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1 Introduction   
Nowadays, several efforts are focused on re-using generic platforms to create new systems, in order to make the 
design process easier and faster. Often, the designer has his own models and resources and would like to reuse the 
generic system over his resources. That means, he has to integrate his models and resources in the system, and 
then to directly reuse the generic system. But many problems occur. One of them is that the designer needs to 
translate his models into the specific format that understood by the system and to use the vocabulary specific to 
that system. Furthermore, he also needs to translate all the instantiations of his models (i.e. the resources and their 
metadata). We think that this task is tedious and time-consuming and we want to avoid it. Our objective is to 
allow the designer to reuse his models (his vocabulary) and his models’ instantiations without any change of 
format or vocabulary. For example, a generic Adaptive Hypermedia System (AHS) is made of a generic 
adaptation model relying on generic user and domain models. The designer would like to integrate his models and 
instances in the generic models in order to reuse the generic adaptation engine. 

Specific systems can be obtained by specializing the generic models. However, this specialization process is not 
always easy to perform. It has to be supported to make the design process easier and faster. This paper focuses on 
assisting designers to specialize generic models using their own models. We aim to automate this process which 
has been so far entirely manual. Our objectives are twofold: to create a support for defining mappings between 
elements in generic models and elements in the designer’s personal models and to help creating consistent and 
relevant models integrating the generic and specific ones and taking into account the mappings between them. The 
proposed approach relies on OWL1, a W3C standard and SWRL2, a W3C proposal. 

2 MESAM plug-in 
2.1 The approach and MESAM Plug-in functionality  

Given two models, a generic model used in a generic system and a specific model provided by a designer, we 
propose an approach to support the construction of a model that would integrate all the particularities of the 
specific model and be usable in the generic system. The approach needs the definition of mappings between 
elements of both models and a validation process at the structural and semantic level. It relies on the designer who 
has a very good understanding of his model. He will be responsible for semantic validation while all the structural 
verifications will be done automatically by the plug-in. The main steps of the approach are described below, for 
more details see [1]: 

1. Specification, by the designer, of the equivalence and specialization mappings between classes of the generic 
model and the specific model, merging the whole generic model and the mapped classes of the specific model 
(together with the associated mapping links) in order to obtain a new model. 

2. Automatic computation of additional mappings between classes, the mappings and the linked classes being 
added in the model being built. 

3. Automatic computation of mappings between elements different from classes, i.e. between attributes and 
between relations.  

4. Validation by the designer of the deductions made by the system in step 3.  
The designer interacts with the system in steps 1 and 4, these are detailed in section 3.  

In order to propose a generic solution that can be used whatever the generic and specific models are, we modelled 
structural knowledge in a meta-model based on the OWL meta-model1, and we performed inferences on 
knowledge modelled in the meta-model using SWRL rules. The meta-model is loaded inside the plug-in, and the 
specific and generic models are transformed in instances of the meta-model. We have chosen to keep these 
processes invisible to the designer. So, in our plug-in, the designer will have the illusion of working on the 
specific and generic models. 

                                                        

1 http://www.omg.org/docs/ad/05-09-08.pdf 
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2.2 MESAM Plug-in architecture   

As described in the Figure 1, the plug-in includes 
two parts. First, a knowledge part gathers the meta-
model and deduction rules, for more details see [1]. 
All these components are reusable across 
applications.  Second, the processing part is made 
of some components performing interaction with an 
inference engine (in our case Jess) and the OWL 
Protégé editor. We have used the OWL Protégé 
API to manipulate OWL models, as editing OWL 
models or the generation of meta-model instances 
from OWL models, and the SWRL Jess Bridge2 to 
execute SWRL rules using the Jess inference 
engine3.  

3 Interaction with MESAM Plug-in 
Here, we describe how a designer can interact with the plug-in, what facilities the plug-in proposes to guide him in 
order to obtain a consistent merged model. At first, the developed plug-in provides an interface allowing the 
designer to indicate the OWL files of both the generic and specific models to be merged (cf. (1, 2) Fig.2). Then, it 
guides the designer through the other steps of the process. These steps are described below. 

3.1 Specification of equivalence or specialization mappings  

The developed plug-in proposes a vision of the reused generic and specific models in separate windows, as it can 
be seen in (cf. (3) Fig.2). The designer can specify either equivalence or specialization mappings between the 
classes of the two models (cf. (4) Fig.2). Given these correspondences, additional correspondences between 
classes, properties or relations are generated using a reasoning module. The hypothesis underlying this work is 
that it is much easier for designers to specify simple correspondences from small numbers of classes in the 
models, and then evaluate mappings returned by the system. The consistency of the merged model is 
automatically checked. 

3.2 Validation of structural deductions  

After running the deduction process (cf. (5) Fig.2), the plug-in deduces mappings and inconsistency problems. 
The different deductions are presented in separate windows as it can be seen in (cf. (6, 7, 8) Fig.2). The designer 
can confirm, choose the right one among several solutions, and view inconsistency problems that are in the 
specific model to eventually modify it outside the plug-in. Problems can be exported in text file (cf. (9) Fig.2). If 
no inconsistency problems are deduced, the plug-in proposes the creation of the merged model (cf. (10) Fig.2). 

Figure 2 describes the different mappings we defined and the results obtained by the deduction process. 
Specialization mappings have been defined by us between the classes Historical_Representation and History, and 
between User_representation and User (cf. (4) Fig.2). The deduction process has deduced new additional 
mappings and inconsistency problems. One of these mappings is the relation has_Required_Attribute, a sub 
property of the relation has_First_Name (cf. (6) Fig.2). An inconsistency problem has been discovered between 
the relations has_Acquired_attribute and has_Optional_attribute (a cardinality problem) (cf. (7) Fig.2) and a 
missing mapping is indicated for the relation of the generic model has_Knowledge_attribute (cf. (8) Fig.2). The 
user can save all inconsistency problems and missing mappings in a text file.This text file will contain the defined 
mappings between classes and all found problems.  

4 Related works 
There are several approaches for performing a semantic integration depending on the degree of integration usually 
referred to as ontology mapping, aligning or merging. The process of ontology merging takes as input two (or 
more) source ontologies and returns a merged ontology based on the given source ontologies. Several systems and 
frameworks for supporting the knowledge engineer in the ontology merging task have been proposed [2, 3, 4]. 
These approaches are based either on instances of the two given ontologies that are to be mapped (bottom-up) or 
on concepts (top-down). None of them have been used to merge abstract models with specialized ones. In this 
paper, we focus on this specific point. The models to be merged are relatively small. The merging process is 
performed once at the design time. Generic models are composed of abstract classes which have no instances. The 
designer of the system knows the models to be integrated in the system very well and can then provide simple 
correspondences between their elements.  

 

                                                        

2 http://protege.cim3.net/cgi-bin/wiki.pl?SWRLJessTab 
3 http://herzberg.ca.sandia.gov/ 
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Fig. 1 Architecture of the MESAM plug-in
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Fig.2 Work space of MESAM plug-in 

5 Conclusion and future works 
Throughout the MESAM plug-in, we have proposed a solution enabling the designer to reuse its own models and 
consequently his own resources and their metadata (the instantiations of the models) to be reused by the generic 
system. The MESAM plug-in allowed us to make some experiments in Adaptive Hypermedia Systems. The first 
one has been done in the e-learning domain aiming at building a user’s model, which is usable in the GLAM 
system [5]. We have personally played the role of a designer. A user model developed by our team at Supélec [5] 
has been chosen as a specific model. As future work, we plan to add several extensions for the plug-in. First, we 
intend to consider inconsistency problems and to help the designer in resolving them. Then, we intend to extend 
our plug-in, taking into account disjunctions.  
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