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ABSTRACT

In this paper, we propose an application of diffusion maps to
fiber tract clustering in the human skeletal muscle. To this
end, we define a metric between fiber tracts that encompasses
both diffusion and localization information. This metric is in-
corporated in the diffusion maps framework and clustering is
done in the embedding space using k-means. Experimental
validation of the method is performed over a dataset of dif-
fusion tensor images of the calf muscle of thirty subjects and
comparison is done with respect to ground-truth segmentation
provided by an expert.

Index Terms— DTI, Fibers, Diffusion Maps, Fiber Met-
rics, Human Skeletal Muscle

1. INTRODUCTION

Myopathies are neuromuscular diseases that result in a dis-
order in the muscoskeletal system of the human body whose
symptoms are an atrophy and weakness of the muscles. They
concern a significant part of the population: for instance, they
affect 4 to 6 % of the European population (25 to 30 million
persons). It is therefore important to harness the potential
of emerging modalities like diffusion tensor imaging (DTI)
to extract information about the impact of these diseases on
the fiber architecture within the human skeletal muscle and to
provide an assessment of the condition of a patient. A pre-
liminary step towards this analysis is to classify the fibersob-
tained from DTI in anatomically coherent fiber bundles.

While DTI studies of the skeletal muscle [1, 2] focused
on the evaluation of scalar values derived from DTI images
like trace, fractional anisotropy and pennation angles, fiber
segmentation has attracted less attention than in the studyof
human brain white matter, where a rich literature of unsuper-
vised classification methods was proposed. For instance, the
method presented in [3] introduced manifold learning tech-
niques in the area of fiber bundling by relying on Laplacian
Eigenmaps. In [4], spectral clustering along with the Haus-
dorff distance between fibers is considered. In [5], another

manifold learning technique is proposed based on a graph-
based distance that captures local and global dissimilarities
between curves and uses Locally Linear Embedding for clus-
tering of the tracts. In [6], the Expectation-Maximizational-
gorithm is used by considering Gamma distributions on the
distance maps between fibers and cluster centers. The method
proposed in [7] considers medoid-shift clustering combined
with an Isomap-like manifold learning and suggested to in-
clude prior knowledge in the segmentation process using a
white matter fiber atlas. Mean-shift was also used in [8] where
each fiber is first embedded in a high dimensional space us-
ing its sequence of points, and adaptive mean-shift clustering
was applied. A differential-geometric approach was recently
proposed in [9] where clustering was done recursively using
a consistency measure between fibers.

In this paper, we propose the combination of diffusion
maps with a metric defined in the fiber domain to cluster the
fibers of the human skeletal muscle. Diffusion maps were
used for Orientation Distribution Function (ODF) segmenta-
tion in Q-ball images in [10], where spatial coherence was im-
posed using the Markovian relaxation of the affinity matrix.
However the fiber domain provides no straightforward spa-
tial neighborhood relationships like those given by the near-
est neighbors in the 3D image grid. In the definition of the
metric, we show how to impose spatial coherence in the fiber
domain, while taking into account the information provided
by the tensor field. The metric is used in the diffusion maps
framework along with the k-means algorithm in the embed-
ding space for clustering purposes. We build upon the method
we proposed in [11], where we suggested an approach based
on kernel principal component analysis for fiber clustering. In
this work, diffusion maps are used to better reflect the mani-
fold structure of the fiber tracts.

2. DIFFUSION MAPS

Diffusion maps [12] are a spectral embedding of a setX of
n nodes, for whichlocal geometriesare defined by a kernel
k : X × X → R. The kernelk satisfiesk(x, y) ≥ 0, and



k(x, y) = k(y, x). This kernel can be interpreted as anaffin-
ity between nodes. The resulting graph (an edge betweenx

and y carries the weightsk(x, y)) can be transformed into
a reversible Markov chain by the socalled normalized graph
Laplacian construction. A related construction was used in
[13] to define a geometry on a set of observations, or trajec-
tories. We define

s(x) =
∑

y

k(x, y) and p(x, y) =
k(x, y)

s(x)
. (1)

This new kernel is no longer symmetric, but it satisfies

∀x,
∑

y

p(x, y) = 1. (2)

Therefore it can be interpreted as the probability of the tran-
sition from node x to node y in one time step, or atransition
kernelof a Markov chain. It gives a diffusion operator

Pf(x) =
∑

a(x, y)f(y)dµ(y), (3)

P is the Markov matrix with the entriesp(x, y) and its pow-
ersP τ allow to propagate information through the Markov
chain inτ timesteps according to the transition kernels. The
operatorP defines a geometry which can be mapped to an
Euclidean geometry by an eigenvalue decomposition ofP .
The latter results in a sequence of eigenvaluesλ1, λ2 . . . and
corresponding eigenfunctionsΨ1,Ψ2, . . . that fulfill PΨi =
λiΨi. The diffusion map afterτ timestepsΨτ : X → Rw

embeds each nodei = 1, . . . , n in the Markov chain into aw
dimensional Euclidean space where the clustering of the data
points can be done using k-means

i 7→ Ψτ (i) ,




λτ
1Ψ1(i)

λτ
2Ψ2(i)

...
λτ

wΨw(i)


 (4)

A common choice for the kernelk(., .) is the Gaussian kernel,

i.e. k(x, y) = exp
(
−d2(x,y)

2σ2

)
, whered is a distance over the

setX andσ a scale factor. Therefore, in order to apply the
diffusion maps to fiber tracts, we define in the following a
metric over the fiber domain.

3. A METRIC BETWEEN FIBER TRACTS

Instead of considering a fiber tract as a set of points, we will
view it as a set of Gaussian probability distributions. Indeed,
this viewpoint is justified by the fact that tractography is based
on the integration of the field of principal directions of diffu-
sion when the tensor field is assumed to be continuous (by
means of interpolation). Therefore the tensor informationcan
be kept along with the spatial positions obtained by tractogra-
phy. So one can consider that each fiber tractF is represented

Fig. 1. An axial slice of a high-resolution T1-weighted image
showing a manual segmentation of the calf muscle in seven
groups
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Fig. 2. Boxplots of dice overlap coefficients for the thirty
subjects with different values ofσ andk (the number of clus-
ters). The box has lines at the lower quartile, median, and
upper quartile values. The whiskers are lines extending from
each end of the box to show the extent of the rest of the data.
Outliers are data with values beyond the ends of the whiskers.

by a sequence of multivariate normal distributions(pi)i=1...N

whereN is the number of points of the fiber. The parameters
(xi,Di) of (pi) are the spatial localizationxi and the tensor
Di at xi. More explicitly, given a diffusion (mixing) timet,
the probability density functionpi(y) at a positiony is given
by the following expression:

pi(y) =
1√

det(Di)(4πt)3
exp

(
− (y − xi)

tD−1
i (y − xi)

4t

)

(5)
The main tool to define the fiber metric is the following affin-
ity measureC(pi, pj) defined as the normalized inner product
between probability densitiespi andpj :

C(pi, pj) =

∫
pi(y)pj(y)dy√∫

(pi(y))
2
dy

√∫
(pj(y))

2
dy

(6)



Let us now consider two fiber tractsF1 andF2 represented by
a set of probability densities(pi)i=1...N1

(resp. (p̃i)i=1...N2
,

whereN1 (resp. N2) is the number of points ofF1 (resp.
F2). The affinity between probability densities in (6) admits
a straightforward generalization to the fiber domain to obtain
a similarity measurêC(F1,F2) as follows:

Ĉ(F1,F2) =
1

N1

1

N2

N1∑

i=1

N2∑

j=1

C(pi, p̃j) (7)

One can therefore derive the following metricd between
fibers:

d(F1,F2) =

√√√√2 − 2
Ĉ(F1,F2)√

Ĉ(F1,F1)

√
Ĉ(F2,F2)

(8)

It turns out thatd(F1,F2) has an explicit expression. Indeed,
one can show (computations are omitted) that we can derive
a closed form expression ofC(pi, p̃j) for multivariate normal
distributions:

C(pi, p̃j) = 2
√

2
det(Di)

1

4 det(Dj)
1

4

√
det(Di + Dj)

×

exp

(
− 1

4t
(xi − xj)

t(Di + Dj)
−1(xi − xj)

)
(9)

The computation of the metricd(F1,F2) between fibers is
straightforward using (7) and (8). Note how this formulation
provides a natural way to take spatial relationships into ac-
count while keeping the information provided by the tensor
field.

4. EXPERIMENTS AND RESULTS

Thirty subjects (twenty healthy subjects and ten patients af-
fected by myopathies) underwent a diffusion tensor imaging
of the calf muscle using a 1.5 T MRI scanner. The fol-
lowing acquisition parameters were used : repetition time
(TR)= 3600 ms, echo time (TE) =70 ms, slice thickness
= 7 mm and ab value of 700 s.mm−2 with 12 gradient
directions and 13 repetitions. The size of the obtained vol-
umes is64 × 64 × 20 voxels with a voxel resolution of
3.125mm×3.125mm×7mm. We acquired simultaneously
high-resolution T1-weighted images that were segmented
manually by an expert into seven muscle groups to provide
the ground truth. To give an idea about the muscle architec-
ture in the calf, we present in [Fig.1] a manual segmentation
overlaid on an axial slice of a high-resolution T1-weighted
image. The following muscle groups are considered: the
soleus (SOL), lateral gastrocnemius (LG), medial gastroc-
nemius (MG), posterior tibialis (PT), anterior tibialis (AT),
extensor digitorum longus (EDL), and the peroneus longus
(PL). We manually delineated a region of interest (ROI) for

(a) (b)

(c) (d)

Fig. 3. Axial, coronal and saggital views of tractography seg-
mentation in 7 classes overlaid on diffusion-free (B0) images
for (a), (c) two healthy subjects (b), (d) two diseased subjects

fiber tracking [14] and the fibers with a majority of points ly-
ing outside of the ROI were discarded. The obtained manual
segmentations of the T1-weighted images were downsampled
to the resolution of the diffusion images and used to provide
a ground-truth segmentation of the fiber tracts as follows:
for each fiber, the number of voxels crossed by the fiber and
belonging to each muscle group were counted. Then the fiber
was assigned to the class with the majority vote.

In order to quantitatively evaluate the proposed method,
we measure the dice overlap coefficient of the obtained seg-



mentation with the ground-truth segmentation provided by the
clinician. We tested the clustering method at two levels: for
7 and 10 clusters. The dimension of the diffusion maps em-
beddingw was set to the number of clusters. The number of
timestepsτ in (4) was set toτ = 1. We tested two values
for the scale parameter of the Gaussian kernel:σ = {0.5, 1}
and in all the experiments, the diffusion timet was set to
t = 2 104. The clustering in the embedding space is done
using k-means with 50 restarts and taking the clustering re-
sult with the least distortion. Distortion is computed as the
ratio of intra-class and inter-class variances.

In [Fig.2], we present the boxplots of the dice overlap co-
efficients for the thirty subjects, using the different values of
σ for 7 and 10 clusters. We can note that the quantitative re-
sults are rather satisfactory. For example, with the parameter
σ set toσ = 1, we obtain a mean dice overlap coefficient
of 0.78 (resp. 0.82) and a standard deviation of 0.05 (resp.
0.045) for 7 (resp. 10) classes . For a qualitative assessment,
we show in [Fig.3] the obtained fiber classification in 7 clus-
ters for two healthy and two diseased subjects. It is important
to note in this setting that the diffusion images of the skele-
tal muscle are intrinsically noisier than brain images due to
the short spin-spin (T2) relaxation time of the muscle tissue.
Therefore the obtained fiber tracts are rather noisy, especially
for diseased patients where the fat artifact is stronger. Despite
the low quality of the tractography, our algorithm could still
segment it in coherent fiber bundles.

5. CONCLUSION

We proposed a diffusion maps based method for fiber cluster-
ing in the human skeletal muscle. The main ingredient of the
algorithm is the definition of a metric between fibers that en-
compasses spatial and diffusion information. The experimen-
tal validation shows promising results both for healthy and
diseased subjects. It would be interesting to perform statis-
tical analysis of diffusion properties within each fiber bundle
and assess the changes induced by myopathies.
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[11] Radhoùene Neji, Nikos Paragios, Gilles Fleury, Jean-
Philippe Thiran, and Georg Langs, “Classification of
tensors and fiber tracts using Mercer-kernels encoding
soft probabilistic spatial and diffusion information,” in
CVPR, 2009.

[12] Ronald R. Coifman and Stéphane Lafon, “Diffusion
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