
HAL Id: hal-00445346
https://centralesupelec.hal.science/hal-00445346v1

Submitted on 8 Jan 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modulational instability and solitons in a periodic
dissipative feedback system

Dragomir N. Neshev, Nicolas Marsal, Alexander Minovich, Delphine
Wolfersberger, Marc Sciamanna, Germano Montemezzani, Andrey A.

Sukhorukov, Yuri S. Kivshar

To cite this version:
Dragomir N. Neshev, Nicolas Marsal, Alexander Minovich, Delphine Wolfersberger, Marc Scia-
manna, et al.. Modulational instability and solitons in a periodic dissipative feedback system.
ACOFT/ACOLS 2009, Sub Conference Dissipative Soliton (DS.2009), Nov 2009, Adelaide, Australia.
�hal-00445346�

https://centralesupelec.hal.science/hal-00445346v1
https://hal.archives-ouvertes.fr


Modulational instability and solitons in a periodic dissipative feedback system

Dragomir N. Neshev1, Nicolas Marsal2, Alexander Minovich1, Delphine Wolfersberger2, Marc Sciamanna2,
Germano Montemezzani2, Andrey A. Sukhorukov1, and Yuri S. Kivshar1
1Nonlinear Physics Centre, RSPE, Australian National University, Canberra, ACT 0200, Australia
2Laboratoire Matériaux Optiques, Photoniques et Systmes (LMOPS), CNRS UMR 7132, Unité de recherche com-
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Abstract
We review our recent experimental results on control of the modulational instability, pattern formation, and solitons in
a nonlinear discrete dissipative feedback system. We show that the discreetness and bandgap effects can provide effi-
cient control of the nonlinear instability modes of the system. Furthermore, we explore the possibilities for excitation
of dissipative discrete solitons in such system through seeding with a narrow addressing beam.
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Introduction
Periodic photonic structures enable novel possibilities for manipulation of the fundamental aspects of wave propaga-
tion [1], including linear dispersion, optical nonlinearity, and emission of light. In the past decade enormous research
has been concentrated on various aspects for control of light refraction, diffraction, and dispersion in periodic struc-
tures, including demonstration of novel effects such as negative refraction, slow light, and superprism. Enhancement
of the nonlinearity has also been a subject of increased interest with the demonstration of low power optical switching
and novel nonlinear states [2]. The control of light emission has also been a major application of periodic structures,
already with the first proposal in Ref. [3]. The implementation of photonic periodic structures inside a laser cavity has
shown great promises for control of laser modes, including important experimental results in polarization and spatial
mode selection.

The control of all three factors: linear dispersion, nonlinearity, and light amplification in a single physical system
however, has never been demonstrated experimentally. In such a dissipative nonlinear periodic system novel physical
phenomena, such as formation of discrete dissipative solitons [4] and discrete dissipative modulational instability
(MI) [5] can be observed. Here, we realise experimentally a highly nonlinear periodic system with a photorefractive
gain to study experimentally transverse instability and soliton formation in discrete dissipative feedback system.

Experimental arrangement

Figure 1: Experimental setup. Right - far-field patterns: (a)
hexagonal pattern without lattice and near-field intensity pat-
tern (inset), (b) linear diffraction on the lattice, (c) co-existence
between nonlinear pattern and linear diffraction for kL '
2.2kP . Dashed lines: the position of the lattice bandgap.

In our experiments, we combine two concepts: a
photorefractive two-wave mixing in a single-mirror
configuration [6] and an optically induced photonic
lattice [7]. Our experimental setup (Fig. 1) enables
us to study how the strength and periodicity of the
lattice influence the conditions for MI, and corre-
spondingly the pattern formation and solitons. The
part indicated by a solid line in Fig. 1, called a “pat-
tern beam”, represents a standard PR two-wave mix-
ing experiment [6] with a tunable single feedback.
The crystalline c-axis of the undoped BaTiO3 crys-
tal points towards the feedback mirror, but is rotated
by roughly 25◦ with respect to the pattern beam. At
a fixed mirror-crystal distance, a hexagonal pattern is
formed above a threshold intensity ITH of the pattern
beam. A typical near-field intensity distribution IP is
shown in the inset of Fig. 1(top). The lattice is cre-
ated by a diffraction of a Gaussian beam onto a 1D
grating. The ±1st diffraction orders are selected and
recombined inside the PR crystal by a 4f system. The lattice beams are polarized orthogonally to the pattern beam
and are shown with a dotted line in Fig. 1. To provide insight of the interplay between the pattern and the lattice
modes, the patterns are being identified by monitoring their far-field (Fourier) distribution.



Results and Discussion
Discrete dissipative feedback MI: Figure 1(a) shows a typical far-field hexagonal pattern formed in the absence of
the lattice above the threshold power for pattern formation (20 mW). The lattice strength, on the other hand, is tested
by temporarily removing the feedback mirror and monitoring the pattern beam diffraction on the lattice in the far-
field. As seen in Fig. 1(b), this diffraction gives rise to two outer spots along the diagonal (obtained at 45◦ lattice
orientation), while the central spot corresponds to the zero-order diffraction. The arrows in Fig. 1(a,b) represent the
transverse wavevectors of the hexagonal pattern (kP) and the lattice (kL). The dashed lines in Fig. 1 correspond to the
edges of the first Brillouin zone of the lattice, situated at kL/2.

We investigate the effect of the relative magnitude and orientation of kL on the formation of patterns in the system.
In the experiments, we create the periodic lattice and then we launch the pattern beam into the medium. First we set
the lattice periodicity such that kL ' 2.2kP, hence all the wavevectors of the instability modes fall within the first
Brillouin zone of the lattice [Fig. 1(c)]. In this case, the nonlinear hexagonal pattern co-exists with the 1D lattice
diffraction. Note that in this case the optical power of the pattern beam (' 30 mW) is larger, because the presence of
the lattice in the PR crystal tends to increase the hexagonal pattern threshold.

Figure 2: (a,b) Bandgap inhibition of insta-
bility modes for for kL '

√
3kP and two dif-

ferent lattice intensities. IP > ITH.

Next we study the effect of the lattice bandgap on the instability modes
of the system. An important condition for bandgap control of the
patterns is realised when the periodicity of the lattice is such that
kL =

√
3kP. In this case, the propagation constant of the hexagonal

instability modes is placed exactly inside the bandgap region of the lat-
tice, as seen in Fig. 2(a) for comparable pattern and lattice beams inten-
sities. By increasing the lattice beam intensity, IL = 5IP [seen by the
two brighter outer spots in Fig. 2(b)], the MI can be suppressed in the
bandgap region [Fig. 2(b)] due to the fact that the lattice bandgap pro-
hibits the growth (from noise) of instability modes with corresponding
propagation constants. Qualitatively similar effect occurs if two spots
of the hexagons overlap with the bandgap area for kL'2kP, again lead-
ing to symmetry breaking of the induced patterns. It is important to note that the output differs drastically, when the
lattice beam is sent through the crystal after the formation of the pattern. In this case, the established high intensity
instability modes shift the lattice bandgap such that the propagation constant of the modes lies outside the bandgap
region and suppression of the instability is no longer possible.

Discrete dissipative feedback solitons: Finally, we explore the formation of solitons in our system. For this purpose,
the pattern beam power is set just below the pattern formation threshold and an additional narrow beam with a FWHM
of ∼ 20µm is sent onto the crystal from the side of the feedback mirror. Preliminary analysis show that in such a
way short live localised spots can be excited in the crystal. Further experimental and theoretical analysis are currently
under consideration to identify the nature of such localisation.

Conclusions
In conclusion, we have demonstrated the versatility of photonic lattices for manipulation of light in conservative and
dissipative systems. In particular, we have shown the control of modulational instability and pattern formation by
a photonic lattice in a dissipative feedback system. We have identified three important discrete cavity MI control
mechanisms: band-gap inhibition of instability modes; seeding of instability patterns by the lattice periodicity; and
lattice-induced pattern reorientation. We believe, that our results open new ways for control of the structure of laser
modes by embedded photonic crystals. Furthermore, we explore the possibilities for excitation of discrete feedback
solitons in such systems.
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