
HAL Id: hal-00431319
https://centralesupelec.hal.science/hal-00431319v1

Submitted on 12 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MESAM: A Protégé Plug-in for the Specialization of
Models

Nadjet Zemirline, Yolaine Bourda, Chantal Reynaud, Fabrice Popineau

To cite this version:
Nadjet Zemirline, Yolaine Bourda, Chantal Reynaud, Fabrice Popineau. MESAM: A Protégé Plug-
in for the Specialization of Models. 11th International Protégé Conference, Jun 2009, Amsterdam,
Netherlands. 3 p. �hal-00431319�

https://centralesupelec.hal.science/hal-00431319v1
https://hal.archives-ouvertes.fr

MESAM: A Protégé Plug-in for the Specialization of
Models

Nadjet Zemirline1, Yolaine Bourda1, Chantal Reynaud², Fabrice Popineau3

1 SUPELEC/Department of Computer Science, Plateau de Moulon, 3 rue Joliot-Curie, 91192 Gif sur Yvette Cedex, France

{Nadjet.Zemirline, Yolaine.Bourda}@supelec.fr
²Université Paris-Sud XI, CNRS (LRI) & INRIA - Saclay Île-de-France / Projet Gemo,

Bât. G, 4 rue Jacques Monod, Parc Orsay Université, 91893 Orsay Cedex, France

chantal.reynaud@lri.fr
3SUPELEC/Metz Campus, 2 rue Édouard Belin 57070 Metz, France

Fabrice.Popineau@supelec.fr

1 Introduction
Nowadays, several efforts are focused on re-using generic platforms to create new systems, in order to make the
design process easier and faster. Often, the designer has his own models and resources and would like to reuse the
generic system over his resources. That means, he has to integrate his models and resources in the system, and
then to directly reuse the generic system. But many problems occur. One of them is that the designer needs to
translate his models into the specific format that understood by the system and to use the vocabulary specific to
that system. Furthermore, he also needs to translate all the instantiations of his models (i.e. the resources and their
metadata). We think that this task is tedious and time-consuming and we want to avoid it. Our objective is to
allow the designer to reuse his models (his vocabulary) and his models’ instantiations without any change of
format or vocabulary. For example, a generic Adaptive Hypermedia System (AHS) is made of a generic
adaptation model relying on generic user and domain models. The designer would like to integrate his models and
instances in the generic models in order to reuse the generic adaptation engine.

Specific systems can be obtained by specializing the generic models. However, this specialization process is not
always easy to perform. It has to be supported to make the design process easier and faster. This paper focuses on
assisting designers to specialize generic models using their own models. We aim to automate this process which
has been so far entirely manual. Our objectives are twofold: to create a support for defining mappings between
elements in generic models and elements in the designer’s personal models and to help creating consistent and
relevant models integrating the generic and specific ones and taking into account the mappings between them. The
proposed approach relies on OWL1, a W3C standard and SWRL2, a W3C proposal.

2 MESAM plug-in
2.1 The approach and MESAM Plug-in functionality

Given two models, a generic model used in a generic system and a specific model provided by a designer, we
propose an approach to support the construction of a model that would integrate all the particularities of the
specific model and be usable in the generic system. The approach needs the definition of mappings between
elements of both models and a validation process at the structural and semantic level. It relies on the designer who
has a very good understanding of his model. He will be responsible for semantic validation while all the structural
verifications will be done automatically by the plug-in. The main steps of the approach are described below, for
more details see [1]:

1. Specification, by the designer, of the equivalence and specialization mappings between classes of the generic
model and the specific model, merging the whole generic model and the mapped classes of the specific model
(together with the associated mapping links) in order to obtain a new model.

2. Automatic computation of additional mappings between classes, the mappings and the linked classes being
added in the model being built.

3. Automatic computation of mappings between elements different from classes, i.e. between attributes and
between relations.

4. Validation by the designer of the deductions made by the system in step 3.
The designer interacts with the system in steps 1 and 4, these are detailed in section 3.

In order to propose a generic solution that can be used whatever the generic and specific models are, we modelled
structural knowledge in a meta-model based on the OWL meta-model1, and we performed inferences on
knowledge modelled in the meta-model using SWRL rules. The meta-model is loaded inside the plug-in, and the
specific and generic models are transformed in instances of the meta-model. We have chosen to keep these
processes invisible to the designer. So, in our plug-in, the designer will have the illusion of working on the
specific and generic models.

1 http://www.omg.org/docs/ad/05-09-08.pdf

in
ria

-0
04

32
99

9,
 v

er
si

on
 1

 -
19

 N
ov

 2
00

9
Author manuscript, published in "International Protege Conference (2009)"

http://hal.inria.fr/inria-00432999/fr/
http://hal.archives-ouvertes.fr

2.2 MESAM Plug-in architecture

As described in the Figure 1, the plug-in includes
two parts. First, a knowledge part gathers the meta-
model and deduction rules, for more details see [1].
All these components are reusable across
applications. Second, the processing part is made
of some components performing interaction with an
inference engine (in our case Jess) and the OWL
Protégé editor. We have used the OWL Protégé
API to manipulate OWL models, as editing OWL
models or the generation of meta-model instances
from OWL models, and the SWRL Jess Bridge2 to
execute SWRL rules using the Jess inference
engine3.

3 Interaction with MESAM Plug-in
Here, we describe how a designer can interact with the plug-in, what facilities the plug-in proposes to guide him in
order to obtain a consistent merged model. At first, the developed plug-in provides an interface allowing the
designer to indicate the OWL files of both the generic and specific models to be merged (cf. (1, 2) Fig.2). Then, it
guides the designer through the other steps of the process. These steps are described below.

3.1 Specification of equivalence or specialization mappings

The developed plug-in proposes a vision of the reused generic and specific models in separate windows, as it can
be seen in (cf. (3) Fig.2). The designer can specify either equivalence or specialization mappings between the
classes of the two models (cf. (4) Fig.2). Given these correspondences, additional correspondences between
classes, properties or relations are generated using a reasoning module. The hypothesis underlying this work is
that it is much easier for designers to specify simple correspondences from small numbers of classes in the
models, and then evaluate mappings returned by the system. The consistency of the merged model is
automatically checked.

3.2 Validation of structural deductions

After running the deduction process (cf. (5) Fig.2), the plug-in deduces mappings and inconsistency problems.
The different deductions are presented in separate windows as it can be seen in (cf. (6, 7, 8) Fig.2). The designer
can confirm, choose the right one among several solutions, and view inconsistency problems that are in the
specific model to eventually modify it outside the plug-in. Problems can be exported in text file (cf. (9) Fig.2). If
no inconsistency problems are deduced, the plug-in proposes the creation of the merged model (cf. (10) Fig.2).

Figure 2 describes the different mappings we defined and the results obtained by the deduction process.
Specialization mappings have been defined by us between the classes Historical_Representation and History, and
between User_representation and User (cf. (4) Fig.2). The deduction process has deduced new additional
mappings and inconsistency problems. One of these mappings is the relation has_Required_Attribute, a sub
property of the relation has_First_Name (cf. (6) Fig.2). An inconsistency problem has been discovered between
the relations has_Acquired_attribute and has_Optional_attribute (a cardinality problem) (cf. (7) Fig.2) and a
missing mapping is indicated for the relation of the generic model has_Knowledge_attribute (cf. (8) Fig.2). The
user can save all inconsistency problems and missing mappings in a text file.This text file will contain the defined
mappings between classes and all found problems.

4 Related works
There are several approaches for performing a semantic integration depending on the degree of integration usually
referred to as ontology mapping, aligning or merging. The process of ontology merging takes as input two (or
more) source ontologies and returns a merged ontology based on the given source ontologies. Several systems and
frameworks for supporting the knowledge engineer in the ontology merging task have been proposed [2, 3, 4].
These approaches are based either on instances of the two given ontologies that are to be mapped (bottom-up) or
on concepts (top-down). None of them have been used to merge abstract models with specialized ones. In this
paper, we focus on this specific point. The models to be merged are relatively small. The merging process is
performed once at the design time. Generic models are composed of abstract classes which have no instances. The
designer of the system knows the models to be integrated in the system very well and can then provide simple
correspondences between their elements.

2 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessTab
3 http://herzberg.ca.sandia.gov/

OWL editor
(Protégé 3.4)

Inference Engine
(Jess)

Designer

MESAM plug-in

 Knowledge part

Rule base
(SWRL)

Meta model
(OWL)

 Processing Part

Protégé
(OWL API)

SWRL
Jess Bridge

Fig. 1 Architecture of the MESAM plug-in

in
ria

-0
04

32
99

9,
 v

er
si

on
 1

 -
19

 N
ov

 2
00

9

Fig.2 Work space of MESAM plug-in

5 Conclusion and future works
Throughout the MESAM plug-in, we have proposed a solution enabling the designer to reuse its own models and
consequently his own resources and their metadata (the instantiations of the models) to be reused by the generic
system. The MESAM plug-in allowed us to make some experiments in Adaptive Hypermedia Systems. The first
one has been done in the e-learning domain aiming at building a user’s model, which is usable in the GLAM
system [5]. We have personally played the role of a designer. A user model developed by our team at Supélec [5]
has been chosen as a specific model. As future work, we plan to add several extensions for the plug-in. First, we
intend to consider inconsistency problems and to help the designer in resolving them. Then, we intend to extend
our plug-in, taking into account disjunctions.

REFERENCES

1. Zemirline N., Reynaud C., Bourda Y., Popineau F.: A Pattern and Rule-Based Approach for Reusing Adaptive
Hypermedia Creator's Models. In: 16th EKAW, PP. 17-31, Springer, Catania, Italy (2008)

2. Stumme, G., Maedche, A.: FCA-MERGE: bottom-up merging of ontologies. In: 17th IJCAI, pp. 225-234, Seattle,
Washington, USA (2001)

3. Gomez-Perez, A., Angele, J., Fernandez-Lopez, M., Christophides, V., Stutt, A., Sure, Y.: A survey on ontology tools. In:
OntoWeb deliverable 1.3 Universidad Politecnica de Madrid (2002)

4. Noy, N.F., Musen M. A.: The PROMPT Suite: Interactive Tools for Ontology Merging And Mapping. In: IJHCS, vol. 59,
no. 6, pp. 983-1024, Elsevier (2003)

5. Jacquiot, C., Bourda, Y,. Popineau, F., Delteil, A., Reynaud. C.: GLAM: A generic layered adaptation model for adaptive
hypermedia systems. In: 4th International AH2006, Springer, pp. 131–140. Springer, Heidelberg, Allemagne (2006)

in
ria

-0
04

32
99

9,
 v

er
si

on
 1

 -
19

 N
ov

 2
00

9

