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Abstract

Physical layer security is an emerging security area that explores possibilities of achieving perfect secrecy data

transmission between the intended network nodes, while possible malicious nodes that eavesdrop the communication

obtain zero information. The so-called secrecy capacity can be improved using friendly jammers that introduce extra

interference to the eavesdroppers. Here, we investigate the interaction between the source that transmits the useful data

and friendly jammers who assist the source by “masking” the eavesdropper. In order to obtain a distributed solution,

one possibility is to introduce a game theoretic approach. The game is defined such that the source pays the jammers

to interfere the eavesdropper, therefore increasing the secrecy capacity. The friendly jammers charge the source with

a certain price for the jamming and there is a tradeoff for the price. If the price is too low, the profit of the jammers

is low and if the price is too high, the source would not buy the “service” (jamming power) or would buy it from

other jammers. To analyze the game outcome, we define and investigate a Stackelburg type of game and construct a

distributed algorithm. Our analysis and simulation results show the effectiveness of friendly jamming and the tradeoff

for setting the price. The distributed game solution is shown to have similar performances to those of the centralized

one.

This work was supported by NSF CNS-0831371, and was supported by the Research Council of Norway through the project
entitled ”Mobile-to-Mobile Communication Systems (M2M)”.
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I. Introduction

The future communication systems will be decentralized and ad-hoc, therefore allowing various types

of network mobile terminals to join and leave. This aspect makes the whole system vulnerable and

susceptible to attacks. Anyone within communication range can listen and possibly extract informa-

tion. While these days we have numerous cryptographic methods with high level security, there is

no system with perfect security on physical layer. Therefore, the physical (PHY) layer security is

regaining a new attention. The main goal of this paper is to design a decentralized system that will

protect the broadcasted data and make it impossible for the eavesdropper to receive the packets even if

it knows the encoding/decoding schemes used by the transmitter/receiver. In approaches where PHY

layer security is applied, the main objective is to maximize the rate of reliable information from the

source to the intended destination, while all malicious nodes are kept as ignorant of that information

as possible. This maximum reliable rate is known as secrecy capacity.

This line of work was pioneered by Aaron Wyner, who defined the wiretap channel and established

the possibility to create almost perfect secure communication links without relying on private (secret)

keys [1]. Wyner showed that when the eavesdropper channel is a degraded version of the main channel,

the source and the destination can exchange perfectly secure messages at a non-zero rate. The main

idea proposed by him is to exploit the additive noise impairing the eavesdropper by using a stochastic

encoder that maps each message to many codewords according to an appropriate probability distribu-

tion. With this scheme, a maximal equivocation (i.e., uncertainty) is induced at the eavesdropper. In

other words, a maximal level of secrecy is obtained. By ensuring that the equivocation rate is arbitrar-

ily close to the message rate, one can achieve perfect secrecy in the sense that the eavesdropper is now

limited to learn almost nothing about the source-destination messages from its observations. Follow-

up work by Leung-Yan-Cheong and Hellman characterized the secrecy capacity of the additive white

Gaussian noise (AWGN) wiretap channel [2]. In their landmark paper, Csiszár and Körner generalized

Wyner’s approach by considering the transmission of confidential messages over broadcast channels [3].

Recently, there have been considerable efforts on generalizing these studies to the wireless channel and

multi-user scenarios (see [4–12] and references therein). Jamming [13–15] has been studied for a long

time to analyze the hostile behaviors of malicious nodes. Recently, jamming has been employed to
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physical layer security to reduce the eavesdropper’s ability to decode the source’s information [16].

In other words, the jamming is friendly in this context. Moreover, the friendly helper can assist the

secrecy by sending codewords, bring further gains relative to unstructured Gaussian noise [16–18].

Game theory [19] is a formal framework with a set of mathematical tools to study some complex

interactions among interdependent rational players. During the past decade, there has been a surge in

research activities that employ game theory to model and analyze modern distributed communication

systems. Most of these works [20–23] concentrate on the distributed resource allocation for wireless

networks. As far as the authors’ knowledge, the game theory has not yet been used in the physical

layer security.

In this paper, we investigate the interaction between the source and its friendly jammers using game

theory. Although the friendly jammers help the source by reducing the data rate that is ”leaking”

from the source to the malicious node, at the same time they also reduce the useful data rate from the

source to the destination. Using well chosen amounts of power from the friendly jammers, the secrecy

capacity can be maximized. In the game that we define here, the source pays the jammers to interfere

the malicious eavesdropper, and therefore, to increase the secrecy capacity. The friendly jammers

charge the source with a certain price for the jamming the eavesdropper. One could notice that there

is a tradeoff for the proposed price: If the price of a certain jammer is too low, its profit is also low; if

its price is too high, the source will buy from the other jammers. In modeling the outcome of the above

games our analysis uses the Stackelberg type of game. Initially, the existence of equilibrium will be

studied. Then, a distributed algorithm will be proposed and its convergence will be investigated. The

outcome of the distributed algorithm will be compared to the centralized genie aided solution. Some

implementation concerns are also discussed. From the simulation results, we can see the efficiency of

friendly jamming and tradeoff for setting the price, the source prefers buying service from only one

jammer, and the centralized scheme and the proposed game scheme has similar performance.

The rest of the paper is organized as follows: In Section II, the system model of physical layer

security with friendly jamming users is described. In Section III, the game models are formulated, and

the outcomes as well as properties of the game are analyzed. Simulation results are shown in Section

IV and conclusions are drawn in Section V.
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Useful data

S D
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M - Malicious Node (Eavesdropper)
J1, . . . , JJ - J friendly jammers

Payment
Interference

Fig. 1. System Model for Physical Layer Security Game

II. System Model

We consider a network with a source, a destination, a malicious eavesdropper node, and J friendly

jammer nodes as shown in Figure I. The malicious node tries to eavesdrop the transmitted data

coming from the source node. When the eavesdropper channel from the source to the malicious node

is a degraded version of the main source-destination channel, the source and destination can exchange

perfectly secure messages at a non-zero rate. By transmitting a message at a rate higher than the

rate of the malicious node, the malicious node can learn almost nothing about the messages from its

observations. The maximum rate of secrecy information from the source to its intended destination is

defined by the term secrecy capacity.

Suppose the source transmits with power P0. The channel gains from the source to the destination

and from the source to the malicious node are Gsd and Gsm, respectively. Each friendly jammer i,

i = 1, . . . , J transmits with power Pi and the channel gains from it to the destination and the malicious

node, are Gid and Gim, respectively. For convenience, we denote by J the set of indices {1, 2, . . . , J}.

If the path loss model is used, the channel gain is given by the distance to the negative power of the

path loss coefficient. The thermal noise for each channel is σ2 and the bandwidth is W . The channel

capacity for the source to the destination is

C1 = W log2

(

1 +
P0Gsd

σ2 +
∑

i∈J PiGid

)

. (1)
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The channel capacity from the source to the malicious node is

C2 = W log2

(

1 +
P0Gsm

σ2 +
∑

i∈J PiGim

)

. (2)

The secrecy capacity is

Cs = (C1 − C2)
+ (3)

where (·)+ = max(·, 0). Both C1 and C2 are decreasing and convex functions of jamming power Pi.

However, Cs = C1 −C2 is not a monotonous and convex function. This is because the jamming power

might decrease C1 faster than C2. As a result, Cs might increase in some region of value Pi. So,

the questions are whether or not Cs can be increased, and how to control the jamming power in a

distributed manner. We will try to solve the problems in the following section using a game theoretical

approach.

III. Game for Physical Layer Security

In this section, we study how to use game theory to analyze the physical layer security. First, we

define the game between the source and friendly jammers. Next, we optimize the source and jammer

sides, respectively. Then, we prove some properties of the proposed game. Furthermore, a comparison

with the centralized scheme is constructed. Finally, we discuss some implementation concerns.

A. Game Definition

The source can be modeled as a buyer who wants to optimize its secrecy capacity minus cost by

modifying the “service” (jamming power Pi) from the friendly jammers, i.e.,

Source’s Game: max Us = (a max(C1 − C2, 0) − M), (4)

s.t. Pi ≤ Pmax,

where a is the gain per unit capacity, Pmax is the maximal power that a jammer can provide, and M

is the cost to pay for the other friendly jamming nodes. Here

M =
∑

i∈J

piPi, (5)
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where pi is the price per unit power for the friendly jammer, Pi is the friendly jammer’s power, and

J is the set of friendly jammers. From (4) we note that the source will not participate in the game if

C1 < C2, or in other words, the secrecy capacity is zero. For each jammer, Ui(pi, Pi(pi)), is the utility

function of the price and power bought by the source. For the jammer’s (seller’s) utility, in this paper

we define the following utility

Ui = piP
ci

i , (6)

where ci ≥ 1 is a constant to balance from the payment piPi from the source and the transmission cost

Pi. Notice that Pi is also a function of the vector of prices (p1, . . . pN) since the power that the source

will buy also depends on the price that the friendly jammers ask. Hence, for each friendly jammer,

the optimization problem is

Friendly Jammer’s Game: max
pi

Ui. (7)

In the next two subsections, we analyze the optimal strategies for the source and friendly jammers

to maximize their own utilities.

B. Source (Buyer) Side Analysis

Introducing A = P0Gsd/σ
2, B = P0Gsm/σ2, ui = Gid/σ

2, and vi = Gim/σ2, i ∈ J , we have

Us = aW

(

log

(

1 +
A

1 +
∑

j∈J ujPj

)

− log

(

1 +
B

1 +
∑

j∈J vjPj

))+

−
∑

j∈J

pjPj, (8)

For the source (buyer) size, we first analyze the case where C1 > C2. By differentiating (4), we have

∂Us

∂Pi

= −
aWAui/ ln 2

(1 + A +
∑

j∈J ujPj)(1 +
∑

j∈J ujPj)
+

aWBvi/ ln 2

(1 + B +
∑

j∈J vjPj)(1 +
∑

j∈J vjPj)
− pi = 0. (9)

Rearranging the above equation, we have

P 4

i + Fi,3P
3

i + Fi,2(pi)P
2

i + Fi,1(pi)Pi + Fi,0(pi) = 0, (10)

where

Fi,3 = (2 + 2αi + A)2 + (2 + 2βi + B)2, (11)

Fi,2(pi) =
(2 + 2αi + A)(2 + 2βi + B)

uivi

+
Li

v2
i

+
Ki

u2
i

−
aW

piuivi

(

B

vi

−
A

ui

)

, (12)
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Fi,1(pi) =
LiCi + KiDi

u2
i v

2
i

+
aW (ADi − BCi)

piu2
i v

2
i

, (13)

Fi,0(pi) =
KiLi

u2
i v

2
i

+
aW (AuiLi − BviKi)

piu2
i v

2
i

, (14)

and

αi =
∑

j 6=i

GjdPj, (15)

βi =
∑

j 6=i

GjmPj, (16)

Ki = (1 + αi)(1 + αi + A), (17)

Li = (1 + βi)(1 + βi + B), (18)

Ci = ui(2 + 2αi + A), (19)

Di = vi(2 + 2βi + B). (20)

The solutions of the quartic can be expressed in closed form but this is not the primary goal here. It

is important that the solution we are interested in is given by the following function

P ∗
i = P ∗

i (pi, A, B, {uj}, {vj}, {Pj}j 6=i) (21)

Note that 0 ≤ Pi ≤ Pmax. Since Pi satisfies the polynomial function, we can have the optimal

strategy as

P ∗
i = min[max(Pi, 0), Pmax]. (22)

Because of the complexity of the closed form solution of a quartic equation in (22), we also consider

two special cases: lower interference case and high interference case.

B.1 Interference at the Destination is much Smaller than the Noise

Remember the definitions: A = P0Gsd/σ
2, B = P0Gsm/σ2, ui = Gid/σ

2 and vi = Gim/σ2. Imagine

a situation in which all jammers are close to the malicious node and far from the destination node.

In that case the interference from the jammers to the destination is very small in comparison to the

additive noise and therefore we have

Us ≈ aW

(

log (1 + A) − log

(

1 +
B

1 +
∑

j∈J vjPj

))+

−
∑

j∈J

pjPj. (23)
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Then

∂Us

∂Pi

=
aWBvi/ ln 2

(1 + B +
∑

j∈J vjPj)(1 +
∑

j∈J vjPj)
− pi = 0. (24)

Rearranging we get

P 2

i +
2 + 2βi + B

vi

Pi +
(1 + βi)(1 + B + βi)

v2
i

−
aWB

pivi ln 2
= 0. (25)

Solving the above equation we obtain a closed-form solution

P ∗
i = −

2 + 2βi + B

2vi

+

√

(2 + 2βi + B)2

4v2
i

−
(1 + βi)(1 + B + βi)

v2
i

+
aWB

pivi ln 2

= qi +

√

wi +
zi

pi

. (26)

Finally, by comparing P ∗
i with the power under the boundary conditions (Pi = 0, Pi = Pmax and

Cs = 0), the optimal P ∗
i in the low SNR region can be obtained.

B.2 One Jammer with Interference that is much Higher than the Noise but much Smaller than the

Received Power at the Destination and the Malicious Node

In this case the interference from the jammer is much higher than the additive noise but much

smaller than the power of the received signal at the destination and the malicious node. In other

words, that means 1 << u1P1 << A and 1 << v1P1 << B. Therefore the utility function of the

source is given by

Us ≈ aW

(

log

(

1 +
A

u1P1

)

− log

(

1 +
B

v1P1

))

− p1P1 ≈
aWA

u1P1

−
aWB

v1P1

− p1P1. (27)

If B
v1

− A
u1

≤ 0, Us is a decreasing function of P1. As a result, Ps is optimized when P1 = 0, i.e. the

jammer would not participate the game. On the other hand, if B
v1

− A
u1

> 0, in order to find the

maximizing powers we have to calculate

∂Us

∂Pi

= −
aWA

u1P 2
1

+
aWB

v1P 2
1

− p1 = 0. (28)

Hence

P ∗
1 =

√

aW

p1

(

B

v1

−
A

u1

)

=

√

D1

p1

. (29)
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From this equation we get the optimal closed-form solution P ∗
i , and similarly by comparing P ∗

1 with

the power under the boundary conditions (P1 = 0, P1 = Pmax and Cs = 0), we can obtain the optimal

solution for the this special case.

C. Friendly Jammer (Seller) Side Analysis

In this subsection, we study how the friendly jammers can set the optimal price to maximize its

utility. By differentiating the utility in (6) and setting it to zero, we have

∂Ui

∂pi

= (P ∗
i )ci + pici(P

∗
i )ci−1

∂P ∗
i

∂pi

= 0. (30)

This is equivalent to

(P ∗
i )ci−1

(

P ∗
i + pici ·

∂P ∗
i

∂pi

)

= 0. (31)

This happens either if P ∗
i = 0 or if

P ∗
i + pici ·

∂P ∗
i

∂pi

= 0. (32)

From the closed form solution of P ∗
i the solution of p∗i will be a function given as

p∗i = p∗i (σ
2, Gsd, Gsm, {Gid}, {Gim}). (33)

Notice that p∗i should be positive. Otherwise, the friendly jammer would not play.

D. Properties

In this subsection, we prove some properties of the proposed game. First, we prove that the power is

monotonous function of the price under the two extreme cases. The properties can help for the proof

of equilibrium existence in the later part of this subsection.

Property 1: Under the two special cases, the optimal power consumption P ∗
i for friendly jammer

i is monotonous with its price pi, when the other friendly jammers prices are fixed. The proof is

straightforward from (26) and (29).

We investigate the following analysis of the relation between the price and power. We find out

that the friendly jammer power Pi bought from the source is convex in its own price pi under some

conditions. To prove this we need to check whether the second derivative ∂2Pi/∂p2
i < 0.
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In the first special case in which the interference is small

∂P ∗
i

∂pi

= −
zi

2p2
i

√

wi + zi

pi

(34)

and

∂2P ∗
i

∂p2
i

=
zi

p3
i

(

wi + zi

pi

)1/2



1 −
1

4
(

piwi

zi
+ 1

)



 . (35)

The above equation is greater than zero when pi is small. This means when the interference is small

and the price is small, the power is convex as a function of the price.

In the second special case in which the interference is severe

∂P ∗
i

∂pi

= −
1

2

√

D1p
−3/2

1 (36)

and

∂2P ∗
i

∂p2
i

=
3

4

√

D1p
−5/2

1 > 0. (37)

This means when the interference is severe, the power is a convex function of the price.

Next, we investigate the equilibrium of the proposed game. In other word, no user can improve the

its utility by changing its own strategy only. We first define the Stackelberg equilibrium as follow:

Definition 1: P SE
i and pSE

i are the Stackelberg equilibrium of the proposed game, if when pi is fixed,

Us({P
SE
i }) = sup

Pmax≥{P SE
i

}≥0,∀i

Us({Pi}), ∀i ∈ J (38)

and when Pi is fixed,

Ui(p
SE
i ) = sup

pi

Ui(pi), ∀i ∈ J . (39)

Finally, from the analysis in the previous two subsections, we can shown the following property for the

proposed game.

Property 2: The pair of {P ∗
i }

N
i=1 in (22) and {p∗i }

N
i=1 in (33) is the Stackelberg equilibrium for the

proposed game.

Notice that there might be multiple roots in 10, as a result, there might be multiple Stackelberg

equilibriums. In the simulation results shown in later section, we will show that the proposed scheme

can still achieve the equilibriums with better performances than those of the no-jammer case.
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E. Distributed Algorithm and Convergence

In this subsection, we study how the distributed game can converge to the Stackelberg equilibrium

defined in the above subsection. After rearranging (30), we have

pi = Ii(p) = −
(P ∗

i )

ci
∂P ∗

i

∂pi

, (40)

where p = [p1, . . . , pN ]T and Ii(p) is the price update function. Notice that P ∗
i is a function of p. The

information for the update can be obtained from the source node. This is similar to the distributed

power control [26]. The update of the friendly jammers’ prices can be written in a vector form as

Distributed Algorithm: p(t + 1) = I(p(t)), (41)

where I = [I1, . . . , IN ]T , and the iteration is from time t to time t + 1. Next we show that the

convergence of the proposed scheme by proving that the price update function in (41) is a standard

function [24] defined as

Definition 2: A function I(p) is standard, if for all p ≥ 0, the following properties are satisfied

1. Positivity: p > 0,

2. Monotonicity: if p ≥ p′, then I(p) ≥ I(p′), or I(p) ≤ I(p′),

3. Scalability: For all η > 1, ηI(p) ≥ I(ηp).

In [24], it has been proved that the price will converge to the fixed point (i.e. the Stackelberg

equilibrium in our case) from any feasible initial price vector. The positivity is very easy to prove. If

the price pi goes up, the source would buy less from the ith friendly jammer. As a result,
∂P ∗

i

∂pi
in (30)

is negative, and we prove positivity pi = Ii(p) > 0.

For monotonicity and scalability, we can only show the two special cases. For the low interference

case, from (26) it is obvious that

Ii(p) = −
(P ∗

i )

ci
∂P ∗

i

∂pi

=
2
√

wip2
i + zipi(qipi +

√

wip2
i + zipi)

cizi

(42)

which is monotonically increasing in pi. For scalability, we have

Ii(ηp)

ηIi(p)
=

√

wip2
i + zipi/η(qipi +

√

wip2
i + zipi/η)

√

wip2
i + zipi(qipi +

√

wip2
i + zipi)

< 1, (43)
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since η > 1.

For the large interference case, from (29) we have

Ii(p) = −
(P ∗

i )

ci
∂P ∗

i

∂pi

=
2pi

ci

(44)

which is monotonically increasing in pi and scalable.

For more general cases, the analysis cannot be tractable. In the simulation section later, we employ

the general simulation setups. The simulation results show that the proposed scheme can converge

and outperform the no-jammer case.

F. Centralized Scheme

Traditionally, the centralized scheme is employed assuming all channel information is known. The

objective to optimize the secrecy capacity under the constraints of maximal jamming power.

max
Pi

Cs = max

[

W log2

(

1 + P0Gsd

σ2+
∑

i∈J
PiGid

1 + P0Gsm

σ2+
∑

i∈J
PiGim

)

, 0

]

. (45)

s.t. 0 ≤ Pi ≤ Pmax,∀i.

The centralized solution is found by maximizing the secrecy capacity only. If we do not consider the

constraint, we have

∂Cs

∂Pi

= −
AWui

(1 + αi + uiPi)(1 + A + αi + uiPi)
+

BWvi

(1 + βi + uiPi)(1 + B + βi + uiPi)
= 0. (46)

Rearranging we get

P 2

i +
Au2

i (2 + B + 2βi) − Bv2
i (2 + A + 2αi)

Au3
i − Bv3

i

Pi

+
Aui(1 + βi)(1 + B + βi) − Bvi(1 + αi)(1 + A + αi)

Au3
i − Bv3

i

= 0. (47)

Using the KKT condition theorem [25], the final solution would be obtained by comparing the boundary

conditions (i.e. Pi = 0, Pi = Pmax, and Cs = 0).

Notice that our proposed algorithm is distributive, in the sense that only the pricing information

needs to be exchanged. In the simulation results, we compare the proposed game theoretical approach

with this centralized scheme.
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Fig. 2. Secrecy Capacity vs. Jamming Power

Finally, from the simulation results in the next section, we show that the distributed solution and

the centralized solution is asymptotically the same if a is sufficiently large (the source cares the secrecy

capacity more than the payment, i.e., the source is sufficiently rich).

G. Implementation Discussion

There are several implementation concerns for the proposed scheme. First, the channel information

from the source to the malicious eavesdropper might not be known or accurately known. Under this

condition, the secrecy capacity formula should be rewritten considering the uncertainty. If the direction

of arrival is known, multiple antenna techniques can be employed such as in [12]. Second, the proposed

scheme need iteratively updating the price and power information. A natural question arises that if

the distributed scheme has less signalling than the centralize scheme. The comparison is similar to

distributed and centralized power control in the literature [24, 26]. Since the channel condition is

continuously changing, the distributed solution only needs to update the difference of the parameters

such as power and price to be adaptive, while the centralized scheme requires all channel information

in each time period. As a result, the distributed solution has a clear advantage and dominates the

current and future wireless network design. For example, the power control for cellular networks, the
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Fig. 3. How much Power the Source Would Buy vs. Price

open loop power control is done only once during the link initialization, while the close loop power

control (distributed power allocation such as [24]) is performed 1500 times for UMTS and 800 times

for CDMA2000. Finally, for the multi-source multi-destination case, there are two possible choices to

solve the problem. First, we can use clustering method to divide the network into sub-networks, and

then employ the single-source-destination pair and multiple-friendly-jammer solution proposed in this

paper. Or if we consider the jamming power can be useful for multiple eavesdroppers, some techniques

such as double auction can be investigated. The detailed discussion is beyond the scope of this paper

and would be considered in our future research.

IV. Simulation Results

The simulation is set up as follows: The source and friendly jammer have power of 0.02, the band-

width is 1, the noise level is 10−8, the propagation loss factor is 3, AWGN channel is assumed. the

source, destination, and eavesdropper are located at the coordinate (0,0), (100,0), and (50,50), respec-

tively. Here we select a = 2 for the friendly jammer utility in (6).

For single friendly jammer case, we show the simulation with the friendly jammer at the location

of (50,75) and (10,75). In Figure 2, we show the secrecy capacity as a function of jamming power.
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We can see that with the increase of the jamming power, the secrecy capacity first increases and then

decreases. This is because the jamming power has different effects on C1 and C2. So there is an optimal

point for the jamming power. Also the optimal point depends on the location of the friendly jammer,

and the friendly jammer close to the eavesdropper is more effective to improve the secrecy capacity.

Moreover, notice that the curve is not convex and not concave. In Figure 3, we show the how much

power the source buys from the jammer as a function of the requested price. We can see that the

power is reduced if the price goes high. At some point, the source would stop buying the power. So

there is a tradeoff for setting the price, i.e., if the price too high, the source would buy less power or

even would buy nothing.

For the two-user case, we set up the following simulations. Malicious node is located at (50,90),

friendly jammer one is located at (50,50), and friendly jammer two is located at (50,75). In Figure

4, Figure 5, and Figure 6, we show the source’s utility Us, jammer one’s utility U1, and jammer

two’s utility U2 as function of both users’ price, respectively. We can see that the source would buy

service from only one of the friendly jammers. If the friendly jammer asks too low price, the jammer’s

utility is very low. On the other hand, if the jammer asks too high price, it risks the situation in
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which the source would buy the service from the other friendly jammer. There is an optimal price for

each friendly jammer to ask, and the source would always select the one that can provide the best

performance improvement.

Next, we set up a simulation of mobility. The first friendly jammer is fixed at (50,50), while the

second friendly jammer moves from (-50,75) to (100,75). In Figure 7, we show the source utilities of

the centralized scheme and the proposed game. We can see that the centralized scheme serves as a

performance upper bound. The game result is not far away from the upper bound, while the game

solution can be implemented in a distributed manner. The performance game is trivial when the

friendly jammer 2 is close to the malicious eavesdropper from (20,75) to (70,75). In Figure 8, we show

the jammers’ power as a function of jammer 2’s location. We can see that depending on the jammers’

location, the source switches between two jammers for the best performance. Moreover, the source also

buys the optimal amount of jamming power: when the jammer is close to the malicious eavesdropper,

the source would buy less power since the jammer is more effective to improve the secrecy capacity.

In Figure 9, we show the corresponding friendly jammers’ utilities of the proposed game.

Finally, we show the effect of parameter a for the friendly jammer utility in (6). When a is large, the
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friendly jammer’s utility reduces quick if the source does not buy the service. As a result, the friendly

jammer would not ask arbitrary price, and performance gap to the optima solution is small. In Figure

10, we show the secrecy capacity as a function of a when the jammer two is located at (0,75). We can

see that the performance gap is shrinking when a is increasing. Notice that for the condition in which

the game almost converges to the optimal solution, most value of a > 1 will achieve good solution, e.g.

the friendly jammer two located at (50,75).

V. Conclusions

Physical layer security is an emerging security technique that is an alternative for traditional

cryptographic-based protocols to achieves perfect secrecy capacity as eavesdroppers obtain zero in-

formation. Jamming has been shown in the literature to effectively improve secrecy capacity. In this

paper, we investigate the interaction between the source and friendly jammers using the game theory

so as to have a distributed solution. The source pays the friendly jammers to interfere the malicious

eavesdropper so as to increase the secrecy capacity. The friendly jammers charge the source with a

price for the jamming. To analyze the game outcome, we investigate the Stackelburg game and con-

struct the distributed algorithm. Some properties such as equilibrium and convergence are analyzed.



18

−50 0 50 100
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Jammer 2’s Location

S
ou

rc
e 

U
til

ity

Two User Case, U
s
 vs. Jammer 2 Location

 

 

Game
Centralized

Fig. 7. Us vs. Jammer 2 Location

From the simulation results, we can see the following points. First, there is a tradeoff for the price: if

the price is too low, the profit is low; if the price is too high, the source would not buy or buy from

the other jammers. Second, for the multiple jammer case, the source would buy service from only one

jammer. Third, the centralized scheme and distributed scheme has a similar performance, especially

when α is sufficiently large. Overall, the proposed game theoretical scheme can achieve a comparable

performance with distributed implementation.
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