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ABSTRACT
Electric utilities and consumers are increasinghyerested

in energy monitoring for economic and environmenta

reasons. A non-intrusive solution may rely on infation

characterized by slowly time-varying duty cyclebeT
problem statement is given in section 2. In secBorihe
(detection of locally-stationary signals embeddedaimon-
stationary observation in the time-frequency (TdBnain is

extracted from the electric consumption measuredaat €XPlained. A novel procedure of interpretation loé time-

centralized part of a distribution network. The lpiem at
hands consists in the separation of the electréd lnto its
major components. This problem of source separdtimm
one sensor is quite tractable under certain coondii

In this work, the focus is made on the most consymi

household appliance in France: the space-heatitgs la

frequency content is investigated. Experimentalstégmve
been carried out on real data provided by Eletdricie
France.

2. PROBLEM STATEMENT

In this paper, we are interested in the breakddiwheowhole

sum of an unknown number of pseudo-periodic signalslectric consumption given the active powgt) available at
embedded in the global active power. An unsupetvisethe electricity meter (sampled at a sampling f&te2s) in

algorithm to determine the space-heating schedola the
global consumption based on the interpretatiorhefspace-
heating signature in the time-frequency domainrigppsed.

France. In fact, this measurement is available doebs not
need any installation at home customers. Moreotres,
recorded measurement could be sent to a centraiaéfidrm

The proposed method conjoins a time-frequency tgtec through radio transmission. Notice that only one

and a frequent itemsets extraction. First resuliseal data
are quite satisfying.

1. INTRODUCTION AND BACKGROUND

The electric power industry and consumers recefabe
many challenges such as energy saving and gresalyas
emissions reducing. Accurate and reliable infororatibout

measurement is required compared to existent eohiti
based on three measurements of current and vol@ages
higher sampling frequency. The electric load decmsiipn
consists in the detection and the estimation ofmitgor
components. The observed signal is the sum of &nawn
number of loady, of the electric appliances as detailed in
equation 1,

the nature and the state of the electric systemls wi vE,y() = Xk=1 k() + (1) 1

undoubtedly be helpful to meet these challengetiaily, a

good knowledge of the electric load and the tamjeteWherebisan additive Gaussian noise.

appliances help consumers understanding their hitid Classical methods of sources separation [4] areuited for
better control their consumption this problem. Recent techniques [5] developed fodia
A non-intrusive and economical solution may rely o Signals are based on the temporal and spectrahuang of
information extracted from the electric consumptiont€ €lementary signals. In this work, we proposiedicated
measured at a centralized easily accessible part of method to electric load characterization. An arnalghd a

distribution network. Non-intrusive electric loadnitoring
has been subject to several approaches over thevisty
years. General overviews can be found in [1, 2., TBE
available solutions require measurements of thiveaetnd
the reactive power, which carry out the finger-fwiof the
electric appliances. They are mostly made up afethateps.

characterization of the individual signals are @t deal
with this problem.

In this paper, the focus is made on the spacertipdty
convectors for two reasons. Firstly, it is the mastisuming
household appliance in France (~70% of the national
consumption in the residential sector). Secondbpravector

Event detection determines the appliances operatiHSad obviously differs from the other signals. WHliteis on, it

schedule. Load identification uses steady stateeppwand

transient patterns, if available, to recognize e¢l@mentary
components.

In this paper, the focus is made on the most comguend-

use in France: the space-heating. The observeal Sitire

active power) is a sum of pseudo-periodic squareewa

generates periodic square signal with constamgé40s or
80s) and a slowly time-varying duty cycl&igure 1
illustrates three signals of three (electronic) vemtors
operating simultaneously at a customer house. Duttis
study, we analyzed the elementary signals recorfded
eleven different convectors during three weekss Tdata



basis is certainly not sufficient, but necessaryaffeasibility
study. In fact, gathering such data is a costly difiitult
task. Some common properties of the convectorssibaste
been established thanks to this analysis. Actualy,noted
that a convector signal is locally stationary, vengre local
stationarity means that the covariance functiothefstudied
signal can be considered as the time modulatiora of
stationary covariance function [6].

Let us underline that more data were gathered glitie
winter 2008-2009 from two different sites. The eetpower
of each convector (almost thirteen convectors) Iesn
measured. The signals analysis have the same pespef
those used during this study.

The detection of space-heating from the active poise
formulated as the detection of a mixture of an wwkm
number of periodic locally stationary signals, whéne set
of possible values for periodicities is known.

Since the observed signals non-stationary, time-frequency
representations [6] are suitable tools to charaeteits

components. In this space, the signal componengs ar .

described by structures called spectral pattermgerGthat
targeted signals are piecewise stationary, theoppipte TFR
is theShort Time Fourier TransfordSTFT) [6]. A sample of
an electric load, where three convectors are sanatiusly in
use, and the magnitude of the corresponding ST&hety
the spectrogram, are illustrated figure 2.

Equidistant horizontal lines correspond to the egagating
signature in the time-frequency domain, becausethef
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Figure 1 — Active power of three convectors

Electric load (5-9 Decernber, 2003)
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Figure 2 - A weekly electrical load and its spegtam

periodic property of the convectors signature. The (total number of convectors: 3)

interpretation of the space-heating signature alsho

i . ) _ Falsealarm : 107

becomes straightforward in this domain. Note thtiteio '
time-frequency features may also be distinguished. N T Detection of Binrisation
The interpretation of the time-frequency represiona —»| Frequency % non- ™
content mostly consists of two processes: the TFF Represenatio stationarinesses
segmentation and the classification of the extchpegterns.
Several parametric or non parametric, supervised ¢

. Space . Itemsets Frequent
unsupervised methods have already been proposed  jeaing | Heating  |a—| characterisationd— Itemsets
literature [7, 8] schadude detection Extraction
This work investigates a new unsupervised and sem T

parametric procedure, dedicated to the charactenizaf an
unknown mixture of periodic locally-stationary s
embedded in a non-stationary observation. The Seigtin
of the TFR is tuned with a time-frequency detettased on
a statistical model of the TFR. The classificatiomocess
aims at separating the extracted spectral patietostwo
families: the space-heating features and the adkeices’
ones. This operation is performed by a data-minmeghod,
namely the frequent itemsets extraction. The pregos

Priors on convector
signature
Figure 3 - Space-Heating detection in the timetfesgy
domain (wheré>(t) is the measured active power)

3. DETECTION AND EXTRACTION OF
PIECEWISE STATIONARY SIGNALS FROM THE
SPECTROGRAM

method is based on priors extracted from convector8.1 Spectrogram segmentation based on a series of

measurements with electronic regulation. As for epoth
convection systems, such as mechanics convectersyiliv
show that our method might be still appropriatecsithe
space-heating load is locally stationary.

The proposed approach to characterize the spatiedea
load is described iRigure 3.

hypothesis tests

A TFR might be considered in two different ways[Tn9] it
is considered as an image. The segmentation isrpestl by
active contours and mathematical morphology. Theets
do not provide an automatic detection and charaetern of
the time-frequency features. In [10, 11], the TERnibdelled
with a mixture of probability densities.



Its segmentation is based on the statistical ptigseof a

specific time-frequency representation: the spegcam,

which is the magnitude of tH&TFT[6].

As the observatiory is a sequence ofN samples, each
spectrogram coefficient is given as following {s the

analysis window of lengtN; < N):

py [k' V] = % | %:1 h[m — k]ylm]e_zjnN_f| (2)

The segmentation procedure consists in labellindh daF
coefficient using a statistical model of the cho3éR. In
this work, our purpose is to provide two regiongegion
which contains the spectral patterns and a regafimed as
the background of the TFR. The segmentation tagkintie
performed through a hypothesis test. The methodrithesl

For better explanation, the statistical test isspnged in the
particular case of a stationary white Gaussianadign

Hgo: Random signab, stationary, with probability density
N(0, o?).

HI : The alternate hypothesis.

The statistical properties of the spectrogram ddefits
under the null hypothesis have to be determinearder to
evaluate the detection threshold. For each freguenc
(pplk,v]) is a mixture of zero mean independent Gaussian
random variables. It follows asymptotically a Cahtp(2

law [13] with 2 degrees of freedom.

Therefore, the spectrogram might be modelled asxtura

of central and non-central chi-square laws [13]nientral

below has been developed in the GIPSA-lab as plart parameters are proportional to the signal to noe#

studies conducted in this lab. The segmentatiocguiare
consists in labelling each T-F coefficient usingtatistical
model of the chosen TFR. In this work, our purpiséo
provide two regions: a region which contains thecgal
patterns and a region defined as the backgrourtioeof FR.
The segmentation task might be performed through

evaluated for the spectrogram coefficients. Thenagion of
the distributions’ parameters helps to make a dwtias for
the category of each spectrogram coefficient.

Decision Rule

The threshold value is determined for a fixed fadé@rm
#fa. The decision rule is:

hypothesis test. The method described below has b
developed in the GIPSA-lab as part of studies cotadlin
this lab.

Statistical hypothesis test

Fit Pylk,V]>1pegyy, the alternate hypothesisi, is true,

andpy[k,v]OLyq(v). Otherwise, the null hypothesis |is

satisfied and we haveo, [k,v]OLyo(V )

The detection of abrupt temporal changes is fortadlas
following:

Ho: The observed signalis stationary, possibly added with
a deterministic signal. It follows a known prob@gitensity

po, whose parameters are unknown.
H;: Non-stationary signal of unknown probability diéyng;

Lack of information about ruptures makes the dgfini of
an optimal detector not feasible. In [12], the auttpropose
a recursive detector based on the knowledge of ghis

family. They proposed a new detector in a particlilBR:
the spectrogram, and reformulated the previous thygsis
test in the new space. As the prior density of nla®ns
and the cost function are unknown, the decisiore’sul
threshold might be determined for a given falsenal@fa

Consequently, iby[K,V] >/7pgy), then the alternate

Ly, is the set of all the spectral patterns.

Algorithm
The key idea of this detector is to construct thiespace of

interest iteratively. More precisely, let}yo(v) be the
current  estimation of Lyg(v) at iteration |,
P! =card{L'H0(v)Lr and 4'[v]be the empirical mean of
L'y (V) . For more details, we refer to these works [12, 13
The stopping criterion is the stability Iofjg. As for
initialisation, one affects to eachy(v) the p% lowest
values of the observed data. The paramptes chosena
priori. This procedure is used to detect all the speeindl
the temporal changes in the T-F domain. It provides
mapping of the spectral patterns including thos®eated
to the piecewise-stationary periodic signals. Tkt rstep
aims at automatically extracting these patternshsd one

hypothesis H is accepted. Otherwise, one accepts the nultan select the convectors patterns.

hypothesis.

Let us now give some definitions and notations. &given
signaly, the observation spacelis= {(k,v),k € K,v € F}
where K X F is the time-frequency domain. For each
normalised frequency, we define:

Lio) ={(kV)OL() I Py sro = Poand kO Ig)y
where: | 4 = argma>{card(l ),I O K,E(py[k,v])< ,us}
Us isathresholdchoserapriori.

Ly1(v) is the complementary subspacelgfq (V) .

Notice that the decision rule requires the knowtedf the
statistical distributions of the T-F coefficients.

Statistical model of the spectrogram coefficients

3.2 Anovel method to extract “some” time-frequency
patterns: Frequent Itemsets extraction

The subspacé.p; is a time-frequency map of two families

of features: the first one is associated to petis@jnals, the
second one to other signals. Our objective is toaek the
first category of patterns. The extraction algarigh of
compact subsets [13] are not suited to our prolidenause
we aim at extracting only some itemsets having some
specific properties. Actually, the features asdediao the
convectors have three properties. Each patternealyn
rectangular. Besides, for a given temporal supptrg
convectors structures have almost the same simally-
whenever the space-heating is “on”, the patterngaxth



convector are equidistant. These priors are usetbttel the

targeted
unsupervised procedure of extraction. A specificthoe
namely the Frequent Itemsets Extractioselects these

structures and to develop an automatit an

itemsets. Early works on this method [14] led tee th
APRIORI algorithm, where the processed data ararpin

matrix. The rows are calleabjectsand the columns are the
attributes

Definition: A frequent itemset is an itemset for which th
number of objects including this itemset, calleppsrt, is

greater than a threshold named cut frequefigy[15].

Time 2x | 3x | 4x | 5x | 6x | 7x | 8x
0| 512
Frequency 512 | 512 | 512 | 512 | 512 | 512 | 512
f,=0 1| 1 1] 0 0 0| 1 1] 1
f,=001 | 1] 1 110 1 1] 1 1] 1
€f3=002 |of 0o | 0| 1 | 1| 1| 0| 0] 1
f4=003 | 1] 1 11110 0 0 0 0

Frequent Itemsets Extraction looks for the frequtemhsets
in a large data basis. This procedure is carried aon
condensed representation: @Galois lattice The lattice
construction is illustrated ifrigure 5 for a non realistic

binary matrix Figure 4). The frequent itemsets for a cut

frequency f. =2 are presented in

Figure 6. The APRIORI algorithm proceeds repeatedly as

following:
1*"iteration: evaluate the itemsets’ frequencies
K" iteration:

a greater frequency than the cut frequency.
Update data: pruning the non-frequent itemsets.
In our case, time instants are the objedtanéactions.
Frequencies are thattributes A spectral pattern could be
considered as an association between an items¢iribfites
and the objects (instants) containing these at&#hu
(frequencies). Note that the matrix data must berised
and transposed for computing reasons. Moreover,
morphological filtering is used to eliminate alletipatterns
with duration
convector. The patterns extraction is then perfdrnbgy
specific software: MvMiner [16]. As the space-heating
spectrum covers the entire frequential axis, theaetion of
the spectral signature of the convectors might dréopmed
by selecting the longer itemset of attributes. Aisthe cut
frequency, it could be defined regarding the minichaation
of a convector’s operatingt.,y given consumer habits an

tchO )
Te N f

The output of this module is a map including mogtig
binarised signature of the convectors in the spgam. We
can then deduce the schedule of this end-use frataila
electrical load.

operating constraints as following, =

4. EXPERIMENTAL RESULTS

Frequent itemsets of iteration (k-1) are used to
determine candidates for k-frequent itemsets, with

inferior to the minimum duration of a

Figure 4 - An illustration of the processed data
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Figure 5 - A condensed representation of the madriattice
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Figure 6 - Frequent itemsets fdg =2

The frequent itemsets map and the longer frequentsiets
obtained for a weekly electric load (Figure 2) presented
in Figure 7.

Notice that some itemsets are split up resultingnam-
detected intervalZ,,Z, andZs.

The space-heating detector in the temporal donfagufe
8) is thereafter obtained given the patterns madrid a
model of a convector. Besides the non-detectientdisplit
up of some itemsets, Figure 8 (black ellipses)siiates
some non-detection due to the cut frequency chasdrthe
length of extracted itemsets.

A post-processing might be added to the globalrchse

Real data have been gathered only at a customeseNOuthat adjacent regions are interpolated. Thereafterspace-

because collecting real data is a difficult andlgdask. The

heating detector from the selected itemsets is ctiuThe

results given herein are not complete yet. We onlyemporal support of non-detection intervals is acbd0%

demonstrate the efficiency of the proposed methodeal
data in the particular case of electronics convsctdhe
evaluation of the detector on large data basisdifferent
customers will be performed in future works, usidata
recorded at tow houses.

of the space-heating support, without any postgssing.
We also stress that the chosen method of extradties not
lead to any false alarms. The detector describedenls
based on the spectral properties of a convecta &ad
should be applicable to other convection systeresthe




corresponding patterns are frequent compared taotier
devices ones.

5. CONCLUSIONS AND FUTURE WORKS -

In this work, a new method of interpretation of atjgular
time-frequency representation, namely the sperogdn the
case study of electric load monitoring, is investidgl. The
method conjoins a time-frequency detector and @ héing
method to extract some pertinent patterns.

The T-F detection is based on a statistical modethe
spectrogram. An existing detector of non-statidieai is
implemented and tested on real data. A model of the
convectors given the priors on the temporal andsfreztral
properties of the electric signature is used. Tieensets
extraction method operates on the binarised timguency
map and provides the frequent itemsets. s
Finally, the detection of the periodic signals frtéme unique 8| - i
mixture is performed by selecting the largest pasteof Dasor G2 e
attributes. The method presented herein is dedidatehe
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Figure 7 - Extraction of the convectors’ patterns

Space-heating detection: results in the temporal domain
T T T T T T T

detection and the extraction of periodic locallgtistnary 6] ] BRI
signals embedded in a non-stationary observation. A | ” |
application of this algorithm is the estimationtbé& space- 5

heating operating schedule given the unique meamsureof 4 ' 7
the active power, without any intrusion in the r@asid any 8l

knowledge on the electric installation.

The designed detector has no false alarm, whiclanis
important criterion in the point of view of the toer. The n
detector would be evaluated on a larger data basisre ‘ ‘ -
each device active power is recorded. If the peréorces of s 788 L N A
the proposed detector are satisfying, it would\mduated in ' ’

real life through tests on an industrial platfo@iher space- Figure 8 — Space-heating detection: results inetoral
heating system would be thereafter studied. domain
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