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Abstract—We present a Bayesian game-theoretic approach From a simple two-user MAC setting, the authors show that
for the distributed resource allocation problem in the context the unique Nash equilibrium (NE)_[12] of the corresponding
of K-user fading multiple access channels (MAC). We assume \atarfilling game is actually the maximum sum-rate point on

that users have incomplete information about the channel state . . .
information (CSlI), i.e., each user knows his own channel state b the boundary of the MAC capacity region. However, their

does not know the states of other users. All users (transmittg)  results rely on the fact that both transmitters have “coteple
are considered to be rational, selfish, and each one carries theinformation” about the CSI, and in particular, perfect C$l o
objective of maximizing its own achievable data rate. In such a a|l transmitters in the network. As we previously pointed, ou
game-theoretic study, the central question is whether a Bayesia s assumption is rarely possible in practice.
equilibrium (BE) exists. Based on the assumption of two channel Thus, this power allocation game needs to be reconstructed
states, we prove that there exists exactly one BE in this game. ’ s .

with some realistic assumptions made on the knowledge level

|. INTRODUCTION of mobile devices. Under this consideration, it is of great

In recent years, there has been great interest in saifterest to investigate scenarios in which devices have “in
organizing wireless networks in which mobile devices allazomplete information” about their components, e.g., a @evi
cate resource in a decentralized manmér [1]. Tools of ganseware of its own channel gain, but unaware of the channel
theory [2] have been widely applied to study the resourggins of other devices. In game theory, a strategic game with
allocation and power control problems in various types @f ndncomplete information is called a “Bayesian game”. Over
works, such as fading MAC ]3], orthogonal frequency divisiothe last ten years, Bayesian game-theoretic tools have been
multiplexing (OFDM) [4], multiple input and multiple outpu used to design distributed resource allocation strategids
(MIMO) channels [[5], [[6], and interference channéls [7.etin a few contexts, e.g., CDMA networks [13],7[14], multi-
Typically, the game-theoretic models used in these praviocarrier interference networks [15]. Our motivation is &fere
works assume that the information/knowledge about othter study how Bayesian games can be applied to the context
devices is available to all devices. However, this assumptiof fading MAC. The goal of this paper is to investigate the
is hardly met in practice. In practical wireless commuriaat outcome of our Bayesian waterfilling game, i.e., the existen
scenarios, mobile devices can have local information bat cand uniqueness of BE point(s).
barely access to global information on the network status. The paper is organized in the following form: In Sectidn I,

In this paper, we focus our attentions on the fading MAGve introduce the system model and describe briefly the back-
The capacity region of fading MAC and the optimal resourcground. In Sectiofi Ill, theK-user MAC is formulated as a
allocation algorithms have been characterized and wedl-stiBayesian game. In Sectidn 1V, we characterize the BE set.
ied in many pioneering works with assumptions of differerfEinally, we close with some concluding remarks in Sedfidén V.
information levels[[8]{[1]. However, in order to achieveet
full capacity region, it usually requires a central compgti
resource (a scheduler with comprehensive knowledge of the System Model

network information) to globally allocate the system rases. We consider a time-slotted flat-fading MAC in a single-

This process is centralized, it involves feedback and @amth o, network, in whichK users are simultaneously sending

communication whose load scales linearly with the number pftrmation to one base station. At timethe signal received

transmitters and receivers in the network. In additionhwlite by the base station can be mathematically expressed as
fast evolution of wireless techniques, this centralizetivoek

infrastructure begins to expose its weakness in many aspect K
e.g., slow reconfiguration against varying environment, in y(t) = Z Vg (t)zx () + 2 (1)
creased computational complexity, etc. k=1
A static non-cooperative game has been introduced in thvberex, (t) andgs (¢) are the input signal and fading channel
context of fading MAC, known as “waterfilling gamel’l[3]. gain of userk, z (t) is a zero-mean white Gaussian noise with

II. SYSTEM MODEL AND BACKGROUND



varianceo?. The input signalr,, (t) can be further written as strategyp; (g1, g2) for user1 requires solving the following
optimization problem:

zy (t) = Vi (t)sk (1)
max [E lo 1+ glpl(glagQ)
wherepy, (t) and sy (t) are the transmitted power and data of e 91,92 |108 5% + gap2(91.97)

userk at timet. , , st By g 1 (91,92)] < P 2
We assume that the channel gains. . ., gx are determin- p1(91,99) > 0

istic constants during the period of each transmissionkbloc ' -
(which is assumed to be larger than a time slot intervagnd similarly for user 2. HereP["** is the average power
Therefore, within each time sldt this is simply a Gaussian constraint of userl. Note that the solution of{2) depends
multi-user channe[[16]. Now, instead of considering thelgh on user 2's strategys. (-), which userl does not know, and
capacity region, we are interested in the single-user aahbie reciprocally for user 2. However, the static non-coopeeati
rate (assuming that the base station uses low complex@gme model given in[[3] enables both users to adjust their

single-user decodef [16)), i.e., strategies adaptively to their guesses of the strategy @f th
other user. This process converges to a unique NE:
9kPk +
=1 1 1 * o2
Ry = log ( + o2 +E§<_1j¢kgjpj> 1) pi(91,92) = (Al — E) , wheng; > %92 @)
’ ‘ _ o? A
Intuitively, the object of each user is to maximize this rate p3(91,92) = (/\2 - 97) , whengs > g1

which represents the amount of transmitted information. with p* (g1, g2) = 0 andp (g1, g2) = 0 in all other cases. The

B. Complete and Incomplete Information dual variables\, and ), are given by

. . L . +
Before llntroducmg the problem, it is necessary to cl_arlfy Eg, .0 (>\1 - 372) g1 > %gz = pmax
the meanings of complete information and incomplete infor- N 4)
mation. In game theory, the notion of complete information Eg, .95 ()\2 - ‘;—22) 92 = %gl — pppax
means that all players know completely the structure of the
game, which includes: The authors show that the NH (3) corresponds to the maximum

« Player set (how many devices involved? what are they3ym-rate point of the capacity region. This result is sonzwh
« Other players’ actions (what are their behaviors?) ~ Surprising, since NE is in general inefficient comparingfte t

« Other players’ payoffs (what are their object functions#jareto optimality. Thus, an interesting conclusion is that

selfish behavior of the users leads them to jointly optimimee t

If some players do not completely know the game structure,
. o . . sum-rate of the channel.

we call it a game with incomplete information. For example,

“chess” is a game with complete information, because the I1l. BAYESIAN GAME MODEL

chess moves are known to all players; “poker” is a game with gefore introducing our game model, we need to clarify a

incomplete information, because players are uncertaintab@ior assumption, as follows,

the card states of other players, therefore, the exact bjec ) )

functions of other players are unknown. Assumption 1ll.1. We assume that each user’s channel gain

In our context, take an example of two-user MAC, completé iS 1-i.d. from two discrete valueg:. andg . with probability

information means that the channel gainsg. are available - a@ndp., respectively. WioG, we assume < g.
at both transmitters TleXQ, incomplete information means On the one hand, our assumption is Close'y related to the
that the channel gaip;, is only available at Tx, £ = 1,2. In way how feedback information are signalled to the trans-
this paper, we assume that the player set and action set (§fers. In order to get the channel informatign at the
their definitions in SectiofJll) are known to all players.  transmitter side, it requires the base station to estimate i
and then feedback to usér at a given precisionSince in
digital communications any information is represented by a
An important related work is the “waterfilling game”l [3], finite number of bits (e.g# bits), channels gains are mapped
where multi-user resource allocation problem in fading MAGto a set that contains a finite number of stat&s States).
is studied in detail as a non-cooperative game with completeOn the other hand, this is a necessary assumption for analyt-
information. In this game, users are assumed to compete wihl tractability, since in principle the functional stgic form
transmission rates as payoff and transmit powers as movesf a player can be quite complex with both actions and states
Here, we briefly describe the problem, which is also helpfalre continuous (or infinite). To avoid this problem, [n][15]
to understand our Bayesian game formulation. Under tllge authors successfully modelled a multi-carrier Gauassia
assumption of complete information, each usé&r transmit interference channel as a Bayesian game with discrete (or
power strategy can be considered as a function of all usefisite) actions and continuous states. Inspired fron [Ibthis
channel gains, i.epx (91,...,95). In the case of two-user paper, we model the fading MAC as a Bayesian game under
MAC, for a fixed strategyp: (g1, 92), finding the optimal the assumption of continuous actions and discrete states.

C. Background: Waterfilling Game



Now, we model theK-user fading MAC as a Bayesian IV. BAYESIAN EQUILIBRIUM
game. In such a communication system in which users haveynat we can expect of the outcome from a Bayesian
incomplete information, the natural object of each useis bame? Generally speaking, the process of rational players’

maximize itsaverageachievable rate, i.e., behaviors usually results in BE, which represents a “stable
[ < 9 (gr) >] result of learning and evolution of all participants. THere,
max  Eg |log | 1+ — e it is important to characterize its set, since it concerres th
§ 0%+ 251,52k 93P (9)) performance analysis of a distributed system.
st Eou lpe(g0)] < P ®) A. Definition of Bayesian Equilibrium
P (gr) >0

Let {px(-),p—x(-)} denote the strategy profile where all
whereg = {g1,...,gx } is a set of channel gaind;;*** is  players playp (-) except playerk who playsp, (), we can
the average power constraint for userNote that under the then describe playet's payoff as:
assumption that each user has only incomplete information . .
about the fading channel gains, ugés power strategyy, (-) upe (Phs P—1) = Wk (P1, -+ s Ph—1 Phes P15 - -, PK)
can only rely on its own channel gaip, written aspy (gx).  Definition IV.1. (Bayesian equilibrium)

For a given strategy_x = {p1,...,Pk—1,Pk+1,--- Pk }, The strategy profile* () = {p} ()}« is @ (pure strategy)
the single-user maximization probler (5) is a convex optgayesian equilibrium, if for alk € £, and for all p, () € P,
mization problem([17]. Via Lagrangian duality, the solutiis  and_, () e P_y
given by the following equation:

9k
0% + gkpr(gr) + 241 9515 (95)

(6) where we defina, 2 Eg [us].

g, (Php2) = e (pr, ™)
E, , ] =\

From this definition, it is clear that at the BE no player can
variable \; is chosen such that the power constraint[h ( enefit by changing its strategy while the other players keep

. - . ) ) eirs unchanged. It is worth to mention that the action set
is satisfied with equality. However, the solution (6) also o . :
. . of each player is independent of the type set, i.e., the @stio
depends op_ (-) which userk does not know. Thus, in order __ . :
. ! . - available to usek is the same for every its type.
to obtain the optimal power allocation, each user must #sljus

its power level based on the guess of all other users’ sietegB. Characterization of Bayesian Equilibrium Set
Given the following game model, each user is able to adjusty; js well known that, in general, an equilibrium point does
its strategy according to the belief it has on the strateghef necessarily exis{[2]. Therefore, our primary interisst

other user. _ . to investigate theexistenceand uniquenesf BE in Gy ac.
The K-player MAC Bayesian waterfilling game can bgyere we directly give our main result:

completely characterized as:

where g = {91,---,9k—1,9k+1,---, 9K}, and the dual

N Theorem IV.2. There exists a unique Bayesian equilibrium in
Guac = (K, T,P,Q,U) the K-user MAC game ac.

o Playerset X ={1,...,K}. _ Proof: It is easy to prove the existence part, since the
o Typeset:7T =T, x...xTx (' x"is the Cartesian product) strategy spacey, is convex, compact and nonempty for each
where 7, = {g_,g+}, a player's type is defined as itsi; the payoff functionu,, is continuous in bottp, andp_j;

channel gain, i.egy € 7. anduy, is concave inp, for any p_; [2].

o Action set:P =P x ... x P In order to prove the uniqueness part, we should rely on a
where P, = [0, P;"**], a player’s action is defined as itssufficient condition[[18]: a non-cooperative game has aumiq
transmit power, i.e.py € Pk. equilibrium, if the non-negative weighted sum of the pagoff

« Probability set:Q = Q; x ... x Qg is diagonally strictly concaveWe firstly give the definition:

whereQ;, = {p_, , we havep,. = Pr = and o . )
p_ = Prk(gk {:pg_gf} P (95 = 9+) Definition 1V.3. (Diagonally strictly concave)

. Payoff set:tf = {u1,...,ux} Function f(x,r) = .., ripi(x) is called diagonally

. nx1 i
whereuy, is chosen as player's achievable rate]1) strictly X(:10r_1cave for any \{ectox e R an? fixed vector
r € R, if for any two different vectors”, x', we have

ur(pr, -, i) =log <1+ N— ) M) 0 x!, 1) 2 () T3(x", 1)+ (x*—x")Ta(x!, 1) >0 (8)
0%+ > im1,j2k 9iP5(95) _ _ _
) ) . whered(x,r) is called pseudo-gradient of(x, r), defined as
In games of incomplete information, a player's type rep-
resents any kind of private information that is relevanttto i n?)%
decision making. In our context, the fading channel gairs S5(x,1) 2 . _ 9)

naturally considered as the type of ugés, since its decision ’ Don
(in terms of transmit power) can only rely an. ™ 9z,




Lemma IV.4. The weighted non-negative sum of the averagkie to Ap # 0 andr, # 0, 3. # 0 for all i, k. Therefore,
payoffsuy in Gy ac is diagonally strictly concave. the summation of all the products of the first and the second
terms must be positive. From Definitibn V.3, the sum-payoff
function f*(p, r) satisfies the condition of diagonally strictly
concave. This completes the proof of this lemma. ]
Since our sum-payoff functiorf*(p,r) (I0) is diagonally
strictly concave, from the Theorem in [18], we have the

Proof: Write the sum of the average payoffs as:

K
fUp,r) £ ran(p), (10)
k=1

where p = [p;...px|T is the transmit power vector, uniqueness of Nash equilibrium in our gagigy Ac: u

r=[r. ..:K]th is a non—negati\;ﬁ vecto[ assigning t\./ve:ghts V. CONCLUSION

ri,...,7x to the average payoffs,,...,ux, respectively. ) .

Slimilar tI(; M), we Ietéu(g rg)_y r Das TK@K}? be thg We presented a Bayesian game-theoretic framework for
! P.Y) = 1"5p - TK3pg

distributed resource allocation in fading MAC, where users
are assumed to have only local information about the network
pr=pr(9-), kK channel gain states. By introducing the assumption of finite

. . .. channel states, we successfully found a analytical way &o-ch
the transmit power of playek: when its channel gain is acterize the BE set. We proved the existence and uniqueness

g Since we have shown.fro'm Lagra}ng|an' that at t'he €44t BE in our game. This result is important for predicting the
librium the power constraint is satisfied with equallty,.,l.esystem performance of a distributed wireless network.

pseudo-gradient of “(p,r). Now, we define

> Pk (g8) = PR, we haveP™ — py = py (9+) k € K,
as the transmit power when its channel gaig is Therefore,
it is easy to find that the average payaff can be actually

(1]

transformed into a weighted sum-log function, as follows
i i [2]
oy, + ﬁkpk 3]

g (pr) = w;log |1+ - -
Zi: 0% + ¥z (@ + Bjp;)
where represents the index for different jointly probability [4]
events,w; represents the corresponding probability for index
1. Note that the following conditions hold for all k

(5]
ag + Bipe 2 0, aj, >0, B #0, 02 >0
6
Now, we can write the pseudo-gradiefit as )
G r Y ot (p) 7
(5“ (p7 I‘) — _
i Qs rie Y, Bicdi () R
where functiong; (x) is defined as [9]
K . .
¢i(x) £ 0%+ (af + Bia) [10]

k=1

To check the diagonally strictly concave conditieh (8), &e | 19
p?, p' be two different vectors, and define

Q“(p’,p',r) £ (p' —p") "5 (P, r) + (P° — ") "5 (', 1)

=2 67 @) =0 )] G
=0 p)or (P1)¢E

(12]

(13]

(14]

[15]
where; = S, L (pk — 10). Define Apy, = p} — pf,
sincep®, p! are two different vectors, we must havep =
[Apy - --ApK]T # 0. Now, we can draw a conclusion from
the equation aboveQ*(p?, p',r) > 0. This is becausefl)
the first partg; *(p®)¢; *(p*) > 0 for all i, sinces? > 0
and of, + Bipy > 0 for all i,k; (2) the second part? >
0 for all i, and there exists at least one nonzero tefm

(16]
(17]

(18]
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