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Introduction

Throughout this paper ܺ ଵ , ܺ ଶ , … , ܺ are matrices with columns defined by centered variables observed on the same set of n individuals and ܭ ଵ , ܭ ଶ , … , ܭ the associated kernel matrices. Let us note  the number of variables for the block ܺ . We are interested in studying the relation between ܬ blocks of variables ܺ ଵ , ܺ ଶ , … , ܺ even though those data sets live in different spaces. We achieve this by projecting the ܬ blocks onto ܬ separate directions specified by vector ܽ ଵ , ܽ ଶ , … , ܽ , to obtain ܬ univariate variables on which "link" (such as covariance) can be computed easily. In this paper is presented a kernel version of a companion paper entitled "A criterion based PLS approach to structural equation modelling" [START_REF] Tenenhaus | A criterion based PLS approach to structural equation modelling[END_REF] which will be presented during the PLS'09 conference. The paper is organized as follows: the first part briefly introduces the primal formulation of the proposed method and the second part is devoted to its dual formulation.

The general optimization problem (primal form)

In this paper, the following general problem is considered:

൛ܽ ଵ , ܽ ଶ , … , ܽ ൟ = argmax భ , మ ,…, ܿ ݃ ቀܿݒ൫ܺ ܽ , ܺ ܽ ൯ቁ ୀଵ ୀଵ subject to the constraints: : ൫1 -߬ ൯ݎܽݒ൫ܺ ܽ ൯ + ߬ ฮܽ ฮ ଶ = 1, j =1, …, J (1) 
where ݃ሺݔሻ = ݔ (Horst Scheme), ݃ሺݔሻ = ݔ ଶ (factorial scheme) or ݃ሺݔሻ = |ݔ| (centroïd scheme).

The regularisation parameters ߬ ∈ ሾ0, 1ሿ, j =1, …, J control the stability of the solution (specifically useful in a high dimensional block context) and interpolate smoothly between the maximisation of the covariance (all ߬ ݏ ᇱ = 1) and the maximisation of the correlation (all ߬ ݏ ᇱ = 0). The ܬ × ܬ design matrix ሺܥሻ = ܿ equals to 1 if the blocks i X and j X are connected and to 0 otherwise allows to immediatly extend the multiblock data analysis framework to the structural equation modelling one by limiting the sommation to connected blocks. For sake of simplicity, in this part of the paper, we focus our presentation on the Horst scheme. Applying the Lagrangian multiplier technique to the optimization of (1) gives us ܬ stationary equations:

ܽ = 1 ඥܼ ᇱ ܺ ܯ ିଵ ܺ ᇱ ܼ ൮ሺ1 -߬ ሻ 1 ݊ ܺ ᇱ ܺ + ߬ ܫ ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ ெ ൲ ିଵ ܺ ᇱ ܿ ܺ ܽ ୀଵ ᇣᇧ ᇧᇤᇧ ᇧᇥ , ݅ = 1, … , ܬ
It is noteworthy that ܯ is well-conditionned (even in high dimensional block(s) context) since the empirical covariance matrices ଵ ܺ ᇱ ܺ ݅ = 1, … , ܬ are shrunk gradually towards the identity matrices and are singular and thus invertible. To solve this optimization problem is applied an iterative "PLS style" algorithm based on the Wold procedure [START_REF] Wold | Soft Modeling: The Basic Design and Some Extensions[END_REF] which is monotonically convergent that means that the bounded criterion to be maximized is increasing at each step of the procedure [START_REF] Hanafi | PLS Path modelling: computation of latent variables with the estimation mode B[END_REF]. However, it is still remain difficult to apply such a Wold algorithm in a high dimensional block context due to the inversion of matrices ܯ of dimension  ×  , ݅ = 1, … , ܬ and we propose in the next section to reformulate this algorithm in its dual form leading to the Kernel PLS path modelling.

Kernel PLS path modelling

Let us assume that ܽ can be expressed as a linear combination of the observations of block ܺ (which is always possible). Throughout this section let us note ܽ = ܺ ᇱ ߙ and ܭ = ܺ ܺ ᇱ the matrix of inner product between pairs of observations of block ܺ (Gram matrix). We consider also the QRdecomposition of the matrix ܺ ᇱ = ܳ ܴ where ܳ is an orthonormal matrix and ܴ a rank൫ܺ ൯ × ݊ upper triangular matrix. This gives the following decomposition for the kernel matrix ܭ = ܴ ᇱ ܴ . As suggested by [START_REF] Bach | Kernel Independent Component Analysis[END_REF][START_REF] Shawe-Taylor | Kernel Methods for Pattern Analysis[END_REF], an incomplete cholesky decomposition of ܭ is used to obtain ܴ . Now the primal formulation of the general optimisation problem described previously can be formulated in its dual form as follows:

൛ߙ ଵ , ߙ ଶ , … , ߙ ൟ = argmax ఈ భ ,ఈ మ ,…,ఈ ܿ ݃ ቀܿݒ൫ܺ ܺ ᇱ ߙ , ܺ ܺ ᇱ ߙ ൯ቁ ୀଵ ୀଵ subject to the constraints: : ൫1 -߬ ൯ݎܽݒ൫ܺ ܺ ᇱ ߙ ൯ + ߬ ฮܺ ᇱ ߙ ฮ ଶ = 1, ݆ = 1, … , ܬ
To simplify the presentation, we focus on the Horst Scheme (݃ሺݔሻ

= ݔ ሻ ⇒ ൛ߙ ଵ , ߙ ଶ , … , ߙ ൟ = argmax ఈ భ ,ఈ మ ,…,ఈ ଵ ∑ ∑ ܿ ߙ ᇱ ܭ ܭ ߙ ୀଵ ୀଵ subject to the constraints : ߙ ᇱ ൬൫1 -߬ ൯ ଵ ܭ ଶ + ߬ ܭ ൰ ߙ = 1, j =1, …, J
We note that this maximization problem is expressed only in terms of kernel matrices. The regularisation parameters not only makes this optimisation problem well posed numerically but also provide control over the capacity of the function space where the solution is sought. The larger the values of ߬ are, the less sensitive the method to the input data is and the more stable (less prone to finding spurious relations) the solution becomes.

⟺ ൛ߙ ଵ , ߙ ଶ , … , ߙ ൟ = argmax ఈ భ ,ఈ మ ,…,ఈ ଵ ∑ ∑ ߙ ᇱ ܴ ᇱ ܴ ܴ ᇱ ܴ ߙ ୀଵ ୀଵ subject to the constraints : ߙ ᇱ ൬൫1 -߬ ൯ ଵ ܴ ᇱ ܴ ܴ ᇱ ܴ + ߬ ܴ ᇱ ܴ ൰ ߙ = 1, j =1, …, J Let us note ݓ = ܴ ߙ and ݊ = rank൫ܺ ൯ ⟺ ൛ݓ ଵ , ݓ ଶ , … , ݓ ൟ = argmax ௪ భ ,௪ మ ,…,௪ ଵ ∑ ∑ ݓ ᇱ ܴ ܴ ᇱ ݓ ୀଵ ୀଵ (2) subject to the constraints : ݓ ᇱ ൬൫1 -߬ ൯ ଵ ܴ ܴ ᇱ + ߬ ܫ ೕ ൰ ݓ = 1, j =1, …, J (3) 
A 3-step procedure is proposed to maximize (2) subject to (3):

(1) Construct the Lagrangian function related to the maximization problem.

ܮ = ܿ 1 ݊ ୀଵ ୀଵ ݓ ᇱ ܴ ܴ ᇱ ݓ -ߣ ቆሺ1 -߬ ሻ 1 ݊ ݓ ᇱ ܴ ܴ ᇱ ݓ + ߬ ݓ ᇱ ݓ -1ቇ ୀଵ
where ߣ , ݅ = 1, … , ܬ are the Lagrangian multiplier.

(2) Define stationary equations by cancelling and simplifying the derivatives of the Lagrangian function.

ݓ = 1 ටܼ ݅ ′ ܴ ᇱ ܰ ݅ -1 ܴ ܼ ݅ ൮ሺ1 -߬ ሻ 1 ݊ ܴ ܴ ᇱ + ߬ ܫ ᇣᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇥ ே ൲ ିଵ ܴ ܿ ܴ ᇱ ݓ ୀଵ ᇣᇧᇧᇤᇧᇧᇥ ܼ ݅ , ݅ = 1, … , ܬ (3) 
Find a solution of the ܬ stationary equations by using a PLS style iterative procedure (derived to the Wold procedure which guaranty the monotonic convergence).

It is worth pointing out that for specific values of the regularization parameters, the proposed method provides as particular cases (and among others):

• For the 2 blocks cases: Kernel PLS [START_REF] Rosipal | Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space[END_REF] (߬ ଵ = ߬ ଶ = 1), Kernel Redundancy Analysis [START_REF] Takane | Regularized linear and kernel redundancy analysis[END_REF] which is equivalent to Kernel PLS for discrimination [START_REF] Rosipal | Kernel PLS-SVC for linear and nonlinear classification[END_REF] (߬ ଵ = 1 and ߬ ଶ = ߬), Kernel Canonical Correlation Analysis [e.g. [START_REF] Bach | Kernel Independent Component Analysis[END_REF] (߬ ଵ = ߬ ଵ and ߬ ଶ = ߬ ଶ ). • For the J blocks cases: a "Horst" Generalized Kernel CCA with the flavour of the one proposed by [START_REF] Bach | Kernel Independent Component Analysis[END_REF][START_REF] Shawe-Taylor | Kernel Methods for Pattern Analysis[END_REF]] (all ߬ s′ = ߬ ; Horst scheme). Moreover, our general optimisation problem provides a "regularized" kernel extension of the Kettenring's generalized CCA (all ߬ ′ݏ = ߬ and Factorial scheme).

Conclusion

In this paper we present a very general optimization problem covering a large spectrum of methods. This paper provides a criterion point of view of the PLS path modelling framework. To the best of our knowledge, all the Kernel CCA version proposed by the machine learning community does not consider other scheme than the Horst one. In this paper, we explore the factorial and the centroïd scheme which sound more reasonable when the number of block is greater than 2. Moreover, the introduction of the design matrix allows analysing data where all blocks are not necessarily connected. To conclude this paper, we note that by using non linear kernel such as Gaussian or polynomial kernel, we can assess non linear relation between blocks.