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ABSTRACT

The scalar shrinkage-thresholding operator (SSTO) is a key
ingredient of many modern statistical signal processing algo-
rithms including: sparse inverse problem solutions, wavelet
denoising, and JPEG2000 image compression. In these appli-
cations, it is customary to select the threshold of the operator
by solving a scalar sparsity penalized quadratic optimization.
In this work, we present a natural multidimensional extension
of the scalar shrinkage thresholding operator. Similarly to the
scalar case, the threshold is determined by the minimization
of a convex quadratic form plus an euclidean penalty, how-
ever, here the optimization is performed over a domain of di-
mension N ≥ 1. The solution to this convex optimization
problem is called the multidimensional shrinkage threshold
operator (MSTO). The MSTO reduces to the standard SSTO
in the special case of N = 1. In the general case of N > 1
the optimal MSTO threshold can be found by a simple convex
line search. We present three illustrative applications of the
MSTO in the context of non-linear regression: l2-penalized
linear regression, Group LASSO linear regression and Group
LASSO logistic regression.

Index Terms— Multidimensional Shrinkage-Thresholding
Operator, Iterative Group Shrinkage-Thresholding, Group LASSO
regression

1. INTRODUCTION

The scalar shrinkage-threshold operator is central to modern
signal processing algorithms such as Iterative Thresholding
[1] for image deblurring [2], wavelet-based deconvolution [3]
or sparse approximation [4].

In this paper, we introduce a multidimensional general-
ization of the scalar shrinkage thresholding operator. We de-
fine this operator as the minimization of a convex quadratic
form plus an Euclidean norm penalty. We analyze this non-
differentiable optimization problem and discuss its proper-
ties. In particular, in analogy to the scalar shrinkage oper-
ator, we show that this generalization yields a multidimen-
sional Shrinkage Thresholding Operator (MSTO) which takes
a vector as an input and shrinks it or thresholds it depend-
ing on its Euclidean norm. For this purpose, we reformulate
the problem as a constrained quadratic problem with a conic

constraint. This principle leads to a theoretical result that
transforms this multidimensional optimization problem into
a simple line search which can be efficiently implemented.
We show by simulations that evaluating the MSTO using line
search is competitive with state-of-the-art convex solvers.

In the second part of the paper, we discuss applications
of the MSTO to statistical regression. First, we consider the
Euclidean-norm penalized least squares and discuss its rela-
tion to ridge regression and robust regression [5]. Next, we
address group LASSO linear regression [6]. In the special
case of a block-orthogonal design matrix, we show that the
problem can be reduced to evaluating the MSTO for each
block. For other Group LASSO problems, we propose two
iterative applications of the MSTO. In the first approach, we
use Block Coordinate Descent to solve the linear regression
problem with an arbitrary design matrix. The second ap-
proach tackles more complicated cost functions such as the
logistic regression objective. Due to its similarity to the well-
known class of Iterative Thresholding Algorithms [1], we name
the latter Iterative Group Shrinkage-Thresholding (IGST). In
both cases, the MSTO enables one to solve large scale Group
LASSO problems using a small number of simple line searches.

This paper is organized as follows. In Section 2 we de-
fine the MSTO and introduce our main theoretical result. In
Section 3 we illustrate how to apply the MSTO to solve four
different regression problems. We present simulation results
in Section 5.

The following notation is used. Boldface upper case let-
ters denote matrices, boldface lower case letters denote col-
umn vectors, and standard lower case letters denote scalars.
The superscripts ′ and † denote the transpose and the matrix
pseudoinverse operators, respectively. θ(S) denotes the sub-
vector constructed from the indices S. For a set of indices
S, S̄ denotes its complementary set. λi (X), λmax (X) and
λmin (X) refer to the i-th, maximum and minimum eigen-
value of a matrix X and R (X) denotes its range. I is the
identity matrix. XS,T denotes the submatrix obtained from
taking the columns and rows indexed by S and T respectively
and [X] represents the subspace spanned by the columns of
X. We define diag(x) as the operator that returns a diagonal



matrix with the vector x in its diagonal. Also, we define (x)+

as the operator that yields 0 is x ≤ 0 and x otherwise. We
denote the multivariate normal distribution of mean µ and co-
variance matrix Σ by N (µ,Σ). Finally, x ∼ D means that x
is a random variable with distribution D.

2. MULTIDIMENSIONAL
SHRINKAGE-THRESHOLDING OPERATOR (MSTO)

The scalar shrinkage-thresholding operator is usually defined
as:

Φλ,a (g) := arg minx 1
2ax

2 + gx+ λ|x| (1)
= − 1

a (|g| − λ)+ sign(g),

where a, λ > 0 and g ∈ R . A natural multidimensional
generalization of this operator is:

Tλ,H (g) := arg minx
1
2x
′Hx + g′x + λ‖x‖2, (2)

where H � 0, λ > 0 and g ∈ RN . The next theorem
shows that this operator behaves in fact as a Multidimensional
Shrinkage Thresholding Operator (MSTO) which takes g and
thresholds or shrinks it to a value that depends on its norm.

Theorem 2.1. Let H � 0, g ∈ R (H) and λ > 0. The opti-
mal value of the N -dimensional, non-differentiable problem:

min
x

1
2
x′Hx + g′x + λ‖x‖2 (3)

is equal to the optimal value of the convex one-dimensional
problem:

min
η≥0

η
(
1− 1

2g
′B† (η) g

)
, (4)

where B (η) := ηH + λ2

2 I. Furthermore, the solution of (4)
satisfies:

η =

{
0 if ‖g‖2 ≤ λ
η > 0 :

∣∣∣∣λ
2 B† (η) g

∣∣∣∣2
2

= 1 if ‖g‖2 > λ
(5)

and the solutions of (3) and (4) are related by:

x =
{
−ηB† (η) g if ‖g‖2 > λ
0 if ‖g‖2 ≤ λ

, (6)

where η ≥ 0 satisfies (5).

Proof. Since H � 0 and ‖ · ‖2 is a norm, it follows that
x′Hx + g′x and ‖x‖2 are convex functions of x. Then (3) is
equivalent to the following quadratic program with a second
order conic constraint:

min
x,t

1
2x
′Hx + g′x + t (7)

s.t. ‖λx‖2 − t ≤ 0.

Slater’s condition for generalized inequalities is verified and
strong duality holds. Then the dual can be written as ([7],
Section 5.9.1):

max
‖u‖2−µ≤0

min
x,t

1
2
x′Hx + g′x + t− u′ (λx)− µt. (8)

The inner minimization is unbounded in t unless µ = 1 and
in x unless λu ∈ R (H). Otherwise, its optimum satisfies:

x = −H† (g − λu) . (9)

Plugging (9) in (8), and using the fact that a non differentiable
dual conic constraint ‖u‖2 − µ ≤ 0 with µ = 1 is equivalent
to a standard quadratic constraint ‖u‖22 ≤ 1, we obtain the
following dual concave maximization:

max
‖u‖22≤1,u∈R(H)

−1
2

(g − λu)′H† (g − λu) . (10)

The standard lagrange dual of this problem is:

min
η≥0

max
u∈R(H)

−1
2

(g − λu)′H† (g − λu)− η (u′u− 1) . (11)

Since H � 0 and H†g ∈ R
(
H†
)
, the inner maximization is

a simple quadratic problem in u with solution:

u =
λ

2
B† (η) g, (12)

where B (η) =
(
ηH + λ2

2 I
)

. This leads to the following
one-dimensional minimization over the lagrange multiplier η:

min
η≥0

η

(
1− 1

2
g′B† (η) g

)
, (13)

which proves the equivalence between (3) and (4). The eigen-
values of B† (η) are real and can be characterized as:

λi
(
B† (η)

)
=

1
ηλi (H) + λ2

2

. (14)

Since η ≥ 0, λi (H) ≥ 0 and λ > 0, it holds that 0 <
λi
(
B† (η)

)
≤ 2

λ2 . Therefore, if ‖g‖2 ≤ λ then 1
2g
′B† (η) g ≤

1 and it follows that η
(
1− 1

2g
′B† (η) g

)
≥ 0. Then the min-

imum in (13) is attained by chosing η = 0. On the other
hand, if ‖g‖2 > λ, by complementary slackness u has to ver-
ify ‖u‖22 = 1. Using (12), this leads to the following equation
in η ≥ 0: ∣∣∣∣∣∣∣∣λ2B† (η) g

∣∣∣∣∣∣∣∣2
2

= 1, (15)

which has no solution at η = 0. Combining the two solutions
of (13) yields (5). Plugging (12) in (9) yields (6).



Remark 2.2. This result shows that evaluating the MSTO in
a space of arbitrarily large dimension reduces to solving the
one-dimensional convex problem (13) or, equivalently, equa-
tion (5), only if the norm of the input vector is above the
threshold λ. Otherwise, the evaluation is immediate and no
computation is necessary, the output being set to the zero vec-
tor.

Furthermore, in the special case of H = kI for some k >
0, using Theorem 2.1 leads to a closed form expression for
the MSTO. In this case, equation (5) has the positive solution
η = λ

2k (‖g‖2 − λ) and the MSTO reduces to:

Tλ,kI (g) = −1
k

(‖g‖2 − λ)+

g
‖g‖2

, (16)

which is analogous to (1) if we define the multidimensional
sign function as sign (x) = x

‖x‖2 . This expression coincides
with the vectorial soft-threshold defined in [8]. If H 6= kI, the
unique positive solution of the non-linear equation in (5) can
be efficiently found using any standard line-search method.
In particular, in our simulations we use a Newton Raphson
implementation inspired on [9].

3. APPLICATIONS
Here we illustrate the MSTO by considering a few applica-
tions in statistical signal processing.
3.1. Linear regression with l2 norm penalty
Given a vector of n observations y and an n×N design matrix
X, we consider the following class of problems:

min
θ
‖Xθ − y‖p2 + λ‖θ‖q2. (17)

Depending on p and q, this problem specializes to ridge re-
gression (p = 2, q = 2), robust least-squares (RLS) (p = 1,
q = 1) [Theorem 3.2, [5]] or l2-penalized least squares (p =
2, q = 1). To our knowledge, the latter has not been treated
in the literature. The following corollary characterizes the so-
lution to this problem.

Corollary 3.1. The solution to the l2-penalized least squares

min
θ
‖Xθ − y‖22 + λ‖θ‖2 (18)

is:
1. If ‖X′y‖2 ≤ λ

2 , then θ = 0, i.e., thresholding.

2. If ‖X′y‖2 > λ
2 , then θ is given by the classical shrink-

age least squares
θ = (X′X + εI)†X′y, (19)

with shrinkage parameter ε = λ2

4η where η > 0 is cho-
sen to satisfy the complementary slackness condition

‖λ
(

2ηXX′ + λ2

2 I
)†

X′y‖22 = 1.

In the special case where X is orthogonal (2X′X = kI) then
(18) has a closed form solution with ε = λk

2(k‖y‖2−λ) .

The proof of this Corollary follows immediately from The-
orem 2.1.

3.2. Group LASSO Linear Regression with block-orthogonal
design
Given X, y as in the previous section and p disjoint groups
of indices Gi ⊆ {1, ..., N} satisfying ∪iGi = {1, ..., N}, the
Group LASSO linear regression problem [6] is defined as:

θ̂ = arg min
θ∈RN

‖y −Xθ‖22 +
p∑
i=1

λi‖θ(Gi)‖2, (20)

where λi are fixed penalty parameters which we assume known.
When the design matrix X is block-orthogonal (i.e. X′Gi,Gj

XGi,Gj =
0 for i 6= j) and letting H = 2X′X, g = −2X′y, we can use
Theorem 2.1 to obtain the following solution to (20) for each
group Gi:

θ̂(Gi) = Tλi,HGi,Gi

(
g(Gi)

)
. (21)

Therefore computing the optimal θ reduces to p evaluations
of the MSTO.

3.3. Block Coordinate Descent for Linear Regression
For an arbitrary design matrix X, problem (20) can be solved
using a Block Coordinate Descent (BCD) algorithm. The
main idea of the BCD method is to iteratively solve (20) for
each block Gi, letting the parameters corresponding to the
other blocks remain fixed. Defining H = 2X′X, g = −2X′y
and using the MSTO operator (2) we can obtain the following
update rule for each group Gi at iteration t:

θt(Gi)
← Tλ,HGi,Gi

(
2θt−1

(Ḡi)HḠi,Gi
+ g(Gi)

)
, (22)

where Ḡi is the complementary set of indices with respect
to Gi. This sequence is guaranteed to converge to the global
solution to (20) [10].

3.4. Iterative Group Shrinkage Thresholding (IGTS) for
Logistic Regression
Defining the same quantities y, X, H, g and {Gi}pi=1 as in the
section above, we next consider the Group LASSO logistic
regression problem [11]:

θ̂ = arg min
θ∈RN

n∑
i=1

log
(

1 + e−yix
′
iθ
)

+
p∑
i=1

λi‖θ(Gi)‖2,

(23)
where xi are the rows of the design matrix X and λi are fixed
penalty parameters. Our algorithm emulates the well-known
Iterative Shrinkage Thresholding (IST) class of algorithms for
l1 penalized regression [1] or classification [12]. For each
group Gi, and choosing H block-diagonal with respect to the
groups Gi, the update rule of the IGTS algorithm at iteration
t is:

θt(Gi)
← Tλ,HGi,Gi

([
∇f (θ)θ=θt−1 − 2θt−1H

]
(Gi)

)
, (24)

where ∇f (θ)θ=θt−1 is the gradient of the logistic cost eval-
uated at θt−1. Optimization transfer theory guarantees that
the sequence defined by the update rule (24) converges to the
global solution to (23) if H � 1

4X
′X [12].



4. SIMULATIONS
Here we demonstrate the computational advantages of evalu-
ating the MSTO using Theorem 2.1. Due to space limitations
we can only present simulations for the l2-penalized linear
regression problem presented in section 3.1. We generate the
random symmetric matrices H � 0 from the random matri-
ces Xi defined in Table 1 and taking Hi = X′iXi. We also

Diagonal Arbitrary Arbitrary
Well-conditioned Ill-conditioned

X1 ∼ diag (N (N1, I)) X2 ∼ N (NI, I) X3 ∼ N (I, I)

Fig. 1. Generation of random Xi to obtain Hi = X′iXi � 0 .

generate g ∼ N (0, I) .
We consider two experiments. For each experiment, we

evaluate the MSTO using two different approaches: (1) MSTO
N-R (using Theorem 2.1 and Newton Raphson to solve (5))
and (2) Sedumi (a state-of-the-art SOCP solver to solve (3)).
In the first experiment we calculate the average elapsed com-
putation times for evaluating the MSTO over 10 realizations
when choosing λ = 10−2 and dimensions ranging from N =
5 toN = 300. In the second one, we fixN = 50 and consider
different λ’s in the range

[
10−6, ..., 100

]
.

Figure 2 depicts the results of the first experiment, show-
ing a consistently better performance than sedumi for the ill-
conditioned matrix H3. For H1 and H2, evaluating the MSTO
using Newton Rapshon is faster for dimensions up to N =
150 and in the same order of sedumi elsewhere. On the other
hand, Figure 3 shows that our method dominates for N = 50
over a wide range of values of the regularization parameter λ.

We conclude that evaluating the MSTO using Theorem
2.1 and Newton Raphson is specially advantageous when H
in (3) is bad-conditionned, which is usual in small-sample re-
gression (i.e. when the n × N design matrix X is such that
N � n). Also, Figure 3 leads us to think that our result will
be also particularly useful when we know a priori that the re-
gression result is likely to be set to 0 as the MSTO does not
require line search when λ > ‖g‖2.
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Fig. 2. Comparison of Sedumi and MSTO with Newton-Raphson imple-
mentation for solving (3). We consider three situations: H1, a well condi-
tioned diagonal matrix (top), H2, a well conditioned matrix (middle) and
H3, an ill-conditioned matrix (bottom).
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Fig. 3. Same as in Figure 2, now for λ in the range
[
10−6, ..., 100

]
and

fixed N = 50.
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