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Accurate time-domain simulation of
continuous-time sigma-delta modulators

Philippe Benabes,Member, IEEE,

Abstract—In this paper we present a methodology for the sim-
ulation of continuous-time sigma-delta converters. This method,
based on a fixed-step algorithm, permits not only a time-domain
simulation of the modulator output but also the simulation of
intermediary signals. The method is based on the discretization
of the continuous-time models and the use of a discrete simulator
such as Simulink, which is more efficient than an analog
simulator. By using filters with a sampling frequency higher
than the modulator output frequency, the model can simulate
input signals with a bandwidth which is higher than half the
modulator sampling frequency. The transformation is exact in
terms of Noise Transfer Function and asymptotically exact in
terms of Signal Transfer Function (the Transfer Function from
the modulator input to each stage filter output rapidly tends to
the continuous-time model transfer function when the number
of steps increases).

Index Terms—sigma-delta, simulation, analog-to-digital con-
version, continuous-time.

I. I NTRODUCTION

Sigma-Delta (Σ∆) circuits are very attractive analog-to-
digital converters [1] as they achieve high accuracy with
few critical analog components. The speed and integrator
bandwidth limitations of switched-capacitor Discrete-Time
(DT) modulators can be mitigated by the use of Continuous-
Time (CT) modulators [2][3]. The latter are not easy to
integrate, but possess one key advantage over their discrete-
time competitors: no sampling is performed within the filter
itself, allowing central frequencies in the Gigahertz range [4].
An implicit anti-aliasing is performed by the analog filter [5],
thus reducing the constraints at the input of the converter.On
the other hand, CT circuits are more difficult to design and
to simulate than DT circuits. Classical design methodologies
usually start with high-level design and simulations before
transistor-level simulations [6][7]. The behavior of electronic
components can be modeled at high level for example to
analyze the impacts of environmental and process variations
such as in [8]. When the high level-simulations are performed
by an analog simulator, they require a very long computational
time. An analytical integration of the differential equations
can be performed such as in [9], but this method is exact
only if the input signal can be expressed in an analytical
form. An alternative but equivalent methodology consists in
using an equivalent DT model of CT modulators [2]. Such a
method supposes that the input signal of the CT filters has a
particular shape (for example, a sampled and held signal) and
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thus the CT differential equations are solved for this particular
signal. The output of the filter is calculated only at the A.D.C
sampling times. However, the input bandwidth is limited to
half the sampling frequency. As can be seen in [10], we can
use a state space representation of the filters, or alternatively
we can use directs transfer functions as seen in [11]. In this
paper, an extension of the simulation method of CT modulators
based on Oversampled Discrete-Time (ODT) models [12] is
presented. With this method, each sampling period is divided
into a fixed number of steps. The outputs of the filters are then
calculated for each sub-sampling time. The advantage of DT
simulations over CT algorithms is that the outputs of the filters
are calculated only at each sub-sampling time. CT algorithms
(especially those with a variable step) calculate more samples
than required, thus increasing the simulation time.

This transformation is exact in terms of Noise Transfer
Function (NTF) and asymptotically exact in terms of Signal
Transfer Function (STF). The STF of the model rapidly tends
to the STF of the CT model when the number of steps
increases. Simulations of the response of signals with a band-
width higher than half the sampling frequency is then possible.
Furthermore, an estimation of the ideal step-size derived from
the bandwidth of the input signal will be performed.

This paper is structured as follows: Section II describes
both, the synthesis and the analysis method for continuous
filter modulators. An application of the simulation of a high
order modulator with extra loop delay is illustrated in Section
III. The extension to the simulation of intermediary signals is
explained in section IV. Finally, concluding remarks are given
in section V.

II. SYNTHESIS AND SIMULATION METHODS OF

CONTINUOUS-TIME MODULATORS

A. Equivalency between Continuous-Time and Discrete-Time
Filters

The relationship between the CTg(s) and the DT filter
transfer functionf(z) of a Σ∆ modulator can be expressed
using the well known formula [11],[13],

f(z) = (1 − z−1)Zt=nTs

{

L−1

[

g(s)e−dTss

s

]}

(1)

whered is the loop delay between the A.D.C input and the
D.A.C output (normalized to the sampling period),Z stands
for the Z transform,L−1 is the inverse Laplace Transform,
and Ts is the sampling period. This formula ensures the
equivalency of the Noise Transfer Function (NTF) between
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the CT modulator shown in Fig. 1 and the DT equivalent
topology shown in Fig. 2. This formula is valid for square
feedback signals but can be extended to any signal shape, see
[14] or [15].

Fig. 1. CTΣ∆ modulator

Fig. 2. Single-bit DTΣ∆ modulator

Formula (1) can be inverted and used for the synthesis of
a CT modulator, i.e. in order to obtain the CT filter transfer
function that ensures that the NTF of both modulators will be
the same. When the delayd is non zero, (1) has no solution
as a degree of freedom is missing, making it impossible to
map the transfer function. An optimization method such as in
[16] can be used to optimize the coefficients of the CT filters
in order to maintain the stability and the performance of the
loop. As explained in [17], in order to ensure the equivalency,
a feedback term can also be added between D.A.C output and
A.D.C input. All feedback techniques are summarized in[18].

With such a feedback term, (1) can now be written as:

f(z) = (1 − z−1)Zt=nTs

{

L−1

[

g(s)e−dTss

s

]}

+ T (z) (2)

Using this methodology, the excess loop-delay [13] is no
longer a hindrance, but becomes simply a parameter that can
be adjusted [19], creating a compromise between the gain
margin of the loop and the feasibility of the feedback D.A.C.
The proposed method in [20] consists in decomposingf(z)
into rational fractions, and converting each term using pre-
calculated solutions of (2). To obtain these solutions, we used
Maplec©software, as shown in annex A. The degree ofT (z)
is the integer part ofd plus one [21].

Table I gives solutions of (2) for several transfer functions
and delays between 0 and 2. For the third-order, solutions may
be found in [12] and [22]. They may also be achieved when
using the Maple code given in annex A.

B. Signal transfer function

Assuming that the input signal is a band-limited signal
(limited to the half of the sampling frequency), and that the
quantizer can be modeled by an additive white noise, the signal
transfer function of the DT topology can be expressed as:

STFDT (ϕ) =
f(e

2jπ ϕ
FS )

1 + f(e
2jπ ϕ

FS )
(3)

where Fs is the sampling frequency, andϕ the signal
frequency. The signal transfer function of the CT topology
is [24]:

STFCT (ϕ) =
g(2jπϕ)

1 + f(e
2jπ ϕ

FS )
(4)

f being related tog by equation (1). It is clear that even
if the DT topology can model the NTF of the modulator
correctly, the STF obtained by (3) is different from (4).
For example, with a first-order lowpass modulator, where
f(z) = z−1

1−z−1 , andg(s) = FS

s , the DT signal transfer function
is a simple delay:

STFDT (z) = z−1 ⇒ STFDT (ϕ) = e
−2jπ ϕ

FS . (5)

This transfer function clearly differs from the CT transfer
function which is:

STFCT (ϕ) =
1 − e

2jπ ϕ
FS

2jπ ϕ
FS

. (6)

As a consequence, when we deal with non constant signals,
the DT model cannot be used to perform exact time-domain
simulations of the behavior of a CT modulator. Furthermore,
the DT model is unable to model an input signal with a
frequency higher than half the sampling frequency. In orderto
enhance the signal-transfer function and remove the frequency
limitation, we propose using an oversampled model of the DT
modulator (ODT)

C. Oversampled model of a sigma delta modulator

Let us now consider the oversampled model of aΣ∆
modulator shown in Fig. 3. The sampling frequency of the
A.D.C is still Fs, but the digital filter (F ) runs now atkFs.
The feedback signal is held duringk samples. This is a special
case of multi-rate systems as seen in [23]. In order to simplify
the notations, theZ variable denotes functions running at
frequencykFs, while thez variable denotes a function running
at frequencyFs. A delay r is introduced at the output of the
zero-order hold, in order to model the delayd between A.D.C
input and D.A.C output.r will be chosen as the integer part
of k.d (r = ⌊k.d⌋, where⌊⌋ denotes the integer part).

Next we consider the transfer function between the A.D.C
output and its input. We calculate the response of the filter
Y ∗[n] to a discrete impulse at the A.D.C output in the case
of both: CT modulator, and ODT modulator.

In the case of the CT modulator:
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g(s) d f(z) T (z)
1

Tss
0 ≤ d ≤ 1 z

−1

1−z−1 dz
−1

1
Tss

1 ≤ d ≤ 2 z
−1

1−z−1 z
−1 + (d − 1)z−2

1
Tss−a

0 ≤ d ≤ 1 e−ad e
a
−1
a

z
−1

1−eaz−1
1−e

−ad

a
z
−1

1
Tss−a

1 ≤ d ≤ 2 e−ad e
a
−1
a

z
−1

1−eaz−1

e
−ad(ea

−1)
a

z
−1 + 1−e

−a(d−1)

a
z
−2

1
(Tss)2

0 ≤ d ≤ 1 1−2d

2
z
−1

1−z−1 +

(

z
−1

1−z−1

)2

−
d
2

2
z
−1

1
(Tss)2

1 ≤ d ≤ 2 1−2d

2
z
−1

1−z−1 +

(

z
−1

1−z−1

)2
1−2d

2
z
−1

−
(d−1)2

2
z
−2

TABLE I
CT TO DT TRANSFORMATION TABLE

Fig. 3. OversampledΣ∆ modulator

Y ∗[n] = L−1
t=nTs

[b(s)g(s)]

with b(s) = 1−e−Tss

s e−dTss
(7)

In the case of the ODT modulator:

Y ∗[n] = Z−1
N=kn

[B(Z)F (Z)]

with B(Z) = Z−r(1−Z−k)
k(1−Z−1)

(8)

These two responses should be equal for each A.D.C
sampling time at frequencyFs. A sufficient condition is that
the response to a discrete impulse ofF (Z) is the same, for
each sampling time atkFs, as the response ofg(s) to an
impulse with a width equal toTs/k delayed byd−r/k. Indeed,
an impulse with a width ofTs is the sum ofk impulses with
a width of Ts/k delayed by multiples ofTs/k.

This condition can be expressed as:

F (Z) = (1 − Z−1)Zt=nTs/k

{

L−1

[

g(s)e−(d−r/k)Tss

s

]}

(9)
We denoteD = kd − r. It can be clearly seen from its

definition that0 ≤ D < 1. (9) can be rewritten as:

F (Z) = (1 − Z−1)Zt=nTs/k

{

L−1

[

g(s)e−D Ts
k

s

s

]}

(10)

If we replaceD by d andTs/k by Ts, this equation is the
same as (1). Table II gives solutions of (10), i.e. shows how to
obtainF (z) from g(s) for first-order and second-order filters.

The transformation will be denoted as ODTT, Oversampled
Discrete-Time Transform, and we will write it as:

g(s) F (Z)
1

Ts
k

s

Z
−1

1−Z−1 − DZ−1

1
Ts
k

s−a
e−ad e

a
−1
a

Z
−1

1−eaZ−1 − 1−e
−aD

a
Z−1

1

(
Ts
k

s)2
1−2D

2
Z

−1

1−Z−1 +

(

Z
−1

1−Z−1

)2

+ D
2

2
Z−1

1

(
Ts
k

s−a)2

e
−aD(1+aD−e

a(a(1−D)−1))Z−1

a2(1−eaZ−1)

+
(ea

−1)ea(1−D)
Z

−2

a2(1−eaZ−1)2
+

1−(1+aD)e−aD

a2 Z−1

TABLE II
ODT TRANSFORMATION TABLE

F (Z) = ODTT (g(s), k,D) wherek is the oversampling
ratio and D the difference between the real delay and the
modeled delay normalized toTs/k. We can see that in case of
k = 1, this transformation is the same as the transformation
of (1), i.e. f(z) = ODTT (g(s), 1, d).

III. APPLICATION TO THE SIMULATION OF
HIGH-ORDER MODULATORS WITH LOOP DELAY

The methodology proposed in section II will be used to
simulate the time-domain response of a CTΣ∆ modulator. In
this section we try to obtain the output signal of the modulator.
We will evaluate the error committed by this model in terms
of Signal Transfer Function (STF).

A. Simulation of the output of a modulator

A CT Σ∆ modulator can always be expressed as Fig. 4,
where gx(s) is the transfer function between the modulator
input and the A.D.C input, andgq(s) is the transfer function
between the D.A.C output and the A.D.C input.

With the definitionr = ⌊kd⌋, andD = kd − r, we use the
ODTT transformation as:

Fx(Z) = ODTT (gx(s), k, 0) (11)

Fq(Z) = ODTT (gq(s), k,D) (12)

The ODT topology is shown in Fig. 5
If the input signal was sampled and held at frequencykFs,

then both modulators would be completely equivalent. Let us
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Fig. 4. CTΣ∆ modulator

Fig. 5. ODTΣ∆ modulator

Fig. 6. 2nd order DTΣ∆ modulator

take as an example a classical second-order modulator. The
DT prototype is given in Fig. 6.

In this modulator,

f(z) =
z−1

1 − z−1
+

1

2

(

z−1

1 − z−1

)2

. (13)

A CT equivalent topology can be found using table I. With
a loop delayd between 0 and 1, we obtain:

g(s) =
1

2(Tss)2
+

2d + 3

4Tss
, (14)

T (z) =

(

d(3 + d)

4

)

z−1. (15)

The prototype of the CT modulator is given in Fig. 7. This
modulator is equivalent to the Fig. 6 modulator in terms of
NTF, but the STF will have to be evaluated separately. It
should be noted that the proposed methodology does not give
the signal coefficientsx1 andx2. They will be calculated using
STF considerations.

In order to simulate the CT modulator, we transform the
CT modulator into an ODT topology. This operation takes
into account the feedback signal and the input signal of the
modulator. For this example, we choosed = 0.5. With this
value,

Fig. 7. 2nd order CTΣ∆ modulator

gq(s) =
1

2(Tss)2
+

1

Tss
, (16)

and

gx(s) = x1
1

2(Tss)2
+ x2

1

Tss
. (17)

In order to simplify the example, the oversampling ratiok
will be chosen as an even number. As a result,r = k/2, and
D = 0. Using (11), and (12), then

Fq(Z) =
1 + 4k

4k

(

1

k

Z−1

1 − Z−1

)

+
1

2

(

1

k

Z−1

1 − Z−1

)2

, (18)

Fx(Z) =
x1 + 4kx2

4k

(

1

k

Z−1

1 − Z−1

)

+
x1

2

(

1

k

Z−1

1 − Z−1

)2

.

(19)
The resulting ODT topology is shown in Fig. 8.

Fig. 8. Equivalent2nd order ODTΣ∆ modulator

In order to verify the theory, we have simulated the behavior
of the second order DT modulator shown in Fig. 6, the
equivalent CT modulator shown in Fig. 7, and the ODT model
shown in Fig. 8, using Simulink software. The chosen OSR
is equal tok = 8. Only the ten first output samples were
plotted so as to make the figures more readable. In a first
simulation, the input signal is a constant signal equal to 0
and the A.D.C inputs are compared in Fig. 9.DacMax is
the D.A.C maximum output voltage. It can be seen that these
signals are equal for each sample timenTs. Furthermore, the
inputs of the comparators of the CT and the ODT modulator
are equal at each sub-sampling timenTs/k.

We have then applied a low frequency sine input signal
sampled and held at frequencykFs and verified in Fig. 10
that the comparator inputs are still equal for each sub-sampling



5

time for both the CT model and the ODT model. It can be
verified that the DT model does not give the right response.

At last, we have applied a low frequency CT sine input
signal and verified in Fig. 11 that the comparator inputs differ
increasingly for the CT and ODT case. However, the fact that
the STF of the CT modulator is correctly approached by the
one of the ODT modulator at low frequencies will be verified
in the next section.

Fig. 9. Simulink simulation of A.D.C input with zero input signal

Fig. 10. Simulink simulation of A.D.C input with sampled and held input
signal

B. Signal transfer function evaluation

Assuming that the quantizer can be modeled by an additive
white noise, the signal transfer function of the CT topology
can be expressed as:

STFCT (ϕ) =
gx(2jπϕ)

1 + f(e2jπ ϕ
Fs )

(20)

The STF can be used even for frequencies higher thanFs/2,
knowing that a signal at frequencyϕ is aliased into a signal
at frequencyϕ−mFs at the modulator output (where−Fs

2 <
ϕ − mFs < Fs

2 ).

Fig. 11. Simulink simulation of A.D.C input with CT sine input signal

The signal transfer function of the ODT topology can be
expressed as:

STFODT (ϕ) =
Fx(e2jπ ϕ

kFs )

1 + f(e2jπ ϕ
Fs )

, (21)

with −kFs

2 < ϕ < kFs

2 .
The error introduced by using the ODT model instead of

the CT model can be evaluated using the ratio:

err =
STFODT (ϕ)

STFCT (ϕ)
=

Fx(e2jπ ϕ
kFs )

gx(2jπϕ)
(22)

we denoteφ = ϕ
kFs

. When ϕ varies from−kFs

2 to kFs

2 ,
thenφ varies from -0.5 to 0.5, and

err(φ) =
Fx(e2jπφ)

gx(2jπφkFs)
. (23)

This error depends on the order of the filter,k, and its poles.
In the case of integrators, the error does not depend onk.

For a first-order integrator,

err(φ) =
2jπφ

e2jπφ − 1
, (24)

for a second-order integrator,

err(φ) =
(2jπφ)

2 (

e2jπφ + 1
)

2 (e2jπφ − 1)
2 , (25)

and for a third-order integrator,

err(φ) =
(2jπφ)

3
(

(

e2jπφ
)2

+ 4e2jπφ + 1
)

6 (e2jπφ − 1)
3 . (26)

These results were obtained from table II.
A pre-distortion filter may be introduced in order to com-

pensate this STF distortion. This filter will not flatten the error
from −kFs

2 to kFs

2 , but it will work efficiently from −kFs

4 to
kFs

4 . The filter must also be a symmetrical FIR filter in order
to maintain a linear phase correction (simple delay). Fig. 12
compares the STF modulus before and after correction for a
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Fig. 12. ‖STF‖ distortion with and without correction for a first-order
integrator

−0.5 0 0.5
−20

−15

−10

−5

0

5

10
second order integrator

            phi / k Fs
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dB
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Fig. 13. ‖STF‖ distortion with and without correction for a second-order
integrator

first-order integrator and Fig. 13 for a second-order integrator
(ϕ is denoted as phi on the figures).

The most simple usable FIR (2nd order) can be expressed
as, for anth order integrator by

Cn(z) = λn + (2 − λn)Z−1 + λnZ−2 (27)

with
λ1 ≈ 0.045, λ2 ≈ −0.045, λ3 ≈ −0.045.
It can be verified that the coefficientk has not appeared in

the previous expressions.

C. Example of a second-order modulator

As an application, we can consider the modulator shown
in Fig. 7. An equivalent bandpass example can be found in
[22]. The model shown in Fig. 8 must be changed in order
to introduce the STF correction filters, resulting in Fig. 14
topology.

Fig. 14. ODT model of a second-order modulator including signal pre-
distortion filter

The STF of this modulator has been evaluated and compared
with the one obtained for the ODT model in Fig. 15. The
curves are given for the casex1 = 1 andx2 = 0.

0 0.5 1 1.5 2 2.5 3 3.5 4
−30

−25

−20

−15

−10

−5

0

5

10

         phi / Fs

|S
T

F
| [

dB
]

STF comparison with ODT model

k=4

k=8

k=16

CT

Fig. 15. Comparison of STF obtained with ODT and CT model

In order to evaluate the efficiency of our methodology, this
STF could be compared with the one that would be obtained by
making a bilinear transform of the filters of the CT modulator.
It was shown in [12] that this topology is not strictly equivalent
in terms of NTF. In the case of bandpass modulators, there
would be a shift in the central frequency of the modulator [22].
In order to obtain a good NTF approximation, an oversampling
ratio of at least 64 or 128 would be required. Using the ODT
model, the NTF is correct for any value ofk.

Table III compares the simulation times of a second-order
lowpass modulator for 100000 output samples in the simulink
environment. The first model is the one of Fig. 6 with two
CT integrators. The algorithm used to solve the equations is
ODE45. The DT model is the model of Fig. 7. The third and
fourth models (bilinear with k=8 and k=128) are obtained by
replacing the CT integrators of Fig. 7 by integrators obtained
by a bilinear transform. The last model (ODT) is the one of
Fig. 8. The fastest method is the one that uses the DT model
(k = 1) but it does not provide accurate results in terms of
STF. The bilinear method provides good results fork = 128
but implies long simulation times. Our methodology provides
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good results in terms of NTF and STF with a reasonable
simulation time compared to the simulation time required by
a continuous algorithm. This kind of results can be verified
in [10]. The advantage of our methodology is to be able
to simulate the response to signals with large bandwidth by
adjustingk.

IV. I NTERMEDIARY SIGNALS SIMULATION

A. A new ODT model taking into account intermediary signals

The goal of the previous section was to simulate the output
of the modulator as accurately as possible. This methodology
can be extended to the simulation of intermediary signals,
especially the outputs of each filter. Indeed, the previous
model provides a correct output value of the modulator in the
case of a constant or sampled input signal, but the output of
intermediary filters does not fit the real output of the CT filters.
The methodology proposed in section III is now extended to
intermediary signals. If the input signal was a sample and held
signal at frequencykFs, then the methodology would provide
the exact intermediary values at every sub-sampling time. For
a CT input signal, the model gives an approximation of the
outputs of all filters. Note that in this paper, we consider only
single-loop topologies, but the methodology could be extended
to any kind of topology.

Fig. 16 shows the topology of anth order CT modulator:

Fig. 16. General CT topology

We denote the transfer functions between D.A.C output and
the mth filter output asgm

q . From Fig. 16, it can be seen that

g1
q (s) = k1G1(s)

g2
q (s) = G2(s)(k2 + k1G1(s))

...
gn

q (s) = Gn(s)(kn + Gn−1(s)(kn−1 + Gn−2(s)(...)))
(28)

We also denote the transfer function between the modulator
input and themth filter output asgm

x . It can also be seen that

g1
x(s) = x1G1(s)

g2
x(s) = G2(s)(x2 + x1G1(s))

...
gn

x (s) = Gn(s)(xn + Gn−1(s)(xn−1 + Gn−2(s)(...)))
(29)

Each transfer function can be transformed into its ODT
equivalent by

Fm
x = ODTT (gm

x , k, 0),m = 1..n
Fm

q = ODTT (gm
q , k,D),m = 1..n

(30)

The output ofFm
q would be equal to the output of filterGm

if it was connected only to the modulator feedback through
km. The output ofFm

x would be an approximation of the
output of filterGm if it was connected only to the modulator
input throughxm.

The resulting topology is given in Fig. 17. This topology
provides the output of each filter separately. It is, of course,
functionally correct. However, the quantity of performed cal-
culations is not optimal as each CT filter output requires a
separate DT filter.

Fig. 17. ODT topology providing intermediary outputs

The topology of Fig. 17 has been transformed in order to
be expressed as a classical multi-feedback topology. As the
poles are conserved by the ODT transformation,Fm

x andFm
q

have the same poles. Furthermore, these poles are included
in the poles ofFm+1

x andFm+1
q . As a consequenceFm

x and
Fm

q have the same denominator, and the latter divides the
denominator ofFm+1

x andFm+1
q .

Fm
x andFm

q can be expressed as

Fm
x (Z) =

T m
x (Z)

m
∏

p=1

Dp(Z)

Fm
q (Z) =

T m
q (Z)

m
∏

p=1

Dp(Z)

(31)

In the case of lowpass modulators, the termsDp(Z) are
first-order filters; in the case of bandpass modulators, theyare
second-order filters.

The proposed topology used for the simulation is shown in
Fig. 18. The integrators are replaced by their denominatorsand
the coefficients are replaced by the numerators of the filters.

The equivalency is ensured if:

Fm
x (Z) =

Nm
x (Z)+Nm

F (Z)

(

(N
m−1
x (Z)+N

m−1
F

(Z)(...))
Dm−1(Z)

)

Dm(Z)

Fm
q (Z) =

Nm
q (Z)+Nm

F (Z)

(

(N
m−1
q (Z)+N

m−1
F

(Z)(...))
Dm−1(Z)

)

Dm(Z)

(32)

These equations will be written recursively:
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continuous D.T. Bilinear (k=8) Bilinear (k=128) ODT (k=8)
simulation time 34s 1s 6s 130s 6s

STF good bad bad good good

TABLE III
COMPARISON OF SIMULATION TIMES ANDSTF WITH THE THREE METHODOLOGIES

Fig. 18. ODT topology for simulation

T m
x (Z)

m
∏

p=1

Dp(Z)

= 1
Dm(Z)









Nm
F (Z)

T m−1
x (Z)

m−1
∏

p=1

Dp(Z)

+ Nm
x (Z)









T m
q (Z)

m
∏

p=1

Dp(Z)

= 1
Dm(Z)









Nm
F (Z)

T m−1
q (Z)

m−1
∏

p=1

Dp(Z)

+ Nm
q (Z)









(33)
resulting in:

Tm
x (Z) = Nm

F (Z)Tm−1
x (Z) + Nm

x (Z)
m−1
∏

p=1
Dp(Z)

Tm
q (Z) = Nm

F (Z)Tm−1
q (Z) + Nm

q (Z)
m−1
∏

p=1
Dp(Z)

(34)

In casem = 1 (first stage), the equations (34) will result
in:

T 1
x (Z) = N1

x(Z)
T 1

q (Z) = N1
q (Z)

(35)

Equations (34) are linear equations where the unknown
parameters are the coefficients of the polynomialsNm

F , Nm
x ,

Nm
q . If the delay r is chosen correctly so that0 < D =

kd− r < 1, then the order ofTm
x (Z) andTm

q (Z) is the same

as the order of
m−1
∏

p=1
Dp(Z), and the constant term is zero (this

can be seen from table II). It is also clear from (34) that the
constant term ofNm

F , Nm
x and Nm

q is zero. The degree of
the resulting solution depends on the degree of the numerators
and denominators. It should be noticed that this system always
provides a solution. Indeed, increasing the degree ofNm

F , Nm
x

andNm
q by one adds three unknown parameters and only two

equations. Consequently, there is a minimal degree for which
the number of unknown parameters is at least equal to the
number of equations. Our goal is to obtain the minimum order
solution of these equations.

If we take into account that the system (34) usually has more
equations than unknown terms, then the proposed algorithm
can be expressed as follows:

• choose the minimum order forNm
F , Nm

x andNm
q ,

• solve the system (34) in a mean square sense,
• verify if the solutions provided by the above are valid,
• increase the order ofNm

F , Nm
x andNm

q by one and start
again if the equation system is not solved.

The previous loop will end when the number of unknown
parameters is equal to the number of equations. In the case of
lowpass modulators, the degree ofNm

F , Nm
x andNm

q will be
m−1 and the degree ofN0

x andN0
q is 1. It can be noticed that

for orders higher than 2, the termsNm
F , Nm

x andNm
q are no

longer simple coefficients as it is the case in usual models but
whenm > 2 they are polynomials. This is why a third-order
modulator will be considered in the next example. In the case
of bandpass modulators the degree ofNm

F , Nm
x and Nm

q is
usually 2 for the first three stages. It will be 3 for the last
stage.

B. Intermediary signal transfer functions evaluation

As in section III-B, it is possible to define a transfer function
between the modulator input and the outputs of the filters. We
consider a sine input signal at frequencyϕ. This signal is
aliased into a signal at frequencyϕ − mFs at the modulator
output. Due to the sampling function, the feedback signal
contains components at frequenciesϕ − mFs + kFs. We
consider in this evaluation the component for whichk = m,
i.e. a component at frequencyϕ. The output of filterk is due to
2 terms: one coming from from the input signalx and another
coming from the output signalq

For the CT model (Fig. 16), the global transfer function
from input to filter k output, defined previously, can be
expressed as:

TFCT (m,ϕ) = gm
x (2jπϕ) − gm

q (2jπϕ)b(2jπϕ)STFCT (ϕ)
(36)
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wheregm
x , gm

q , andSTFCT (ϕ) have been defined respec-
tively in (29), (28), and (20), and b(s) is the transfer function
of the D.A.C defined in (7).

On the other hand, this transfer function for the ODT
modulator can be expressed as:

TFODT (m,ϕ) = Fm
x (e2jπϕ)

−Fm
q (e2jπϕ)B(e2jπϕ)STFODT (ϕ)

(37)

where Fm
x , Fm

q , and STFODT (ϕ) have been defined re-
spectively in (30) and (21), and B(Z) is the transfer function
of the D.A.C defined in (8).

C. Application to the simulation of a low pass modulator

We consider a classical third-order lowpass modulator. Its
topology is given in Fig. 19 withg1 = 0.182, g2 = 0.46,
g3 = 1.495, t1 = 0.664. These values can be easily found
using, for example, the tools of Schreier [1]. The chosen D.A.C
delay is equal to half the sampling period (dTs = 0.5), andk
is equal to 8. With these values,r = 4 andD = 0.

Fig. 19. Classical third-order lowpass modulator

By applying the section IV-A methodology, the equivalent
ODT model is given by Fig. 20 with

N1
x(Z) = Z−1

N1
q (Z) = Z−1

N2
F (Z) = Z−1

N2
x(Z) = 1.13e−2Z−1

N2
q (Z) = 1.011Z−1

N3
F (Z) = 1.5Z−1 − 0.5Z−2

N3
x(Z) = 2.18e−4Z−1 + 3.27e−4Z−2

N3
q (Z) = 1.029Z−1 − 0.028Z−2

(38)

If we had used a classical bilinear transformation of the
filters, coefficientsN2

x and N3
x would have been zero and

coefficientsN2
q , N3

q andN3
F would have beenZ−1. However

if we increase the value of k, thenN2
x andN3

x tend towards
zero and the other coefficients tend towardsZ−1.

Fig. 21 compares the shape of the outputs of each filter
obtained by a simulation with Simulink of the CT model and
the ODT model. The input signal was a sampled and held
signal atkFs. It can be seen that the ODT model provides the
real value of each filter output for each sub-sampling time.

In addition to section III-B, it is possible to evaluate the
transfer function between the modulator input and each filter
output. The definition was given in section IV-B: a sine input
signal at frequencyϕ is applied at the modulator input and we
consider the component at this same frequency at each filter
output.

Fig. 21. Intermediary signals shape

As an example, Fig. 22 compares the STF between the mod-
ulator input and the first integrator output. It is obtained with
the CT model and the ODT model, without STF correction,
and for a CT input signal. We could verify that the ODT model
gives a good approximation of the output of all filters.
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0

         phi / Fs

|S
T

F
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dB
]

STF from input to first integrator output

k=4

k=8

k=16CT

Fig. 22. Transfer function between input and first integrator output

As in [12], it can be seen that taking k equal to 4 times the
ratio between the input signal bandwidth andFs/2 provides
accurate results for the simulation of intermediary signals.

The simulations times are almost the same as the ones
obtained in table III. Simulating 100000 samples of a second-
order modulator requires 7 seconds (it was 6 seconds when
intermediary signals were not expected).

D. Extension to non-idealities simulations

The ODT model can be extended to the simulation of
non ideal behaviors. Some of them can be directly deduced
from the ODT model while others need some mathematical
developments. To start with, discrete-time noise sources can
be easily added at the input or the output of all filters. This can
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Fig. 20. Equivalent ODT modulator

help evaluate, for example, the effect of the high frequency
noise components that are aliased in the signal band. The
spectrum shape of the noise sources has to be derived from
the CT noise models. The effect of the clock jitter [25] could
also be included in this model. However, this would require
a mathematical extension of the methodologies proposed, for
example, in [26]. It is also possible to model the real transfer
function of the amplifiers used in the modulator, as long as
they can be expressed by their Laplace transform. This can be
easily done by replacing the ideal filtersG1 to Gn in Fig. 16
by their real transfer functions. Some non linearities can also
be introduced, by including, for example, a non-linear transfer
function at the output of the amplifiers. Nevertheless, such
a model cannot simulate correctly, for example, non linear
capacitances in an integrator. In any case, high level models
can never replace a transistor-level simulation where all non-
linearities and parasitical elements are considered.

V. CONCLUSION

A methodology for time-domain simulations of continuous-
time modulators was proposed. This methodology is based on
a fixed step discretization of each output sample. Compared
with variable step methods, the fixed step method ensures
an exact equivalency in terms of noise transfer function,
even for large simulation steps. The optimal step value is
chosen from the bandwidth of the input signal. This allows
for the simulation of the response to input signals with a
bandwidth larger than half the modulator sampling frequency.
This methodology can also help simulate the behavior of all
the modulator outputs of the filters on top of the modulator
output signal. Simulations are very fast as they use discretized
equations. STF considerations have shown that the ODT
method describes the behavior of a CT modulator better than a
classical transformation method such as the bilinear transform.

APPENDIX A
MAPLE CODE TO SOLVE(1)

The following code was used to solve (1) and to fill in table
I. In this code, which deals with first-order terms (1

s−a ), the
delayd is between 0 and 1. Larger delays can be considered
by changing the sixth line of the code.

with(inttrans);readlib(invztrans);
g := 1/(((s * Ts-a))) ;
assume(d>0,Ts>0);

b := exp(-d * Ts* s);
t1 := invlaplace(g/s * b,s,t);
t2 := subs(Heaviside(t-d * Ts)

=Heaviside(t-1 * Ts),t1);
t3 := simplify(ztrans(subs(t=n * Ts,t2),n,z)

* (1-zˆ(-1)));
f := convert(t3,parfrac,z);

APPENDIX B
MATLAB CODE TO SOLVE (34)

The following code can be used to solve (34). This code was tested
only in the case when the size of s1 was the same as the size of s2.

%--------------------------------------------
% resolution of the equation s1 = ax + by
% s2 = cx + dz
% with s1,s2,a,b polynomial inputs
%
%--------------------------------------------

function [x,y,z] = polysolve2(s1,a,b,s2,c,d)

or=0 ;
while ((s1(1)==0) && (s2(1)==0))

s1=s1(2:end) ; s2=s2(2:end) ;
or=or+1 ;

end

ls1=length(s1); ls2=length(s2);
lngsolx=ls1-length(a)+1;
lngsoly=ls1-length(b)+1;
lngsolz=ls2-length(d)+1;

if (ls1<lngsolx+lngsoly)
s1=[s1 zeros(1, lngsolx+lngsoly-ls1)] ;

end
if (ls2<lngsolx+lngsolz)

s2=[s2 zeros(1, lngsolx+lngsolz-ls2)] ;
end
ls1=length(s1); ls2=length(s2);

for dl=0:ls1+ls2-(lngsolx+lngsoly+lngsolz)

mat=zeros(lngsolx+lngsoly+lngsolz,ls1+ls2) ;

for k=1:lngsolx
mat(k,k:k+length(a)-1)=a ; end

for k=1:lngsoly
mat(k+lngsolx,k:k+length(b)-1)=b ; end

for k=1:lngsolx
mat(k,k+ls1:k+ls1+length(c)-1)=c ; end

for k=1:lngsolz
mat(k+lngsolx+lngsoly,k+ls1:k+ls1+length(d)-1)=d ; en d

x0=[s1 s2]/mat ;
err=max(abs((x0 * mat-[s1 s2]))) ;
if (err<1e-8) break; end
lngsolx=lngsolx+1 ; lngsoly=lngsoly+1 ; lngsolz=lngsolz +1 ;
s1=[s1 0] ; s2=[s2 0] ; ls1=ls1+1 ; ls2=ls2+1 ;

end

x=[zeros(1,or) x0(1:lngsolx)];
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y=[zeros(1,or) x0(lngsolx+1:lngsolx+lngsoly)];
z=[zeros(1,or) x0(lngsolx+lngsoly+1:end)];
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