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ABSTRACT
We present a non-cooperative game-theoretic approach for
the distributed resource allocation problem in the context
of multiple transmitters communicating with multiple re-
ceivers through parallel independent fading channels, which
is closely related with small-cell multi-user orthogonal fre-
quency division multiplexing (OFDM) networks, e.g., Wi-Fi
hotspots. We assume that all the transmitters are rational,
selfish, and each one carries the objective of maximizing its
own transmit rate, subject to its power constraint. In such a
game-theoretic study, the central question is whether a Nash
equilibrium (NE) exists, and if so, whether the network op-
erates efficiently at the NE. We show, for independent fading
channels, there almost surely exists a unique NE. Finally we
present the behavior of average network performance at the
NE through numerical results, and we compare the optimal
centralized approach with our decentralized approach.

1. INTRODUCTION
Consider a scenario that multiple transmitters simultane-

ously sending information to their receivers through several
independent channels or resources. In this paper we will
use the example of small-cell OFDM networks [1]. In such
a wireless network, we assume that multiple access points
(APs) serve a small area (e.g., airports, restaurants, military
bases, hotels, hospitals, libraries, supermarkets, etc.), simul-
taneously communicating to several mobile terminals (MTs)
using OFDM over a number of dedicated sub-channels. An
N -carrier OFDM system [2] using a cyclic prefix or zero-
padding [3, 4] to prevent inter-block interference is equiva-
lent in the frequency domain to N flat fading parallel trans-
mission sub-channels. In this scenario, each AP faces a prob-
lem of how to distribute the total available power among
these N downlink sub-channels (subcarriers or clusters of
subcarriers), i.e., should it allocate its total power to a sin-
gle sub-channel, spread the power over all the sub-channels,
or choose some subset of sub-channels on which to trans-
mit? Here, we shall emphasize that a similar power alloca-
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tion problem can be considered for the uplink transmission
where MTs are the transmitters who decide their transmit
power strategies.

When this resource allocation problem is considered cen-
trally to maximize the total achievable rate (corresponding
to Shannon capacity [5] when single user detector is applied)
for the small-cell OFDM network, it is an often studied
optimization problem. Given other users’ strategies, the
problem of how to maximize a single user’s sum-rate over
all the sub-channels is a convex optimization problem [6],
whose solution is “waterfilling” [7, 8, 9]. The multi-user ver-
sion of this problem is a non-convex optimization problem
that may have multiple local optimal points [10, 11, 12].
To solve the multi-user problem in a centralized way, it re-
quires a scheduler to allocate the resources, which is similar
to the multi-user waterfilling problem [13] in multiple ac-
cess channel (MAC). This approach requires a central com-
puting resource with perfect knowledge of the channel state
information (CSIT), involving feedback and overhead com-
munication whose load scales linearly with the number of
transmitters and receivers in the network. To reduce the
feedback load, selective multi-user diversity algorithms have
been introduced in [14]. In contrast to centralized networks,
we study in this paper distributed communication solutions
that require no centralized control, reducing the overhead as
well as the need for a knowledgeable powerful scheduler to
allocate network resources.

Now if each AP independently allocates the total power to
maximize its own total achievable rate, considering all other
users’ transmissions as noise, this problem can be studied
as a distributed non-cooperative game [15] where the selfish
players are the APs who “play” the game by choosing their
transmit power levels across sub-channels. Note that a self-
ish player may not act as a good neighbor to each other [16],
and in fact he does not care about any other player’s perfor-
mance neither the whole network performance at all. Nash
equilibria [17], which we will formally define in Section 3 but
which are, informally, the best mutual strategies a rational
player can play assuming that other players are also ratio-
nal (using their own best strategies given their information),
are important to study in such a distributed non-cooperative
game because they represent the natural outcomes in com-
petitive games. It is worth to mention that two special cases
of this game have been studied in [18] and [10]. In [18],
the existence and uniqueness of NE were established for the
two-player case. In [10], the so called symmetric waterfill-
ing game was studied (they assume, for a set of subcarriers
and receivers, the channel gains from all transmitters are



the same). They show that there exist an infinite number
(a continuum) of NE in the game. However, up to now it is
still not clear how to characterize the equilibrium set in the
case of general independent fading channels with multiple
players. The goal of this paper is therefore to address this
fundamental problem.

The paper is organized in the following form: the problem
formulation is introduced in Section 2. In Section 3, we
study the existence of NE and we characterize the NE set.
We shown in Section 4 the optimal centralized approach.
Finally, some numerical results are provided in Section 5
followed by conclusions in Section 6.

2. SYSTEM MODEL

2.1 Communication Model
Consider a parallel Gaussian channels (in particular OFDM

system) with M APs simultaneously sending information
to N MTs over N sub-channels. Assume that each sub-
channel is pre-assigned to a different MT by a scheduler,
therefore, each MT detects the signals only on the assigned
sub-channel. We also assume that the channels have block
fading so that the channel fading coefficients are constant
during the period of each transmission block. Within a given
transmission block, let G ∈ R

M×N
++ (positive real M × N

matrix) be the channel gain matrix whose (m, n) entry is
gm,n, the magnitude-squared of the fading channel gain on
the downlink channel from AP m to MT n. We assume
that G is a random M × N matrix with i.i.d. continu-
ous entries (meaning that each entry gm,n is independent,
identically and continuously distributed) due to independent
fading channels. Assuming that signals from other APs are
treated as noise, the signal to interference plus noise ratio
(SINR) of the signal from AP m to MT n is

γm,n =
gm,npm,n

σ2 +
∑

j 6=m gj,npj,n

(1)

where pm,n ≥ 0 represents the power transmitted by the
mth AP on the nth sub-channel. For the sake of simplicity,
we assume that the variance of white Gaussian noise σ2 is
the same for each sub-channel n. The maximum achievable
sum-rate for AP m is given by [7]

Rm =
N∑

n=1

log (1 + γm,n) , ∀m (2)

Each AP m has the power constraint

N∑

n=1

pm,n ≤ P̄m, ∀m (3)

for P̄m > 0, ∀m.

2.2 Game Model
Here, we consider the previously mentioned model as a

non-cooperative strategic game. In this game, the goal of
each AP (player) m is to choose its own power vector pm =
[pm,1 . . . pm,N ]T (subject to its total power constraint (3))
to maximize the sum-rate Rm. Let the long power vector

p =
[
pT

1 , . . . ,pT
M

]T
denote the outcome of the game in terms

of transmission power levels of all the M players on N sub-
channels. We can completely describe this non-cooperative

OFDM game as

G ,
[
M, {Pm}m∈M , {um}m∈M

]
(4)

where the elements of the game are

• The player set: M = {1, . . . , M};

• The strategy set: {P1, . . . ,PM}, where the strategy of
player m is

Pm =

{

pm : pm,n ≥ 0, ∀n,
N∑

n=1

pm,n ≤ P̄m

}

; (5)

• The utility or payoff function set: {u1, . . . , uM}, with
um (pm,p−m) = Rm expressed in (2), where p−m de-
notes the power vector of length (M − 1)N consist-
ing of elements of p other than the mth element, i.e.,
p−m = [pT

1 , . . . ,pT
m−1,p

T
m+1, . . . ,p

T
M ]T .

3. NASH EQUILIBRIUM
In such a non-cooperative setting, each player m acts self-

ishly, aiming to maximize its own payoff, given other players’
strategies and regardless of the impact of its strategy may
have on other players and thus on the overall performance.
The process of such selfish behaviors usually results in Nash
equilibrium, which represents a common solution concept for
non-cooperative game theoretic problems [17].

Definition 3.1. A power vector p⋆ is said to be a Nash
equilibrium if for every m ∈ M,

um (p⋆
m,p⋆

−m) ≥ um (pm,p⋆
−m) (6)

for all pm ∈ Pm.

From above, it is clear that a NE simply represents a par-
ticular “steady” state for a system, in the sense that, once
reached, no player has any motivation to unilaterally devi-
ate from it. In many cases, Nash equilibria represent the
result of learning and evolution of all players in a system.
Therefore, it becomes fundamentally important to predict
and characterize such point(s) from the system design per-
spective of wireless networks. In the rest context of this
paper, we will focus on charactering such point(s) in the
power strategy space. The following questions will be ad-
dressed one by one: 1. Does NE exist in our game? 2. Does
there exist a unique or multiple NE points? 3. How does
the network behave at NE?

It is known that in general NE point does not necessary
exist. Therefore, our first interest turns to investigate the
existence and uniqueness of NE in our game.

Lemma 3.2. A Nash equilibrium exists in our game G.

Proof. Since Pm is convex, closed, and bounded for each
m; um (pm,p−m) is continuous in both pm and p−m; and
um (pm,p−m) is concave in pm for any set p−m, at least
one Nash equilibrium point exists for G [19], [20].

Once existence is established, it is natural to consider the
characterization of the equilibrium set. Ideally, we would
prefer there to be a unique equilibrium, but unfortunately
this is not true for many game problems [20]. A specific
case of our game G, namely symmetric waterfilling game is
studied in [10], where the authors show infinite number of



NE existing under the assumption of equal crosstalk channel
coefficients. This implies that in general our game G does
not have unique equilibrium point. Nevertheless, we will
show in the following context that there exists a single NE
almost surely for random channel gain matrix G with i.i.d.
continuous entries.

For any player m, given all other players’ strategies p−m,
the best-response power strategy pm can be found by solving
the following optimization problem,

max
pm

um (pm,p−m)

s.t.
∑

n

pm,n ≤ P̄m (7)

pm,n ≥ 0

which is a convex optimization, since the objective function
is concave in pm and the constraint set is convex. There-
fore, the Karush-Kuhn-Tucker (KKT) condition of the op-
timization is sufficient and necessary for the optimality [6].
To derive the KKT conditions, we form the Lagrangian for
each player m,

Lm (p, λ) =

N∑

n=1

log

(

1 +
gm,npm,n

σ2 +
∑

j 6=m gj,npj,n

)

− λm

(
N∑

n=1

pm,n − P̄m

)

+

N∑

n=1

νm,npm,n.

The corresponding KKT conditions are

gm,n

σ2 +
∑M

j=1 gj,npj,n

− λm + νm,n = 0, ∀n (8)

λm

(
N∑

n=1

pm,n − P̄m

)

= 0 (9)

νm,npm,n = 0, ∀n, (10)

where λm ≥ 0, ∀m and νm,n ≥ 0, ∀m ∀n are dual variables
associated with the constraints of limited power and positive
power, respectively. The solution to this problem is well-
known as the waterfilling algorithm [7, 8, 9]

pm,n =

(

1

λm

−
σ2 +

∑

j 6=m gj,npj,n

gm,n

)+

, ∀n (11)

where (x)+ = max{0, x} and λm satisfies

N∑

n=1

(

1

λm

−
σ2 +

∑

j 6=m gj,npj,n

gm,n

)+

= P̄m. (12)

Lemma 3.3. The following conditions are sufficient and
necessary for the Nash equilibrium in OFDM game G.

gm,n

σ2 +
∑M

j=1 gj,npj,n

− λm + νm,n = 0, ∀m ∀n (13)

λm

(
N∑

n=1

pm,n − P̄m

)

= 0, ∀m (14)

νm,npm,n = 0, ∀m ∀n. (15)

Proof. For a certain index m, the single player KKT
conditions (8)-(10) are necessary and sufficient for the best
response condition with index m in (6). Therefore, as a
collection of single player KKT conditions from index 1 to

M , (13)-(15) are necessary and sufficient for all the best
response conditions in (6).

From (13), it is easy to observe λm > 0. Then from (14),
we have

N∑

n=1

pm,n = P̄m, ∀m (16)

Note that (16) has an intuitive meaning: each player at NE
must dedicate its total available power on all carriers, due
to their “selfish instinct”. However, it is still difficult to find
the analytical solution for (13)-(15), since the solution form
(11) and (12) construct a system of nonlinear equations.
The idea to simplify this problem is therefore to consider
linear equations instead of nonlinear ones, we then introduce
another lemma, as follows

Lemma 3.4. For any realization of channel matrix G ∈
R

M×N
++ , there exist unique values of the Lagrange dual vari-

ables λ and ν for any Nash equilibrium of the game G. Fur-
thermore, there is a unique vector s = [s1, . . . , sn]T such
that any vector p corresponding to a Nash equilibrium of the
game satisfies

M∑

m=1

gm,npm,n , sn, ∀n. (17)

The proof can be found in Appendix A.
Now, let Z be the following (M + N) by MN matrix

Z =










IM IM · · · IM

gT
1 0T

M · · · 0T
M

0T
M gT

2 · · · 0T
M

...
...

. . .
...

0T
M 0T

M · · · gT
N










(M+N)×MN

where gn is the nth column of G, IM is the M by M identity
matrix, and 0M is zero vector of length M . Let c be the
following vector of length M + N

c =
[
P̄1 P̄2 . . . P̄M s1 s2 . . . sN

]T

Then, (16) and (17) can be written in the form of linear
matrix equation

Zp = c. (18)

Define the following sets:

X , {(m, n) : νm,n = 0},

N , {n : ∃m such that (m, n) ∈ X}.

From (15), if an index (m, n) /∈ X we must have pm,n = 0.

Without loss of generality, we assume that N = {1, . . . , Ñ}

for Ñ ≤ N . Let Z̃ be the M + Ñ by MÑ matrix formed
from the first M + Ñ rows and first MÑ columns of Z, p̃

is formed from the first MÑ elements of p, and c̃ is formed
from the first M + Ñ elements of c, then any NE solution
must satisfy

Z̃p̃ = c̃. (19)

Let Ẑ be the M + Ñ by |X | (the size of X ) matrix formed

from the columns of Z̃ that correspond to the elements of X .
Similarly, let p̂ be the vector of length |X | with the values of



pm,n with (m, n) ∈ X (and in the same order as they were
in p). Then any NE solution must satisfy

Ẑp̂ = c̃. (20)

Lemma 3.5. For any realization of random channel ma-
trix G with i.i.d. continuous entries, if MÑ > M + Ñ ,
|X | ≤ M + Ñ with probability 1.

Proof. When νm,n = 0 , from (8) we have

λm − gm,ndn = 0, ∀(m, n) ∈ X (21)

where dn , 1
σ2+sn

. From Lemma 3.4, we know that all the

Nash equilibria must satisfy (21), with the same λm and dn.
In (21), the number of independent linear equations is |X |,
while the number of unknown parameters is M + Ñ (since
the rest of dn, n /∈ N is known to be dn = 1

σ2 ). It is well
known that the solution to the system of linear equations
is the empty set, if the number of independent equations is
larger than the number of variables [21]. Since gm,n is chosen
randomly from a continuous distribution, it is obvious that,
with probability 1, the equations in (21) are independent

from each other, therefore, we must have |X | ≤ M + Ñ .

Lemma 3.6.

1. If MÑ > M + Ñ and |X | ≤ M + Ñ , rank(Ẑ) = |X |
with probability 1.

2. If MÑ ≤ M + Ñ , rank(Z̃) = MÑ with probability 1.

Proof. We only give the proof for case 1) MÑ > M +Ñ ,

case 2) MÑ ≤ M+Ñ can be proved in a similar way. Matrix

Ẑ can be transformed into a 2×2 block matrices, by applying
some elementary column and row operations, as follows,

Ẑ
column
−→

[
Iτ Aτ×ξ2

Bξ1×τ Cξ1×ξ2

]

column
−→

[
Iτ 0τ×ξ2

Bξ1×τ Ĉξ1×ξ2

]

row
−→

[
Iτ 0τ×ξ2

0ξ1×τ Ĉξ1×ξ2

]

where τ = min{M, Ñ}, ξ1 = M + Ñ − τ ≥ τ, ξ2 = |X | − τ .

Ĉ is a ξ1 × ξ2 matrix, where each column contains one or
two random variables, and each row contains at least one
random variable. Again we can transform Ĉ in row echelon
form, denoted as Ĉr. Note that the rank of Ĉr is ξ2 with
probability 1, since each leading coefficient of a row is a ran-
dom variable or the linear combination of two continuously
distributed random variables. So, with probability 0, any
leading coefficient takes the value of 0. Therefore, we have
rank(Ẑ) = τ + ξ2 = |X | with probability 1.

Theorem 3.7. For any realization of random channel ma-
trix G with i.i.d. continuous entries, the OFDM game G has
exactly one Nash equilibrium.

Proof. If MÑ > M + Ñ , we have from Lemma 3.6 that,
with probability 1, rank(Ẑ) = |X |. Any NE must satisfy
(20); assume that two different power strategies p̂ and p̂′

are both solutions to (20). Then Ẑ (p̂ − p̂′) = 0. By the

rank-nullity theorem [21], since the rank of Ẑ is equal to the
number of its columns, this implies p̂− p̂′ = 0, which means
there must be exactly one NE.

If MÑ ≤ M + Ñ , we have from Lemma 3.6 that, with
probability 1, there is at most one solution to (19). Since
any NE must satisfy (19) and we know that there is at least
one NE solution, so the NE must be unique.

4. PARETO OPTIMALITY
To measure the inefficiency of Nash equilibrium, we con-

sider in this section the Pareto boundary for the total net-
work rate. The total network rate maximization problem
can be formulated as

max
pm

M∑

m=1

um (p)

s.t.
∑

m

pm,n ≤ P̄m, m = 1, . . . , M (22)

pm,n ≥ 0

which unfortunately is a difficult problem, since the objec-
tive function in non-convex in p. However, a relaxation of
this optimization problem (see in [12]) can be considered
as a geometric programming problem [22], therefore, can
be transformed into a convex optimization problem. A low
complexity algorithm was proposed in [12] to solve the dual
problem by updating dual variables through a gradient de-
scent. Note that this approach enable us to find a tight
lower-bound for the Pareto boundary that is sufficient for
the performance measurement presented in the next section.

5. NUMERICAL EVALUATION
In this part, numerical results are provided to demon-

strate the network performance at the unique Nash equilib-
rium (outcome of decentralized networks). To be precise, we
are interested in comparing the “average total network rate”
(average over the distribution of fading channel gains, and
we will use the short term “total network rate” to represent
it) instead of the instantaneous one. We denote by ū(M, N)
this total network rate,

ū(M, N) = EG

[
M∑

m=1

N∑

n=1

log

(

1 +
pm,ngm,n

σ2 +
∑

j 6=m pj,ngj,n

)]

As a basis for comparison, the Pareto-maximum total net-
work rate will also be provided and considered as a up-
per bound for the decentralized settings. Parameters are
selected as: the number of transmitters is M ∈ [1, 25];
the number of receivers N takes several representative val-
ues as 5, 10 and 15; the power constraint of each AP is
P̄m = 1, ∀m; the variance of additive white Gaussian noise
is set to σ2 = 0.1 and 1, respectively.

Fig. 1 and Fig. 2 show the total network rate for σ2 = 0.1
and 1, respectively. As expected, the curves of centralized
networks always outperform the decentralized ones. More
preciously, for a fixed number of receivers N , as the num-
ber of transmitters M increases, the performance loss of
decentralized networks (compared to centralized networks)
becomes more and more apparent. This phenomenon can
be easily understood as: when there are a great number of
selfish players, the hostile competition turns the multi-user
communication system into an interference-limited environ-
ment, where interference begins to dominate the performance
efficiency.

In Fig. 1 and Fig. 2, we also find that the total network
rate of centralized network is an increasing function of M
(for a fixed value of N), and the total network rates of decen-
tralized networks corresponding to Nash equilibrium show
an increasing slope before diminishing and reaching conver-
gence. For some typical values of N , i.e., N = 5, 10 and 15,
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in Fig. 1, when σ2 = 0.1 the total network rate of decentral-
ized networks are maximized approximately at M = 4, 9, 14,
respectively; in Fig. 2, when σ2 = 1 the total network rate
of decentralized networks are maximized approximately at
M = 6, 11, 16, respectively. It simply shows that different
noise variance (in general channel condition) has a differ-
ent impact on the decentralized network performance. This
observation is fundamentally important for improving the
energy efficiency in such a multi-user decentralized network:
for a given area (given the number of receivers N and the
current channel condition), there exists an optimal choice
for the number of transmitters (denoted as M⋆) to be put in
the network. Roughly saying: when M > M⋆, the network
is overloaded due to the increase of competition over limited
spectrum resources; when M < M⋆, the network is oper-
ated at an unsaturated state, since the spectrum resources
are not fully exploited.

6. CONCLUSIONS AND FUTURE WORKS
In this paper we described the scenario of multiple trans-

mitters communicating with multiple receivers through inde-

pendent parallel sub-channels as a strategic non-cooperative
game. Each transmitter is modeled as a player in the game
who decides, in a distributed way, the strategy of how to al-
locate its total power through these sub-channels. We stud-
ied the existence and uniqueness of Nash equilibrium which
represents a natural outcome of the game. For any real-
ization of a random channel matrix with i.i.d. continuous
entries, we proved that there exists almost surely a unique
Nash equilibrium. This result is a fundamental step to un-
derstand the resource allocation conflicts in a decentralized
small-cell multi-user OFDM network, and moreover, it of-
fers the possibility to predict the network performance out-
comes. Finally, in our simulations results, we show how the
average performance of the decentralized network behaves,
and we compared it with the centralized network. Future
works shall focus on the scaling analysis of the decentralized
network performance.
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APPENDIX
A. Proof of Lemma 3.4

Proof. Consider a Nash equilibrium p ∈ R
MN×1
+ (non-

negative real vector of length MN), from Lemma 3.3, we
have the following equation

φ (p) + ν − λ = 0

where

φ (p) =










g1,1

σ2+
∑

jpj,1gj,1
g1,2

σ2+
∑

jpj,1gj,1

...
gM,N

σ2+
∑

jpj,N gj,N










ν =








ν1,1

ν1,2

...
νM,N








λ =








λ1

λ2

...
λM








Now, assume that there exist two different Nash equilibria,
e.g., p0,p1 (p0 6= p1), the following equation must also hold

[
(
p1 − p0

)T (
p0 − p1

)T
]

︸ ︷︷ ︸

αT








[
φ
(
p0
)

φ
(
p1
)

]

︸ ︷︷ ︸

β

+

[
ν0 − λ0

ν1 − λ1

]

︸ ︷︷ ︸

γ








= 0 (23)

from where we have

αT β =
(
p

1 − p
0)T φ

(
p

0) +
(
p

0 − p
1)T φ(p1)

=

N∑

n=1

M∑

m=1

[

(
p1

m,n − p0
m,n

) gm,n

σ2 +
∑M

j=1 p0
j,ngj,n

]

+

N∑

n=1

M∑

m=1

[

(
p0

m,n − p1
m,n

) gm,n

σ2 +
∑M

j=1 p1
j,ngj,n

]

=
N∑

n=1

M∑

m=1

gm,n

(
p0

m,n − p1
m,n

)[∑M

j=1gj,n

(
p0

j,n−p1
j,n

)]

(

σ2+
∑M

j=1 p0
j,ngj,n

)(

σ2+
∑M

j=1 p1
j,ngj,n

)

=
N∑

n=1

[
∑M

j=1 gj,n

(
p0

j,n − p1
j,n

)]2

(

σ2+
∑M

j=1 p0
j,ngj,n

)(

σ2+
∑M

j=1 p1
j,ngj,n

) ≥ 0



and

αT γ =
(
p

1 − p
0)T (ν0 − λ0) + (p0 − p

1)T
(
ν1 − λ1)

=

N∑

n=1

M∑

m=1

[
(p1

m,n − p0
m,n)(ν0

m,n − λ0
m)
]

+

N∑

n=1

M∑

m=1

[
(p0

m,n − p1
m,n)(ν1

m,n − λ1
m)
]

=

M∑

m=1









(
N∑

n=1

p1
m,n −

N∑

n=1

p0
m,n

)

︸ ︷︷ ︸

P̄m−P̄m=0

(λ1
m − λ0

m)









+

N∑

n=1

M∑

m=1

(
p0

m,nν1
m,n + p1

m,nν0
m,n

)

=

N∑

n=1

M∑

m=1

(
p0

m,nν1
m,n + p1

m,nν0
m,n

)
≥ 0

From above, we find that (23) holds if and only if the two
equalities are satisfied: αT β = 0 and αT γ = 0, which are
equivalent to the following two equations, respectively:

M∑

m=1

gm,np0
m,n −

M∑

m=1

gm,np1
m,n = 0, ∀n (24)

p0
m,nν1

m,n = p1
m,nν0

m,n = 0, ∀m ∀n (25)

First, from (24) one can easily find that the value of sn(
=
∑

m gm,npm,n

)
is unique for any Nash equilibrium point.

Second, from (16) we know that for any player m there must
be a (positive) power allocated on a certain sub-channel n′,
e.g., p0

m,n′ > 0, and we have two important observations:

1. Using (15), we have p0
m,n′ν0

m,n′ = 0 ⇒ ν0
m,n′ = 0.

2. Using (25), we have p0
m,n′ν1

m,n′ = 0 ⇒ ν1
m,n′ = 0.

Then (13) yields

λ0
m = λ1

m = −
gm,n′

σ2 + sn′

, ∀m (26)

which shows that the dual variable λ is unique for any Nash
equilibrium. Furthermore, by using (26) into (13), we derive

ν0
m,n = λ0

m −
gm,n

σ2 + sn

= λ1
m −

gm,n

σ2 + sn

= ν1
m,n, ∀m ∀n

which confirms that the dual variable ν is also unique for
any Nash equilibrium. This completes the proof.
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