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Accurate time-domain simulation of
continuous-time sigma-delta modulators

Philippe BenabesMember, IEEE,

Abstract—In this paper we present a methodology for the sim- thus the CT differential equations are solved for this patér
ulation of continuous-time sigma-delta converters. This method, signal. The output of the filter is calculated only at the ACD.
based on a fixed-step algorithm, permits not only a time-domain sampling times. However, the input bandwidth is limited to

simulation of the modulator output but also the simulation of half th ling f A b in 110
intermediary signals. The method is based on the discretization a e sampling frequency. As can be seen in [10], we can

of the continuous-time models and the use of a discrete simulator US€ & state space representation of the filters, or alteehati
such as Simulink, which is more efficient than an analog we can use direct transfer functions as seen in [11]. In this
simulator. By using filters with a sampling frequency higher paper, an extension of the simulation method of CT modusator
than the modulator output frequency, the model can simulate 5564 on Oversampled Discrete-Time (ODT) models [12] is
input signals Wlth a bandwidth which is hlgher_ tha_n half thg d. With thi hod h i iod is divid
modulator sampling frequency. The transformation is exact in _presen_te - With this method, each sampling per_lo IS divide
terms of Noise Transfer Function and asymptotically exact in into a fixed number of steps. The outputs of the filters are then
terms of Signal Transfer Function (the Transfer Function from calculated for each sub-sampling time. The advantage of DT
the modulator input to each stage filter output rapidly tends to  simulations over CT algorithms is that the outputs of therft
tr;e tcontl_nuous-tlme model transfer function when the number are calculated only at each sub-sampling time. CT algosthm
of steps increases). (especially those with a variable step) calculate more $snp
Index Terms—sigma-delta, simulation, analog-to-digital con- than required, thus increasing the simulation time.
version, continuous-time. This transformation is exact in terms of Noise Transfer
Function (NTF) and asymptotically exact in terms of Signal
I. INTRODUCTION Transfer Function (STF). The STF of the model rapidly tends

Sigma-Delta £A) circuits are very attractive analog-to-to the STF of the CT model when the number of steps
digital converters [1] as they achieve high accuracy witlicreases. Simulations of the response of signals with d-ban
few critical analog components. The speed and integradsidth higher than half the sampling frequency is then pdesib
bandwidth limitations of switched-capacitor Discreten@ Furthermore, an estimation of the ideal step-size deriveah f
(DT) modulators can be mitigated by the use of Continuouthe bandwidth of the input signal will be performed.

Time (CT) modulators [2][3]. The latter are not easy to This paper is structured as follows: Section Il describes
integrate, but possess one key advantage over their discrdoth, the synthesis and the analysis method for continuous
time competitors: no sampling is performed within the filtefilter modulators. An application of the simulation of a high
itself, allowing central frequencies in the Gigahertz mufdy]. order modulator with extra loop delay is illustrated in $att

An implicit anti-aliasing is performed by the analog filt&][ Il The extension to the simulation of intermediary signad
thus reducing the constraints at the input of the conve@ar. explained in section IV. Finally, concluding remarks areegi

the other hand, CT circuits are more difficult to design arifl section V.

to simulate than DT circuits. Classical design method@sgi

usually start with high-level design and simulations befor I[I. SYNTHESIS AND SIMULATION METHODS OF
transistor-level simulations [6][7]. The behavior of dlenic CONTINUOUS-TIME MODULATORS

components can be modeled at high level for example Ao
analyze the impacts of environmental and process var'&atio,g{I i
such as in [8]. When the high level-simulations are performed
by an analog simulator, they require a very long computation The relationship between the CJ(s) and the DT filter
time. An analytical integration of the differential equats transfer functionf(z) of a XA modulator can be expressed
can be performed such as in [9], but this method is exad$ing the well known formula [11],[13],

only if the input signal can be expressed in an analytical

form. An alternative but equivalent methodology consists i . _, [g(s)e—T=s

using an equivalent DT model of CT modulators [2]. Sucha  f(2) = (1 =27 ) Zi=pr, {L {s]} 1)
method supposes that the input signal of the CT filters has a

particular shape (for example, a sampled and held signdl) an Whered is the loop delay between the A.D.C input and the
D.A.C output (normalized to the sampling period),stands

o _ _ _ for the Z transform,L~! is the inverse Laplace Transform,
The author is with the Department of Signal Processing andtileics,

Supelec, 91190 Gif/Yvette, FRANCE (e-mail: philippe.benabasi@elec.fr). and_Ts is the samplin_g periOd' This formUIa ensures the
equivalency of the Noise Transfer Function (NTF) between

Equivalency between Continuous-Time and Discrete-Time
ers



the CT modulator shown in Fig. 1 and the DT equivaler®. Sgnal transfer function

topology shown in Fig. 2. This formula is vali.d for square Assuming that the input signal is a band-limited signal
feedback signals but can be extended to any signal shape, §&ied to the half of the sampling frequency), and that the
[14] or [15]. guantizer can be modeled by an additive white noise, theakign
transfer function of the DT topology can be expressed as:

Sampling frequency = F

v f(75)
STFpr(p) = ————%— 3)
x(0) ADC |y L+ f(e¥775)
g(S) B T 4 where F; is the sampling frequency, ang the signal

frequency. The signal transfer function of the CT topology

is [24]:
D.A.C [« 2j
C STFer(p) = —42079) @
L+ f(e¥"7s)
Fig. 1. CTXA modulator f being related tgy by equation (1). It is clear that even

if the DT topology can model the NTF of the modulator
correctly, the STF obtained by (3) is different from (4).

Samphng frequencyZF s For example, with a first-order lowpass modulator, where

i ¢ ¢ f(z) = % andg(s) = £2, the DT signal transfer function
x(®) x[n] qln] is a simple delay:
— flz) > A.D.C » .
STFpr(z) =21 = STFpr(p) = e H7Fs (5)

This transfer function clearly differs from the CT transfer
D.A.C function which is:

1— ™75

Fig. 2. Single-bit DTZA modulator STFer(p) = W (6)
Formula (1) can be inverted and used for the synthesis ofAs a consequence, when we deal with non constant signals,

a CT modulator, i.e. in order to obtain the CT filter transfethe DT model cannot be used to perform exact time-domain
function that ensures that the NTF of both modulators will b&imulations of the behavior of a CT modulator. Furthermore,
the same. When the delayis non zero, (1) has no solutionthe DT model is unable to model an input signal with a
as a degree of freedom is missing, making it impossible tequency higher than half the sampling frequency. In otder
map the transfer function. An optimization method such as @nhance the signal-transfer function and remove the frexyue
[16] can be used to optimize the coefficients of the CT filtetgnitation, we propose using an oversampled model of the DT
in order to maintain the stability and the performance of theodulator (ODT)
loop. As explained in [17], in order to ensure the equivajenc
a feedback term can also be added between D.A.C output ghd
A.D.C input. All feedback techniques are summarized in[18]

With such a feedback term, (1) can now be written as: L€t us now consider the oversampled model of::&
modulator shown in Fig. 3. The sampling frequency of the

g(s)e_des A.D.C is still Fy, but the digital filter ) runs now atkF.
f(2) =1 =22, {L‘1 [} } +T(z) (2) The feedback signal is held duriigsamples. This is a special

i i 5 _case of multi-rate systems as seen in [23]. In order to sfynpli
Using this methodology, the excess loop-delay [13] is e npotations, theZ variable denotes functions running at
longer a hindrance, but becomes simply a parameter that ¢aly encyi £, while the: variable denotes a function running
be adjusted [19], creating a compromise between the 9aiifequencyr,. A delay is introduced at the output of the

margin of the loop and the feasibility of the feedback D.A.Cyer6.order hold, in order to model the deldpetween A.D.C
The proposed method in [20] consists in decomposiig)  jnpyt and D.A.C outputr will be chosen as the integer part

into rational fractions, and converting each term using- prgs ;. 4 (r = |k.d], where| | denotes the integer part).

calculated solutions of (2). To obtain these solutions, ®&du  Next we consider the transfer function between the A.D.C
Maple©software, as shown in annex A. The degre€l®t) ooyt and its input. We calculate the response of the filter

is the integer part ol plus one [21]. . Y*[n] to a discrete impulse at the A.D.C output in the case
Table | gives solutions of (2) for several transfer funcﬂonof both: CT modulator. and ODT modulator.

and delays between 0 and 2. For the third-order, solutiorys ma | i« case of the CT modulator:
be found in [12] and [22]. They may also be achieved when '
using the Maple code given in annex A.

Oversampled model of a sigma delta modulator



g(s) d f(2) T(z)
1 z_ —1
T 0<d<1 17?1 dz
7 | 1<d<2 — 27+ (dd— 1)z7?
1 —ade*—1 -1 1—e—%9 1
Tss—a 0 < 1 ¢ a l—Zﬁaz*1 T a
e L1 e—adiga_1) _ —o—a(d—1) _
Tssl—a —d§2 od a 11—502—1 (a, )Z 1+17Z 2
1 1-2d _z—1! -1’ d? -1
(Ts5)? 0 < d=<1 2 1-—2-1 + 1—2z—1 —32%
P
1 1—2d z~1 21 1-2d —1 _ (d=1)2 _—2
(Tss)? 1 < d < 2 2 liz_l + (1—2_1> 3 < - 2
TABLE |
CT 10 DT TRANSFORMATION TABLE
Sampling frequency = kF; Sampling frequency = F; 9(18) Zle(Z )
T, =7 - DZ7!
7
1 —ade®—1__ 7z~ 1 1—e P
x(t) Y[n] Q[n] Ts o € Ta 1—eagz—-1 a Z
F(Z) » A.D.C pee .
1 1-2D _z~! + z— ! + D2 51
(%3)2 2 1-z-1 1-z-1 2
T e *P(1+aD—e(a(1—-D)—1))Z T
- Z€1ro order 1 a2(1—e®Z—1
7 T g (T a2 (e*—1)e®(1=P)z=2  1_(14aD)e P __4
hold + a2(176a2—1)2 a2 Z
TABLE Il
Fig. 3. OversampledA modulator ODT TRANSFORMATION TABLE
Y*n]=L7'  [b(s)g(s . .
. ] f="Tif[e(_T)ﬂ( ELT . @) F(Z) = ODTT(g(s),k, D) wherek is the oversampling
with — b(s) = =5—e " ratio and D the difference between the real delay and the

modeled delay normalized B, /k. We can see that in case of
k = 1, this transformation is the same as the transformation
of (1), i.e. f(z) = ODTT(g4(s),1,d).

In the case of the ODT modulator:

Y] =231, [B(Z)F(2)]

—r(q_r—k
with B(Z) = LA

®)

1. APPLICATION TO THE SIMULATION OF

These two responses should be equal for each A.D.§IGH-ORDER MODULATORS WITH LOOP DELAY
sampling time at frequencys. A sufficient condition is that

the response to a discrete impulse FfZ) is the same, for
each sampling time atF,, as the response gf(s) to an
impulse with a width equal t@ /k delayed byi—r/k. Indeed,
an impulse with a width off; is the sum ofk impulses with
a width of T /k delayed by multiples of, /k.

This condition can be expressed as:

The methodology proposed in section Il will be used to
simulate the time-domain response of a EA modulator. In
this section we try to obtain the output signal of the modrlat
We will evaluate the error committed by this model in terms
of Signal Transfer Function (STF).

A. Smulation of the output of a modulator

. _, [g(s)e(d=r/R)Tss A CT YA modulator can always be expressed as Fig. 4,
F(2) = (1= 27 )Lizur, {L {3” where g,.(s) is the transfer function between the modulator
(9) input and the A.D.C input, and,(s) is the transfer function
We denoteD = kd — r. It can be clearly seen from its between the D.A.C output and the A.D.C input.
definition that0 < D < 1. (9) can be rewritten as: With the definitionr = |kd|, andD = kd — r, we use the

ODTT transformation as:
_DTs g
g(s)e 2
(s) : ] } (10)

If we replaceD by d andT;/k by T, this equation is the
same as (1). Table Il gives solutions of (10), i.e. shows how t
obtain F'(z) from g(s) for first-order and second-order filters. The ODT topology is shown in Fig. 5

The transformation will be denoted as ODTT, Oversampled If the input signal was sampled and held at frequehégy,
Discrete-Time Transform, and we will write it as: then both modulators would be completely equivalent. Let us

F(Z)=(1- Z’l)Zt:nTs/k {L1 F.(Z) = ODTT(gx(s),k,0) (11)

F,(Z) = ODTT(g4(s),k, D) (12)



F x(2)

x(0) o L

S
&(s) ~ AD.C qln] - 2 2d+43 1 DO qln]
. . » . .
gq(s) 2d +3 sT, 4 5T, ;
d(d+3)
T T Z) &« ‘Il
D.A.Cwith|_ (2) ((B;éfn
)l
delay d .
Fig. 7. 27¢ order CTXA modulator
Fig. 4. CTXA modulator
kF Fs (s) = 1 1 (16)
w o]
A.D.C > 1 1
=f— —. 17
Fy(2) 9(8) = 15p 57 F a2 (7
T(Z) < In order to simplify the example, the oversampling ratio
Zero-order ! 77 e will be chosen as an even number. As a result k/2, and
hold h h D = 0. Using (11), and (12), then
Fig. 5. ODTXA modulator 1+4k /1 Z71 1/1 Z1 2
F F(2) =—q <k1—Z—1> 2 (m—z—l) » (18)
h N
x[n] 1 27! 271 q[n] -1 —1 \2
— > A.D.C » F(Z):m1+4k‘r2 l 4 _|_E lzi
21571 -1 v 4k k1—2-1 2 \k1—-2z"1) "~
(19)
The resulting ODT topology is shown in Fig. 8.
Fig. 6. 27¢ order DT XA modulator
X0
take as an example a classical second-order modulator. % kFs F
DT prototype is given in Fig. 6. v v
In this modulator, , g sh+1 77! qln]
—— - —P(-) AD.C
i 51 1 -1 2 1+4k 1-Z 4k* 1-7
f(z)_l_z_ﬁQ(l_Z_l) : (13) ©
_k || Zero-order
A CT equivalent topology can be found using table I. With z 2|| HOLD
a loop delayd between 0 and 1, we obtain:
Fig. 8. Equivalen2™? order ODTXA modulator
(s) 1 2d+3 (14)
S) =
g 2(Tss)? 4T,s ’ In order to verify the theory, we have simulated the behavior
A3+ d of the second order DT modulator shown in Fig. 6, the
T(z) = ( (3 + )> 2L (15) equivalent CT modulator shown in Fig. 7, and the ODT model
4 shown in Fig. 8, using Simulink software. The chosen OSR

The prototype of the CT modulator is given in Fig. 7. Thiss equal tok = 8. Only the ten first output samples were
modulator is equivalent to the Fig. 6 modulator in terms gflotted so as to make the figures more readable. In a first
NTF, but the STF will have to be evaluated separately. $imulation, the input signal is a constant signal equal to 0
should be noted that the proposed methodology does not gared the A.D.C inputs are compared in Fig. BacMax is
the signal coefficients; andxzs. They will be calculated using the D.A.C maximum output voltage. It can be seen that these
STF considerations. signals are equal for each sample tinig;. Furthermore, the

In order to simulate the CT modulator, we transform thmputs of the comparators of the CT and the ODT modulator
CT modulator into an ODT topology. This operation takeare equal at each sub-sampling time&; /k.
into account the feedback signal and the input signal of theWe have then applied a low frequency sine input signal
modulator. For this example, we chooge= 0.5. With this sampled and held at frequenéy¥, and verified in Fig. 10
value, that the comparator inputs are still equal for each sub-8agp



08

time for both the CT model and the ODT model. It can b
verified that the DT model does not give the right response

At last, we have applied a low frequency CT sine inpt
signal and verified in Fig. 11 that the comparator inputsediff
increasingly for the CT and ODT case. However, the fact th
the STF of the CT modulator is correctly approached by tt
one of the ODT modulator at low frequencies will be verifie(
in the next section.

04 |

08

Comparator Input Amplitude / DacMax

-0.2
,f%'

0.6 444 g 0.4} A i

w F

% 04 7 -0.6 i i i i i i 1 i

5 A 0 1 2 3 4 5 t/Ts 6 7 8 9 10
> ODT Model

§ 02 [ A 3 = : il

= < HWJ DT Model ﬂf L\% Fig. 11. Simulink simulation of A.D.C input with CT sine inpugsal

g CT Model

EO \\\ ‘ fﬁ‘r i

g >

: ‘ i The signal transfer function of the ODT topology can be
£ expressed as:

<

&}

0.4 F A i i

Fy (e wh
0.6 | \ STFODT(‘:D) = t( )

o, 2ine
0 1 2 3 1 B 6 7 s 9 10 1+f(6 ]WFS)
t/Ts

(21)

with —50 < o < A,
The error introduced by using the ODT model instead of
the CT model can be evaluated using the ratio:

Fig. 9. Simulink simulation of A.D.C input with zero input sigin

0.8 - @
TF, F,(e*I™%rs
ery — S ODT(SD) _ (6 : ) (22)
0.6 ff W STFCT((P) gw(QJﬂ-SO)
g b | we denotep = %-. When ¢ varies from—£f= to £,
8 , then ¢ varies from -0.5 to 0.5, and
- i
5 021 ODT Model 7 2jmp
c 5 F.(e”?
g CT Model ZJA{A / err(¢) = M. (23)
i ‘ , - 9z (2jm Pk FY)
é % W‘ K% rﬂ — This error depends on the order of the filterand its poles.
§ 02 AAA p / R In the case of integrators, the error does not depené.on
3 DT Model . .
S For a first-order integrator,
04+ &
2jme
rﬁ S B T B B 9= e 1 &9
for a second-order integrator,
Fig. 10. Simulink simulation of A.D.C input with sampled and dhéhput 5 )
signal (2§m) (62J7f¢ + 1)
err(¢) = : 5, (25)
2 (e2imd — 1)
_ ) and for a third-order integrator,
B. Sgnal transfer function evaluation
Assummg that the quantizer can bg modeled by an additive (2j77¢)3 ((BQJ-M)Q 4 46206 4 1)
white noise, the signal transfer function of the CT topology err(¢) = (26)
can be expressed as: 6 (2776 — 1)°

92(27) These results were obtained from table II.
STFer(e) = PRI T =N (20) A pre-distortion filter may be introduced in order to com-
1+ f(e *) pensate this STF distortion. This filter will not flatten theoe
The STF can be used even for frequencies higher g, from —%2= to £Z= but it will work efficiently from — &= to
knowing that a signal at frequency is aliased into a signal % The filter must also be a symmetrical FIR filter in order
at frequencyy —mF; at the modulator output (whepe% < to maintain a linear phase correction (simple delay). FR. 1
p—mkF,; < %) compares the STF modulus before and after correction for a




first order integrator

5 T

0.5

4k ]
|STF| error without correction
3l
2
o |STF| erxqr after correction
S 1r
T
®» or 1
1k 4
s 4
3t 4
4} 4
_5 L
-0.5 0
phi/k Fs
Fig. 12.
integrator
second order integrator
10
5l 4
ol |STF| error after correction
o
=
E STF| error without correction
» -5r

—10}

-15}

-20 -
-0.5 0

phi/k Fs

integrator

first-order integrator and Fig. 13 for a second-order irgtgr

(¢ is denoted as phi on the figures).

The most simple usable FIR'(¢ order) can be expressed

as, for an'” order integrator by

Co(2) =X +2=2)Z 4N\, 272

with
A1 &~ 0.045, Ay = —0.045, A3 = —0.045.

the previous expressions.

C. Example of a second-order modulator

topology.

0.5

Fy

-

4k+1 1-27"

q[n]
A.D.C

Zero-order

Fig. 14.
distortion filter

HOLD

ODT model of a second-order modulator including digra-

The STF of this modulator has been evaluated and compared
with the one obtained for the ODT model in Fig. 15. The

||[STF|| distortion with and without correction for a first-order cyryes are given for the casg = 1 andz, = 0.

STF comparison with ODT model
T

10 T

|STF| [dB]

T

T

phi/Fs

i ] ) ] ] ] Fig. 15. Comparison of STF obtained with ODT and CT model
Fig. 13. ||STF|| distortion with and without correction for a second-order

In order to evaluate the efficiency of our methodology, this
STF could be compared with the one that would be obtained by
making a bilinear transform of the filters of the CT modulator
It was shown in [12] that this topology is not strictly equaat

in terms of NTF. In the case of bandpass modulators, there
would be a shift in the central frequency of the modulatof.[22

In order to obtain a good NTF approximation, an oversampling
ratio of at least 64 or 128 would be required. Using the ODT
model, the NTF is correct for any value bf

Table 1ll compares the simulation times of a second-order
lowpass modulator for 100000 output samples in the simulink
It can be verified that the coefficiekthas not appeared in environment. The first model is the one of Fig. 6 with two
CT integrators. The algorithm used to solve the equations is
ODE45. The DT model is the model of Fig. 7. The third and
fourth models (bilinear with k=8 and k=128) are obtained by
replacing the CT integrators of Fig. 7 by integrators ol#din

As an application, we can consider the modulator shovy a bilinear transform. The last model (ODT) is the one of
in Fig. 7. An equivalent bandpass example can be found kig. 8. The fastest method is the one that uses the DT model
[22]. The model shown in Fig. 8 must be changed in ordék = 1) but it does not provide accurate results in terms of
to introduce the STF correction filters, resulting in Fig. 1&TF. The bilinear method provides good results foe 128
but implies long simulation times. Our methodology progide



good results in terms of NTF and STF with a reasonable
simulation time compared to the simulation time required by = ODTT (g™, k,0),m 1 n

a continuous algorithm. This kind of results can be verified — ODTT(g™, k,D),m = 1.n (30)
in [10]. The advantage of our methodology is to be able a
to simulate the response to signals with large bandwidth byThe output of

would be equal to the output of filt&¥,,
adjustingk.

if it was connected only to the modulator feedback through
km. The output of F;* would be an approximation of the

IV. INTERMEDIARY SIGNALS SIMULATION output of filter G,, if it was connected only to the modulator
A. Anew ODT mode! taking into account intermediary signals  input throughz,,.

The goal of the previous section was to simulate the outputThe resulting topology is given in Fig. 17. This topology
of the modulator as accurately as possible. This methogiologrovides the output of each filter separately. It is, of ceurs
can be extended to the simulation of intermediary signafeinctionally correct. However, the quantity of performedl-c
especially the outputs of each filter. Indeed, the previogslations is not optimal as each CT filter output requires a
model provides a correct output value of the modulator in treeparate DT filter.
case of a constant or sampled input signal, but the output of
intermediary filters does not fit the real output of the CT fdte () Fy

The methodology proposed in section Il is now extended t
intermediary signals. If the input signal was a sample and he™| F.(2) F(2)

F'\(2) qln]
signal at frequenc¥ F, then the methodology would provide F.(2) }}:@" F(2) m an(z) ADC >
the exact intermediary values at every sub-sampling tiroe. FE F -

a CT input signal, the model gives an approximation of th Zero order -
outputs of all filters. Note that in this paper, we considdyon hold
single-loop topologies, but the methodology could be eddein

to any kind of topology.
Fig. 16 shows the topology of @ order CT modulator:

Fig. 17. ODT topology providing intermediary outputs

The topology of Fig. 17 has been transformed in order to

x(%) be expressed as a classical multi-feedback topology. As the

F poles are conserved by the ODT transformatibff, and F"
@ ¢—S have the same poles. Furthermore, these poles are included

g[n]  inthe poles ofF;"*! and F;"*!. As a consequencg;" and
Gi(s) - 0 Ga(s) AD.C > F7" have the same denomlnator and the latter divides the

denominator of "+ and Fy 1,
@ T(z) |« F;* and F* can be expressed as
D.A.C <—| delay=d

A

Fy(Z) = =2

Fig. 16. General CT topology H D,(Z)
: " () (31)
We denote the transfer functions between D.A.C output and Fm(Z) = w——"
the m'" filter output asg;". From Fig. 16, it can be seen that II p»(2)
gq(s) =

((;)((li + kG (s)) In the case of lowpass modulators, the terMs(Z) are

2 first-order filters; in the case of bandpass modulators, #rey

second-order filters.

(8)(kn + G (5) (k1 + G”_z(s)('")))(zs) The proposed topology used for the simulation is shown in
Fig. 18. The integrators are replaced by their denominatods
the coefficients are replaced by the numerators of the filters

The equivalency is ensured if:

. ky
93(8) =G
G,

We also denote the transfer function between the modulato
input and them!" filter output asg™. It can also be seen that

g1(s) = 21G1(s) N;”(Z)-Q—N;”(Z)((N;"’1(Z)T:N1;(lz)1(2)(...)))
92(s) = Ga(s)(v2 + 1G1(s)) F(Z) = DnZ) 32)
G2(5) = Gu()(@n + Gr1 () (@n—1 + Gua(5)(-))) wp @ (LG, (Z><...>>>

9 2= D (2)

Each transfer function can be transformed into its ODT
equivalent by These equations will be written recursively:



continuous| D.T. | Bilinear (k=8) | Bilinear (k=128) | ODT (k=8)
simulation time 34s 1s 6s 130s 6s
STF good bad bad good good
TABLE Il

COMPARISON OF SIMULATION TIMES ANDSTFWITH THE THREE METHODOLOGIES

x(0)
¥ ¥ L1 KE, Fy
N«(2) N«2) N%(2) I h
é—> e 1 N ! 1 apc |4,
e 11 0.5 | NP 5o O AP >
N4(2) N(2) N'YD | MZero order
| ' ' hold 1< ¢
Fig. 18. ODT topology for simulation
If we take into account that the system (34) usually has more
equations than unknown terms, then the proposed algorithm
™(2) ) m1(2) can be expressed as follows:
L D@ N (Z)52 +N(2) « choose the minimum order fav®, N and N",
pl;[l »(Z) ,El Dy(2) « solve the system (34) in a mean square sense,
« verify if the solutions provided by the above are valid,
7(2) - 71 (2) . « increase the order aVz', N;* and N;* by one and start
ﬁ b2 = Dml(Z) Ni (2)55s + N (Z) again if the equation system is not solved.
o pljl Pr(Z) The previous loop will end when the number of unknown
(33) parameters is equal to the number of equations. In the case of
resulting in: lowpass modulators, the degree ®f;, N;* and N;* will be
m—1 and the degree oV and N, is 1. It can be noticed that
m—1 for orders higher than 2, the termé;’, N;* and N;* are no
T;(Z) = Np(Z)T; =Y (Z) + Ny (Z) T Dp(Z) longer simple coefficients as it is the case in usual models bu
jj’f_ll (34) whenm > 2 they are polynomials. This is why a third-order
T(Z) = N Z)T," N (Z) + N;*(Z) T] Dy(Z) modulator will be considered in the next example. In the case
p=1 of bandpass modulators the degree/gf, N;* and N;" is

In casem = 1 (first stage), the equations (34) will resultisually 2 for the first three stages. It will be 3 for the last
stage.

in:
TN(Z) = NN(2)

TH(Z) = Ni(2) (35)

B. Intermediary signal transfer functions evaluation

) ] ) As in section IlI-B, it is possible to define a transfer fuocti

Equations (34) are linear equations where the “r:fno"lﬁ'%tween the modulator input and the outputs of the filters. We
pa;;ameters are the coefficients of the polynomisjs, Ni", consider a sine input signal at frequengy This signal is
Ng*. If the delayr is choser:n correctly S0 that < D = gjiased into a signal at frequengy— mF, at the modulator
kd—r <1, then_tlhe order of ;"(Z) andT;"(Z) is the same o1yt Due to the sampling function, the feedback signal
as the order of [[ D,(Z), and the constant term is zero (thiONtains components at frequencies— mr + kF,. We

p= ] consider in this evaluation the component for which= m,

constant term ofVy*, N;* and N;* is zero. The degree of 2 terms: one coming from from the input signabnd another
the resulting solution depends on the degree of the nunteratgyming from the output signal
and denominators. It should be noticed that this systemya@wa For the CT model (Fig. 16), the global transfer function

provides a solution. Indeed, increasing the degre® % N;*  from input to filter & output, defined previously, can be
and Ng" by one adds three unknown parameters and only t"é?pressed as:

equations. Consequently, there is a minimal degree forhwhic

the number of unknown parameters is at least equal to the

number of equations. Our goal is to obtain the minimum ordef For (m, ) = g;" (2j7p) — 94" (2j70)b(2j70) ST For ()
solution of these equations. (36)



Comparison of the three integrators outputs for the CT and ODT models
T T T T T T T

whereg;", g;*, and ST For(p) have been defined respec  os
tively in (29), (28), and (20), and b(s) is the transfer fumrct
of the D.A.C defined in (7).

On the other hand, this transfer function for the OL :
modulator can be expressed as:

0.4
First integrator output
First integrator ¢ \| (ODT model)

(CT model)

iy

\
\

=]
B

TFopr(m,¢) = F'(e¥7™¢)

—E () B ST opr(p) )

=}

where F;", ", and ST Fopr(p) have been defined re
spectively in (30) and (21), and B(Z) is the transfer funeti
of the D.A.C defined in (8).

Third integrator output
(CT model)

\ /i Third integrator output
(ODT model)

=

Comparator input amplitude / DacMax

T
e

C. Application to the simulation of a low pass modulator o

We consider a classical third-order lowpass modulator. ‘ ) t/Ts
topology is given in Fig. 19 withy; = 0.182, go = 0.46,
g3 = 1.495, t; = 0.664. These values can be easily found'd- 2%
using, for example, the tools of Schreier [1]. The chosen.D.A
delay is equal to half the sampling periadl{ = 0.5), andk
is equal to 8. With these values=4 and D = 0.

Intermediary signals shape

As an example, Fig. 22 compares the STF between the mod-
ulator input and the first integrator output. It is obtaineithw
x(@) P the CT model and the ODT model, without STF correction,
v and for a CT input signal. We could verify that the ODT model
ADC qln] gives a good approximation of the output of all filters.

STF from input to first integrator output

D.A.C 0
(delay=0.5) _5

Fig. 19. Classical third-order lowpass modulator

—15}

By applying the section IV-A methodology, the equivalen

—20}

ODT model is given by Fig. 20 with ) sl
NNZ)=27! = ol
N;(Z):Z_l -351
N2(Z) =27
N2(Z) =1.13¢72Z"1 (38) 0
N2(Z)=1.011Z"" 45|
N (Z)=15Z"1-05272 50, : s .
N3(Z) = 2184271 4+ 3.27e~ 122 ' phi /s ) °
N}(Z) =1.029Z"" —0.028Z 2

If we had used a classical bilinear transformation of thd: 22 Transfer function between input and first integratotput

filters, coefficientsN? and N? would have been zero and

coefficientsNZ, N and N3 would have beer ~'. However

if we increase the value of k, theN? and N2 tend towards , : . . :
accurate results for the simulation of intermediary signal

zero and the other coefficients tend towagis!. . . .
The simulations times are almost the same as the ones

F|g. 21 compares Fhe s.hape' of .the outputs of each fII%%tained in table Ill. Simulating 100000 samples of a seeond
obtained by a simulation with Simulink of the CT model an rder modulator requires 7 seconds (it was 6 seconds when

the ODT model. The input signal was a sampled and heIn ermediary signals were not expected)
signal atk F. It can be seen that the ODT model provides the '
real value of each filter output for each sub-sampling time. ) S )
In addition to section IlI-B, it is possible to evaluate thd- Extension to non-idealities simulations

transfer function between the modulator input and eaclr filte The ODT model can be extended to the simulation of
output. The definition was given in section IV-B: a sine inputon ideal behaviors. Some of them can be directly deduced
signal at frequency is applied at the modulator input and wefrom the ODT model while others need some mathematical
consider the component at this same frequency at each fillevelopments. To start with, discrete-time noise sourees c

output. be easily added at the input or the output of all filters. This ¢

As in [12], it can be seen that taking k equal to 4 times the
ratio between the input signal bandwidth ahgl/2 provides
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x(2)
l l | kFs F,
N\(2) N’«(2) N’.(2) ¢7 —
Y[n] q[n]
g 2 g 3 g
k(l-lZ'I) 1 N#2) k(TZZ) 1 Nk(2) m > AD.C
Ny Ny(2) N'y(2)
| [ [ Zero | | P
order hold

Fig. 20. Equivalent ODT modulator

help evaluate, for example, the effect of the high frequenty:= exp(-d *Tsxs);
noise components that are aliased in the signal band. The:= inviaplace(g/s *b,s,t);

spectrum shape of the noise sources has to be derived fiém= S”_tﬁ‘g;\’fg‘i’ézig_el(t'd “Ts) :1;_5)
the CT noise models. The effect of the clock jitter [25] coulg; ._ siawplify(ztrans(subs(t:n e *Ts,12).n,2)

also be included in this model. However, this would require * (1-2°(-1)));

a mathematical extension of the methodologies proposed, fo:= convert(t3,parfrac,z);

example, in [26]. It is also possible to model the real transf

function of the amplifiers used in the modulator, as long as APPENDIXB

they can be expressed by their Laplace transform. This can be MATLAB CODE TO SOLVE (34)

easily done by replacing the ideal filtefs to G,, in Fig. 16 The following code can be used to solve (34). This code was tested
by their real transfer functions. Some non linearities ciso a only in the case when the size of s1 was the same as the size of s2.
be introduced, by including, for example, a non-linear ¢fan

function at the output of the amplifiers. Nevertheless, _su<f;21 o e e el = ax + by

a model cannot simulate correctly, for example, non liness s2 = cx + dz

capacitances in an integrator. In any case, high level nsodgl Wi st:s2.ab polynomil inputs

can never replace a transistor-level simulation where @i-n o
linearities and parasitical elements are considered.

function [x,y,z] = polysolve2(sl,a,b,s2,c,d)
V. CONCLUSION \(/)vrf:iloe (51(1)==0) && (s2(1)==0))
A methodology for time-domain simulations of continuous- zf::;lg:‘f”d) » s2=s2(2end) |
time modulators was proposed. This methodology is based ©a
a fixed step discretization of each output sample. Compare L ength(s1): Is2=length(s2);
with variable step methods, the fixed step method ensur@soix=isi-length(a)+1;
an exact equivalency in terms of noise transfer functlomgizliiliiIiﬁg{ﬂﬁﬁi:i
even for large simulation steps. The optimal step value is
chosen from the bandwidth of the input signal. This allow§ gilz?slqgszgfgsl?fs?r?gsolxﬂngsoly-lsl)] ,
for the simulation of the response to input signals with &d ' ’
bandwidth larger than half the modulator sampling freqyend' (slzzz?slggszgrgsl?fsﬂz)solxﬂngsolz—lsZ)] ,
This methodology can also help simulate the behavior of ald ' ’
the modulator outputs of the filters on top of the modulatdit=length(si): Is2=length(s2);
output signal. Simulations are very fast as they use digeit for di=0:Is1+s2-(Ingsolx+ingsoly+ingsolz)
equations. STF considerations have shown that the ODT
method describes the behavior of a CT modulator better than a
classical transformation method such as the bilinear foams O R gth@)-D)a : end
for k=1:Ingsoly
mat(k+ingsolx,k:k+length(b)-1)=b ; end

mat=zeros(Ingsolx+Ingsoly+ingsolz,Is1+Is2) ;

APPENDIXA for k=1:Ingsolx
MAPLE CODE TO SOLVE(1) mat(k k+ls1:k+lsl+length(c)-1)=c ; end
. . for k=1:Ingsolz
The following code was used to solve (1) and to fill in table mat(k+Ingsolx+ingsoly k+is1:k+ls1+length(d)-1)=d ; en d

I. In this code, which deals with first-order termﬁ{;), the _
X X x0=[s1 s2]/mat
delayd is between 0 and 1. Larger delays can be considered err=max(abs((x0 *mat-[s1 s2]))) ;

; H H if (err<le-8) break; end
by Changmg the sixth line of the code. Ingsolx=Ingsolx+1 ; Ingsoly=Ingsoly+1 ; Ingsolz=Ingsolz +1
sl=[s1 0] ; s2=[s2 0] ; Isl=Isl+1 ; Is2=Is2+1 ;

with(inttrans);readlib(invztrans); end

g = (s +Tsa);
assume(d>0,Ts>0); x=[zeros(1,0r) x0(1:Ingsolx)];



y=[zeros(1,0r) x0(Ingsolx+1:Ingsolx+ingsoly)];
z=[zeros(1,0r) x0(Ingsolx+Ingsoly+1:end)];
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