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Abstract. The kernel trick is a well known approach allowing to implicitly
cast a linear method into a nonlinear one by replacing any dot product by
a kernel function. However few vector quantization algorithms have been
kernelized. Indeed, they usually imply to compute linear transformations
(e.g. moving prototypes), what is not easily kernelizable. This paper intro-
duces the Kernel-based Vector Quantization (KVQ) method which allows
working in an approximation of the feature space, and thus kernelizing any
Vector Quantization (VQ) algorithm.

1 Introduction

A common approach to handle nonlinear problems is to map the initial data
set to a (generally higher dimensional) feature space which preserves the inher-
ent data groupings and in addition simplifies the associated structure of data.
However, as this feature space may be of high and possibly infinite dimension,
directly working with the transformed variables is generally considered as an
unrealistic option. This is the aim of the kernel trick described hereafter.

A kernel K is a continuous, symmetric and positive semi-definite function.
The kernel trick relies on the Mercer theorem [1] which states that each kernel
can be expressed as a dot product in a higher dimensional space. More precisely,
for each kernel K, there exists a mapping ϕ : X ⊂ Rn → F (F being the so-
called feature space) such that ∀x, y ∈ X , K(x, y) = 〈ϕ(x), ϕ(y)〉. Note that this
associated nonlinear mapping can be explicitly built (e.g. polynomial kernels) or
not (e.g. Gaussian kernels). Thus, any algorithm which solely uses dot products
can be cast by this kernel trick into a nonlinear procedure by implicitly mapping
the original space X to the higher dimensional one F .

However the kernel trick has some limitations. It cannot be applied to
algorithms which imply to compute linear transformations of the form x′ =∑m

i=1 λixi. For example, in the k-means algorithm, new prototypes are com-
puted as the centroid of associated data points, that is informally x′ = 1

m

∑m
i=1 xi,

or in Kohonen maps algorithms, a prototype c has to be moved toward a new
input x, that is c← c + λ(x− c) where λ can be understood as a moving ratio.
Performing linear transformations in the feature space in order to kernelize any
vector quantization (VQ) algorithm is the problem addressed in this paper.

To do so, a dictionary method [2] is used so as to work directly in an approx-
imation of the feature space F , still without using ϕ explicitly. Section 2 reviews
some related works. Section 3 presents the dictionary method which is a kernel
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sparsification procedure based on an approximate linear dependency argument.
The Kernel-based Vector Quantization (KVQ) method is presented in Section 4.
Notice that batch and online algorithms can be envisioned. Section 5 concludes
and sketches future works.

2 Related Works

In this section some approaches for kernel clustering and vector quantization are
briefly reviewed. Two types of algorithms will be distinguished: metric-based
methods and feature space methods. Furthermore, the reader can refer to [3] for
a survey on kernel (and spectral) methods for clustering and vector quantization.

A distance in the feature space can be computed using the kernel trick. For
a specific kernel K and the associated mapping ϕ, the distance between the
images of two elements x and y of X can be computed using the bilinearity of
the dot product and the kernel trick: ‖ϕ(x) − ϕ(y)‖2 = K(x, x) − 2K(x, y) +
K(y, y). Some approaches use this kernelized metric to directly cluster in the
feature space, using algorithms which are expressed solely with dot products and
distances. This approach is used in [4] to kernelize the k-means algorithm. It is
applied in [5] to the Growing Neural Gas (GNG), however prototypes movements
are done in the working space X (and thus the GNG is not fully kernelized). A
k-means like approach using a stochastic optimization is introduced in [6] and
extended in [7]. Our approach benefits from this metric view, however it applies
to a broader class of algorithms.

Another approach is to directly work in the feature space for algorithms which
implies linear transformations. State-of-the-art methods usually express a point
in the feature space as a linear combination of all images of data points, that
is y =

∑n
i=1 aiϕ(xi) with n being the size of the data set. An update rule for

these linear combination’s weights is then derived, depending on the algorithm
at sight. Note that the nonlinear mapping ϕ is never explicitly computed. Using
this idea, the Self Organizing Map (SOM) is kernelized in [8] and [9], the Neural
Gas (NG) algorithm in [10] and a fuzzy topographic clustering algorithm in
[11]. This approach can be (more or less directly) applied to a larger class of
algorithms than the previous one, as it allows computing linear transformations
in the feature space. However it is computationally inefficient, as all data points
are considered. The update rule for the linear combination weights has to be
derived for each algorithm. Moreover, it does not work for online algorithms, for
which data points are not known beforehand. The method proposed in this paper
is close to the latter ones, as a feature vector is expressed as a linear combination
of data points images. However, not all of them are necessary, and the set of data
points to be used can be constructed online, thus this contribution overcomes
the previous difficulties: it is more generic (there is no need to derive a specific
rule for each algorithm), it can be applied to batch and online algorithms, and
it is computationally cheaper, as a sparse representation of the feature space is
maintained.

ESANN'2009 proceedings, European Symposium on Artificial Neural Networks - Advances in Computational 
Intelligence and Learning.  Bruges (Belgium), 22-24 April 2009, d-side publi., ISBN 2-930307-09-9.



3 Dictionary Computation

As said in Section 1, the kernel trick corresponds to a dot product in a higher
dimensional space, associated with a mapping ϕ. By observing that although F
is a (very) higher dimensional space, ϕ(X ) can be a quite smaller embedding, the
objective is to find a set of p points in X such that ϕ(X ) is approximately embed-
ded in Span {ϕ(x̃1), . . . , ϕ(x̃p)} and that {ϕ(x̃1), . . . , ϕ(x̃p)} are approximately
linearly independent [2].

This procedure is iterative. Suppose that samples x1, x2, . . . are sequentially
observed. At time t, a dictionary Dt−1 = (x̃j)

pt−1
j=1 ⊂ (xj)t−1

j=1 containing pt−1

elements is available where by construction feature vectors ϕ(x̃j) are approx-
imately linearly independent in F . Sample xt is then observed and is added
to the dictionary if ϕ(xt) is (approximately) linearly independent on Dt−1. To
test this, weights a = (a1, . . . , apt−1)

T have to be computed so as to verify
‖

∑pt−1
j=1 ajϕ(x̃j)−ϕ(xt)‖2 ≤ ν, where ν is a predefined threshold determining the

quality of the approximation (and consequently the sparsity of the dictionary).
This can be solved by resolving δt = mina∈Rpt−1 ‖

∑pt−1
j=1 ajϕ(x̃j) − ϕ(xt)‖2. If

δt > ν, feature vectors are approximately independent and xt = x̃pt
is added to

the dictionary, otherwise not.
Using bilinearity of dot products, replacing them by kernels, and defining

the pt−1 × pt−1 matrix K̃t−1 and the pt−1 × 1 vector k̃t−1(x) as (K̃t−1)i,j =
K(x̃i, x̃j) and (k̃t−1(x))i = K(x, x̃i), the linear dependency test can be expressed
in a matrix form: δt = mina∈Rpt−1{aT K̃t−1a − 2aT k̃t−1(xt) + K(xt, xt)}. This
quadratic problem can be solved analytically and its solution is given by at =
K̃−1

t−1k̃t−1(xt) and δt = K(xt, xt)−k̃t−1(xt)T at. If δt ≤ ν, ϕ(xt) is approximately
linearly dependent onDt−1 and can be written as ϕ(xt) =

∑pt−1
i=1 aiϕ(x̃i)+ϕres

t ≈∑pt−1
i=1 aiϕ(x̃i), with ‖ϕres

t ‖ ≤
√

ν. Otherwise, if δt > ν, xt = x̃pt
is added to

the dictionary (approximate linear independence). See [2] for more details and
figure 1 for an illustration. In the rest of this paper, the space embedded in F and
spanned by the basis ϕ(D) will be written F̃D. Bold variables x will represent
elements of the space spanned by the images of the dictionary elements, and
classic variables x will represent elements of the working space X .

4 Kernel Vector Quantization

Suppose that a basis ϕ(D) = {ϕ(x̃1), . . . , ϕ(x̃p)} is available. Recall that points
x̃1, . . . , x̃p are explicitly known, but not their images ϕ(x̃1), . . . , ϕ(x̃p). Any fea-
ture vector ϕ(x) ∈ F , with x ∈ X , can be approximately expressed in this basis:
there exists a vector ax = (ax

1 , . . . , ax
p)T such that ϕ(x) ≈ x =

∑p
i=1 ax

i ϕ(x̃i).
As seen in Section 3 the vector ax can be easily computed. The principle of the
approach presented here is to directly work in F̃D, the image ϕ(x) of a point
x ∈ X being represented by its coefficients ax in the basis, if necessary.

As we work in the space spanned by the basis ϕ(D), any linear combination
of vectors ϕ(x̃1), . . . , ϕ(x̃p) can be considered. For a specific y ∈ F̃D, which can
be written y =

∑p
i=1 ay

i ϕ(x̃i), it cannot be assessed that there exists a point
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Fig. 1: The dictionary D = {x̃1, x̃2} is built from X . The image of this dic-
tionary ϕ(D) is used to span F̃D. The image ϕ(X ) of the working space X is
approximately embedded in F̃D, that is the distance between ϕ(X ) and F̃D is
at the most

√
ν. The point y ∈ F̃D is a linear combination of ϕ(x̃1) and ϕ(x̃2),

however it has no antecedent in X .

y ∈ X such that ϕ(y) = y, for example if y is an approximate linear combination
of images of training points. See figure 1 for an illustration. The classical kernel
trick applies to algorithms for which just dot products have to be computed,
and it is here extended to algorithms for which linear transformations have to
be computed too. The manner to do these two elementary operations in the
posed framework is now shown.

4.1 Dot Product Computation

Suppose that the original algorithm requires computing a dot product between
two points x and y of X . By applying the kernel trick, one has to compute
〈ϕ(x), ϕ(y)〉 = K(x, y). If x and y are known, it is possible to directly compute
K(x, y). But recall that the proposed approach aims to directly work in the
space spanned by ϕ(D). Thus it is possible that only x or y in F̃D are known.
We recall that there is no reason that there exists x, y ∈ X such that x = ϕ(x) or
y = ϕ(y). Thus one can write x =

∑p
i=1 ax

i ϕ(x̃i) and y =
∑p

i=1 ay
i ϕ(x̃i). The

dot product can still be computed: 〈x,y〉 = 〈
∑p

i=1 ax
i ϕ(x̃i),

∑p
i=1 ay

i ϕ(x̃i)〉 =∑p
i,j=1 ax

i ay
j K(x̃i, x̃j) = (ax)T K̃ay, K̃ being defined in section 3. If x lies in the

span of ϕ(D) and y in the working space then the dot product between x and
ϕ(y) can be computed as 〈x, ϕ(y)〉 = 〈

∑p
i=1 ax

i ϕ(x̃i), ϕ(y)〉 = (ax)T k̃(y), k̃ being
defined in section 3. Recall that computing a distance yields to the evaluation
of a dot product, thus ‖x − y‖2 = (ax − ay)T K̃(ax − ay) and ‖x − ϕ(y)‖2 =
(ax)T K̃ax − 2(ax)T k̃(y) + K(y, y).

The proposed approach is thus not restrictive and still allows computing dis-
tances and dot products, as the kernel trick standard approach. However a point
of F̃D has not necessarily an antecedent and this can induce more computation
than just applying a kernel function.
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Algorithm 1: Kernel Vector Quantization

Compute dictionary D and matrixes K̃ and K̃−1, from the given
samples or from a compact set, in a preprocessing step (batch) or online ;

Replace any training point x by the associated vector ax = K̃−1k̃(x) of
x = ϕ(x) expressed in the basis ϕ(D) ;

Replace any dot product 〈x, y〉 by the dot product (ax)T K̃ay. Use
directly K or k̃ if possible (see section 4.1);

Replace any distance ‖x− y‖2 by the distance (ax − ay)T K̃(ax − ay).
Use directly K or k̃ if possible (see section 4.1);

Replace any linear transformation y = (x1, . . . , xm)(λ1, . . . , λm)T by the
corresponding linear transformation ay = (ax1 , . . . , axm)(λ1, . . . , λm)T

4.2 Linear Transformation Computation

Suppose that the original algorithm requires computing a linear transformation
x′ =

∑m
i=1 λixi. In order to be consistent with the kernel trick, kernelizing this

kind of algorithm implies computing a point x′ ∈ F such that x′ =
∑m

i=1 λixi

with x1, . . . ,xm ∈ F̃D and using the same (λi)m
i=1. There is a simple way to do

so directly in the approximated feature space.
From the fact that no more than linear combinations are considered, each

vector xi can be expressed as xi =
∑p

j=1 axi
j ϕ(x̃j). It is thus easy to express x′ in

the same basis: x′ =
∑m

i=1 λi(
∑p

j=1 axi
j ϕ(x̃j)) =

∑p
j=1(

∑m
i=1 λia

xi
j )ϕ(x̃j). That

is x′ is associated with the coordinates ax′ = (
∑m

i=1 λia
xi
1 , . . . ,

∑m
i=1 λia

xi
p )T =

Aλ with A being the p×m matrix (ax1 , . . . , axm) of coordinate column vectors
axi and λ being the m× 1 vector (λ1, . . . , λm)T .

Linear transformations are therefore made possible through the use of the
approximate feature space. With the proposed KVQ, any VQ algorithm (which
solely implies computing dot products and linear transformations) can be straight-
forwardly kernelized. Notice that the KVQ can be applied to batch and online
algorithms. For batch algorithms, the dictionary can be computed from the data
set or from a compact set X embedding the working space X . In the case of
online algorithms, the dictionary can be computed online as training sample are
observed or in a pre-processing step from a compact set embedding the working
space. The KVQ is summarized in algorithm 1.

5 Conclusion

We have proposed a novel generic approach which allows extending the field
of algorithms that can benefit from the kernel trick to any algorithm which
only requires computing dot products and linear transformations. Moreover,
the KVQ can be applied to batch and online algorithms. Although the obtained
results are approximated, this can be seen as an efficient extension of the clas-
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sical kernel trick which can provide itself useful for kernel vector quantization
algorithms. Compared to papers reviewed in section 2, the KVQ allows handling
linear transformations (compared to metric-based approaches), it is generic (it
can be systematically applied to any VQ algorithm, contrary to other feature
space approaches), it can be applied to batch and online algorithms and it is
computationally cheaper than other feature space approaches, as a sparse rep-
resentation of the feature space is maintained. Moreover the trade-off between
sparsity and accuracy can be controlled through the choice of the sparsity fac-
tor. For now, some VQ algorithms have been kernelized [12], and especially
GNG-T, a new neural gas algorithm [13]. Some results are provided on the web
page. Work is ongoing to use kernelized VQ algorithms as a preprocessing step
for Support Vector Machines (SVM) and to compare distortions in working and
feature spaces.
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