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ABSTRACT
Polynomial phase signals belong to a wide class of non-
stationary signals used for modeling and engineering ap-
plications. In this paper, we take benefits of some ad-
vances in robust estimation in order to propose a new
algorithm for estimating the parameters of a polynomial
phase signal. This algorithm has the advantages to be
fast and its structure is robust to the shape of the noise.

1. INTRODUCTION
Polynomial phase signals (PPS) are a wide class of sig-
nals commonly used to model real signals. In radar and
sonar applications, Doppler signals can be approximated
by a polynomial signal. Even if PPS are of a classical
use, the estimation of their parameters is not an easy
task. Several methods have been proposed [1], often re-
lated with frequency tracking [2]. MUSIC algorithms
[3] [4] [5] could be easily adapted for this kind of esti-
mation [6]. Another one is the PHAF algorithm, which
is an upgrade of HAF proposed for multi-component
signals, with a better threshold towards noise [7] [8] [9].
These methods often have a good accuracy but also have
some limits: they are often restricted to gaussian en-
vironments, some are sub-optimal [1] and have a high
computing cost, especially MUSIC.

Let us now recall the following definition of a polyno-
mial phase signal of order p:

s(t) = α(t)exp
(
i

p∑
k=0

βkt
k

)
, βk ∈R k = 0, . . . ,p (1)

where α(t) is the amplitude of the signal. Due to the es-
timators used in this work, the parameters are restricted
so that the signals s(t) is real and we have chosen a case
with constant amplitude, i.e. s(t) = αcos

(∑p
k=0βkt

k
)
,

with α ∈ R+ and βk ∈ R k = 0, . . . ,p.
The method used in this paper relies in the combi-

nation of several existing algorithms and the use of the
instantaneous frequency. The estimation of the instan-
taneous frequency is a common and old task which could
sometime suffer from gross errors and so, many fast al-
gorithms generally have a very low accuracy – 10−1 of
relative errors – only for an estimation of the range of
the parameters. The key of our method is to take ben-
efits from the robust estimation algorithms in order to
perform a polynomial robust regression on the instan-
taneous frequency with a M-estimator. In the exper-
iments, our method was proved to be fast and robust
to the kind of additive noise (gaussian or impulse noise)

with no changes needed and the accuracy was quite bet-
ter, even if limited compares to the best but slow algo-
rithms. It’s drawbacks are a high signal to noise ratio
(SNR) threshold and those limits on accuracy. For this
paper, we give only empirical results and so there are
many tables. As a model of impulse noise, we chose ran-
dom variable with α-stable laws [10] Sα(β,γ,µ) where γ
is the dispersion coefficient, and restricted to the sym-
metric and centered cases (β = µ= 0). The SNR’s def-
inition is not valid with α-stable noise (infinite power),
we use instead the GSNR (Generalize Signal to Noise
Ratio) defined in [10] for α-stable noise by:

GSNR = 10log
( 1

2Nγ

N∑
k=0
|x(k)|2

)
(2)

In the results, only the SNR is indicated but depending
on the situation, it’s in fact the GSNR with α-stable
noise.
This paper is made of 5 sections. Section 2 is used

for some recalls on instantaneous parameters. Section 3
deals with the amplitude estimation algorithm. Section
4 deals with the phasis parameters estimation algorithm.
Then the section 5 gives the simulations results for both
algorithms.

2. ESTIMATION OF PPS PARAMETERS:
DEFINITIONS AND ASSUMPTIONS

We are working on the signals:
x(t) = s(t)+ b(t) noisy signal
s(t) =Acos

(∑p
k=0βk(t)k

)
A ∈ R+,βk ∈ R,k = 0, . . . ,p

b(t) noise independent, equally distributed

We consider the sampled signal: x(n/fs), n = 1, . . . ,N
where fs denotes the sampling frequency.

The definition of the instantaneous frequency can take
several formulations [11], we have chosen one of the most
commonly used which relies on the use of the analytic
signal z(t) associated to s(t):

z(t) = a(t)exp
(
iφ(t)

)
= s(t) + iH[s(t)]

where H[ . ] is the Hilbert transform
(3)

a(t) and φ(t) are respectively the instantaneous ampli-
tude and phasis of z(t). The instantaneous frequency of
s(t) is then given by:

fi(t) = 1
2π

dφ
dt (4)
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Usually, we can’t evaluate fi(t) in an explicit form but
for a PPS s(t) of order p, we can define its instantaneous
frequency by:

fi(t) = 1
2π

p∑
k=1

kβkt
k−1 (5)

so, as long as we can have a good estimation of the
instantaneous frequency it is possible to estimate the
parameters of the phasis with a polynomial linear re-
gression.

Since we have chosen to make experiments with im-
pulse noise, robust statistics were needed. Instead of us-
ing the variance, we have used the interquartile range.
For a random variable V with probability law P (V ), one
defines:

Q1 = v/P (V ≤ v)≥ 0.25 and P (V ≥ v)≥ 0.75 1st quartile

Q3 = v/P (V ≤ v)≥ 0.75 and P (V ≥ v)≥ 0.25 3rd quartile
iqr = |Q3−Q1| interquartile range

(6)

3. AMPLITUDE ESTIMATION
Since the instantaneous amplitude of z(t) is the amplitude
of the PPS to be estimated up to perturbations and modeled
by a(t) =A+e(t), we chose a two step estimation:
• Estimation of the instantaneous amplitude:
a(n) =| z(n/fs) |, n= 1, . . . ,N

• Robust selection of the amplitude:
Â = median(a(n))

4. ESTIMATION OF THE PHASIS
PARAMETERS

Due to the considerations on the instantaneous frequency
of a PPS, we propose a two step algorithm for the phasis
parameters estimation: firstly an estimation of the instanta-
neous frequency for several samples and then secondly, the
estimation of the parameters βk with a polynomial linear re-
gression. Since the estimation of the instantaneous frequency
often shows gross errors and the regression is an ill-posed
problem, our contribution was to use a robust estimation
algorithm instead of the ordinary least squares.

4.1 Estimation of the instantaneous frequency
We have used the "Parabolic Smoothed Central Finite Differ-
ence" (PSCFD) algorithm [12]. It relies on a analysis of the
phasis of z(t). The estimator of the instantaneous frequency
is then:

f̂i(n) = fs
4π

((
arg
[

Q∑
p=−Q

h(p)exp{ iarg[z(n−p+ 1)z∗(n−p−1)]}
]))

2π
(7)

arguments are belonging to [0;2π[ and the smoothing window
h(p) is defined by:

h(p) =

{
3Ni

2(N2
i
−1) (1− ( p

Ni
)2) for p even and −Q≤ p≤Q

0 otherwise
(8)

the window’s length is M = 2Q+1 with Ni = (M+3)/2. In
the simulations in this paper, we have taken Q= 128. It’s a
tradeoff between the accuracy and the variation rate allowed
for the frequency.

We have then a set f̂i(n), n = 2, . . . ,N − 1, of instanta-
neous frequency estimates. For implementation, the convo-
lution operator implies some losses at the borders and the
set used is f̂i(n), n=Q+ 1, . . . ,N −Q−2.

We recall below the conditions of use for PSCFD, given in
[12]:
1. Signal is corrupted with additive noise, gaussian, cen-

tered, i.i.d. and SNR ≥ 5 thus 7dB.
2. Instantaneous frequency must remain in the Nyquist

range 0≤ fi ≤ fs/2.
3. Variations in frequency must be limited, if f0 is the mean

frequency and ∆ν the variations in frequency, then ∆ν
f0
�

1.
Under those assumptions, the estimator is efficient, the

Cramer-Rao bound is reached, there is a negligible bias and
the variance is given by [12]:

σ2 = f2
s

4π
6

SNR×Ni(N2
i −1)

(9)

Those conditions are important because in our simulations,
we are quite often out of the guaranteed domain and we
will show that for PPS parameters estimations, some results
remain valid.

4.2 Polynomial robust regression
Let us introduce the folowing notations:

fi =
(
f̂i(2), . . . , f̂i(N −1)

)T
with f̂i(k) = f̂i(kts)

b =
(
βp, . . . ,β1

)T

R = 1
2π



p
(

2ts
)p−1

· · · 2
(

2ts
)

1

p
(

3ts
)p−1

· · · 2
(

3ts
)

1
...

...
...

p
(

(N −1)ts
)p−1

· · · 2
(

(N −1)ts
)

1


(10)

The vector b is then the solution of the linear system:
fi = Rb + e (11)

where e is the vector of errors.
Estimations errors of fi don’t have a gaussian distribu-

tion and could even show some aberrations. So the classical
least squares can’t be used and it is required to use a ro-
bust estimator. The choice was to use a M-estimator [13]
with the algorithm "Iteratively Reweighted Least Squares"
(IRLS) and the choice of the Welsch cost function [14]. The
Welsch function has been chosen since it offered the best re-
sults in our tests. The parameters estimated are obtained
via the following optimisation problem:

min
βk

∑
n

ρ
(
e(n)

)
with ρ(x) = c2

2
[
1− exp

(
−(x/c)2)] (12)

The constant c= 4.2 in the simulations. For the special case
of a PPS of order 1 (harmonic signal), only a constant is
estimated and there’s no need for the linear regression in that
situation: we take the median of instantaneous frequency
estimates as an estimator of β̂1.
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5. SIMULATIONS AND RESULTS
A large class of tests have been made in order to check the
performances of parameters’estimation for PPS of different
orders and several noise conditions.

In all the experiments we have used signals with the fol-
lowing characteristics: amplitude A= 1, sampling frequency
fs = 106Hz, N = 8192. A Butterworth anti-aliasing filter of
order 8 with cutoff frequency of 4× 105Hz has been used.
For the phasis smoothing window, we took Q= 128.

Parameters range: for all signals, β0 ∈ [π ; 3π]

• PPS1 (order 1) β1 ∈ [0 ; 3.5×105]

• PPS2 (order 2) β1 ∈ [0 ; 3.5×105]
β2 ∈ [−2×107 ; +2×107]

• PPS3 (order 3) β1 ∈ [0 ; 3.5×105]
β2 ∈ [−8×107 ; +8×107]
β3 ∈ [−6×109 ; +6×109]

Parameters have been chosen so that the instantaneous
frequency of PPS remains between 0 and 3.5×105 Hz.

For each phasis order, we have randomly created a set of
PPS for several SNR, both for gaussian and impulse noise.
Then we estimate their parameters, chosing five gaussian
noise level and five α-stable noise equivalent in power terms.
In order to check the best performances achievable, we have
also conduct an experiment with no additive noise. Each ex-
periment was repeated 15000 times. The gaussian noise lev-
els were respectively 30dB, 20dB, 10dB, 6dB et 3dB α-stable
noise were defined by the following parameters: α = 1.2,
β= 0 (symmetric distribution), µ= 0 (centered distribution),
γ = 0.0005, 0.005, 0.05, 0.1 and 0.2.

The obtained results are only empirical. We give some
statistics of the relatives errors of the parameters. The use of
impulse noise implies the use of robust statistic: median, in-
terquartile range (dispersion estimation) and a robust mean
square error – a trimmed mean calculated by excluding the
5% highest values of the squared errors. In the results tables,
the symbol α indicates the result of an experiment with α-
stable noise whereas N indicates the result of an experiment
with gaussian noise.

5.1 Amplitude estimation results
The results of the amplitude estimations are given in the
tables 1 and 2. The table 1 gives the medians of the rela-
tives error estimations and the table 2 gives the interquartiles
ranges of the errors. A thing will be immediately noticed:
for a given SNR and statistic, the results are almost the
same for the different PPS phasis order p. The accuracy of
the amplitude estimation seems independent from the pha-
sis’parameters estimation, a result known for several years
with gaussian noise [15] [16] that could have been expected
and which remains true with α-stable noise. For a given
SNR, the results with α-stable noise and with gaussian noise
are almost the same. To be true the results are slightly bet-
ter with α-stable noise: the estimator is robust to the kind
of the noise.

The accuracy decrease with the SNR as we could see it
on the Fig. 1 which is the plot of the robust MSE for the
differents signals and kind of noise and we should choose a
limit for the use at 10 dB, a limit we already had in our
previous work [18] and that we should consider as a limit
of use of analytical signal methods. For a fixed SNR, the
median is always negative and its absolute value is of the
same range of the interquartile range: Â estimator seemed
have a negative bias of the range of the median, bias due

Figure 1: Robust MSE of Â for PPS of order 1, 2 and 3
with different noises

Figure 2: Robust MSE of β̂1 for PPS of order 1, 2 and
3 with different noises

to the anti-aliasing filter whose effect is not corrected: in
a noise-free experiment without this filter, the median and
interquartile range of Â decrease to values around 10−9 and
MSE a value of 10−14.

5.2 Phasis parameters estimation results
The results of the phasis parameters β1 to βp estimations are
given in the tables 3 and 4. The table 3 gives the medians
of the relatives error estimations and the table 4 gives the
interquartiles ranges of the errors.

Parameter β̂1 estimation is slightly biased, bias that
increase with the noise’s power which is coherent with the
properties of PSCFD algorithm [12] as this parameter is a
frequency translation in the time-frequency plane. For the
other parameters, the alternate positive and negative values
don’t allow us to conclude to a bias of the estimates.

The Fig. 2 and Fig. 3 are the plots of MSE for the pa-
rameters β1 and β2 with different noises. Dotted lines are
the plots of tests with gaussian noise, the others are tests
with α-stable noise. The 100dB value is the noise free ex-
periments. For space considerations, we don’t give the plots
for parameters β3 and β4 but they are quite the same.

With the whole results of the experiments, we could see
that some limitations of the PSCFD use given in [12] are
really needed whereas some others can be ignored for the
PPS’s parameters estimation task.

Firstly, we see that for all the tests, at a given power of the
noise, the results with gaussian noise and with α-stable noise
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``````````̀PPS order
SNR ∞ dB 30 dB 20 dB 10 dB 6 dB 3 dB

PPS1 9.43×10−6 α −5.82×10−6 α −9.67×10−4 α −3.87×10−2 α −0.112 α −0.312
N −2.13×10−4 N −3.48×10−3 N −3.39×10−2 N −9.49×10−2 N −0.186

PPS2 6.56×10−6 α −4.78×10−6 α −9.26×10−4 α −3.86×10−2 α −0.112 α −0.311
N −2.15×10−4 N −3.48×10−3 N −3.39×10−2 N −9.51×10−2 N −0.186

PPS3 7.47×10−6 α −2.18×10−6 α −9.27×10−4 α −3.86×10−2 α −0.112 α −0.311
N −2.18×10−4 N −3.47×10−3 N −3.39×10−2 N −9.50×10−2 N −0.186

Table 1: Median of the relative error of Â
``````````̀PPS order

SNR ∞ dB 30 dB 20 dB 10 dB 6 dB 3 dB
PPS1 1.79×10−3 α 1.78×10−3 α 1.74×10−3 α 1.30×10−2 α 3.39×10−2 α 8.36×10−2

N 1.68×10−3 N 2.67×10−3 N 7.08×10−3 N 1.15×10−2 N 1.47×10−2

PPS2 1.35×10−4 α 1.87×10−4 α 8.79×10−4 α 1.33×10−2 α 3.33×10−2 α 8.26×10−2

N 7.87×10−4 N 2.44×10−3 N 7.04×10−3 N 1.13×10−2 N 1.53×10−2

PPS3 4.91×10−4 α 3.17×10−4 α 9.13×10−4 α 1.31×10−2 α 3.41×10−2 α 8.35×10−2

N 7.74×10−4 N 2.46×10−3 N 7.02×10−3 N 1.14×10−2 N 1.51×10−2

Table 2: Interquartile range of the relative error of Â

Figure 3: Robust MSE of β̂2 for PPS of order 2 and 3
with different noises

are of the same range: our method is robust to the kind of
the noise’s distribution and the restriction to gaussian noise
is not needed.

Secondly, as the power of the noise increases, the accuracy
of the estimations quickly decreases. For SNR below 6dB,
the algorithm only gives an estimation of the range of the
parameters. The condition SNR ≥ 7dB is needed although
SNR≥ 10dB seems to be a better guarantee.

Thirdly, for all kind of noises, we have a gap between the
results for PPS of order 4 and the others. The results for
phasis of order 4 are not given for space considerations and
for their low accuracy: those signals are more complex and
subject to greater frequency’s variations. Our conclusion
to this is that the limitation in frequency’s variation given
in [12] holds true but for the PPS’s parameters estimation
task, we could allow a larger range. For a signal of duration
T sampled at fs and a smoothing window of 257 points, we
propose the following limit:∣∣∣dfidt

∣∣∣ < 2fe
T

This limit is the widest frequency’s variation possible for a
PPS of order 3 obtained for fi(0) = 0, fi(T/2) = fs/2 and
fi(T ) = 0 or fi(0) = fs/2, fi(T/2) = 0 and fi(T ) = fs/2.

Even if the estimations’accuracies is good at high SNR –
values of 10−7 or better – it is still fewer than the best algo-
rithms such as MUSIC or PHAF methods [3] [4] [17] [7] [19]
[9] which have accuracies of 10−12 or better. On the other
hand, our algorithm is quite faster: for a N point long sig-
nal, MUSIC give a solution in O(N3) operations and PHAF
in O(N2log(N)) whereas our method makes it in O(N) for
PSCFD [1] plus the computation of the regression which is
of O(Np3) for a phasis of order p.

6. CONCLUSION

As a final point to this paper, we have build an algorithm
for PPS parameters estimation made with several existing
methods which is fast, with a linear complexity and with
a limit of use toward the power of the noise which should
be fixed at SNR= 10dB. The amplitude estimation is quite
robust to the shape of the noise, it is slightly better with
impulse noise and seems independent of the phasis order.
The phasis’s parameters estimation depend few of the order
of the phasis as long as the variations of the frequency don’t
go out of range and it is robust to the kind of the noise’s
distribution.

A futur work will be to find a better instantaneous fre-
quency estimation algorithm in order to work with heavy
noise power.
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