustering via LP-based stabilities. In:
NIPS. (2008)

de Silva, V., Tenenbaum, J.B.: Global versus local methods in nonlinear dimen-
sionality reduction. In: NIPS. (2002)

Deriche, R., Tschumperlé, D., Lenglet, C., Rousson, M.: Variational Approaches
to the Estimation, Regularization and Segmentation of Diffusion Tensor Images.
In Paragios, Chen, Faugeras, eds.: Mathematical Models of Computer Vision: The
Handbook. Springer (2005)

Jebara, T., Kondor, R., Howard, A.: Probability product kernels. Journal of
Machine Learning Research 5 (2004) 819-844

Fillard, P., Toussaint, N., Pennec, X.: Medinria: DT-MRI processing and visual-
ization software Similar Tensor Workshop, 2006.



